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I. INTRODUCTION 

In classical set theory, a set is a well-defined collection of distinct objects. If the repeated occurrences 

of any object are allowed in a collection, then that mathematical structure is called a multiset (mset in short). In 

many situations, it is more convenient to consider a collection like multiset. e.g., repeated roots of an equation, 

repeated eigen values of a matrix, prime factors of a positive integer, repeated observations in a statistical sample, 

data structure, information retrieval on the web, multi-criteria decision making, knowledge presentation in data 

based system, biological systems and membrane computing [20,22,24,25]. More studies on multisets can be found 
in [2,4,5,9,12,14,16,17]. The term multiset as Knuth notes [17], was first suggested by N. G. de Bruijn [10] in a 

private correspondence to him. N. G. de Bruijn's interests in multisets grew out of his investigations into the 

combinatorial properties of the set of divisors of a number. A number or any of its divisors is expressible as a 

multiset of prime factors [2,17]. But it have now  become an area of special interest in various subjects like 

mathematics, statistics, computer science, physics and philosophy [2,8,10,12,22,24,25].  Many authors like Yagar 

[25], Miyamoto [20], Hickman [15], Blizard [4], Girish and John [12,13,23], D. Singh [24], A. M. Ibrahim [24] etc. 

have studied the properties of multisets. Some authors have also generalized the notion of multisets to form fuzzy 

multisets [18], Intuitionistic fuzzy multisets [3,23], soft multisets [1,13,19] etc. Various research work on the 

multiset ordering [4,11,24], relations and functions in multiset context [20], multiset topology [12,13], multi group 

theory [21] etc. have been done recently by some researchers.  

In order to develop various structures on multisets we have started from the beginning. Our motif is to 
develop a multi number system which a generalization of the ordinary number system and also compatible with the 

multiset setting as number system plays an important role in mathematics. In a  previous papers [6], we have 

introduced a concept of multi-natural number system from the  axiomatic point of view and study its properties 

related to compositions and order relations. After that in another paper [7],we introduce concept of multi-integer 

system. In this paper, we extend it to develop multi-rational number system and to study their properties. The 

organization of the paper is as follows: 

 

Section 2 is the preliminary part where some definitions and results regarding multisets, multi-natural 

numbers and multi-integers have been introduced. In section 3, the notion of multi-fractional system together with 

binary operations and order relation defined on it has been introduced. Several properties regarding multi-fractional 

system have been studied and notions like multi-distributive property, multi-rational number, multi-field etc. have 

been also defined in this section. Finally, Multi-rational number system has been introduced; its isomorphism with 
multi-fractional system and its existence and uniqueness have been established. The straightforward proofs of the 

propositions have been omitted. 

 

II. PRELIMINARIES 

Definition 2.1 [12] A multiset (or mset, in short) 𝑀 drawn from a set 𝑋 is represented by a function 𝐶𝑜𝑢𝑛𝑡𝑀  or 

𝐶𝑀  defined as 𝐶𝑀 :𝑋 → 𝑁 ∪ {0} where 𝑁 represents the set of all natural numbers. Let 𝑀 be an mset drawn from the 

set 𝑋 = {𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑛 } with 𝑥𝑖  appearing 𝑘𝑖   times in 𝑀. It is denoted by 𝑥𝑖 ∈𝑘𝑖 𝑀. The mset 𝑀 drawn from the 
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set 𝑋 is then denoted by {𝑘1/𝑥1, 𝑘2/𝑥2, … , 𝑘𝑛 /𝑥𝑛}. Also 𝐶𝑀(𝑥) is the number of occurrences of the element 𝑥 in the 

mset 𝑀. However, those elements which are not included in the mset 𝑀 have zero count. 

 

Example 2.2 Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} be any set. Then  𝑀 = {3/𝑎, 2/𝑏, 1/𝑒} is an mset drawn from 𝑋. 

Definition 2.3 [12] Let 𝐴, 𝐵 and 𝑀 be three msets drawn from a set 𝑋. Then the followings are defined: 

(i) 𝐴 = 𝐵 if 𝐶𝐴 𝑥 = 𝐶𝐵 𝑥  for all 𝑥 ∈ 𝑋. 

(ii) 𝐴 ⊆ 𝐵 if 𝐶𝐴 𝑥 ≤ 𝐶𝐵 𝑥  for all 𝑥 ∈ 𝑋, thn we call 𝐴 to be a submset of 𝐵. 

(iii) 𝑀 = 𝐴 ∪ 𝐵 if 𝐶𝑀 𝑥 = max{𝐶𝐴 𝑥 , 𝐶B 𝑥 } for all 𝑥 ∈ 𝑋. 

(iv) 𝑀 = 𝐴 ∩ 𝐵 if 𝐶𝑀 𝑥 = min{𝐶𝐴 𝑥 , 𝐶B 𝑥 } for all 𝑥 ∈ 𝑋. 

(v) 𝑀 = 𝐴 ⊕ 𝐵 if 𝐶𝑀 𝑥 = 𝐶𝐴 𝑥 +  𝐶B 𝑥  for all 𝑥 ∈ 𝑋. 

(vi) 𝑀 = 𝐴 ⊖ 𝐵 if 𝐶𝑀 𝑥 = max{𝐶𝐴 𝑥 − 𝐶B 𝑥 , 0} for all 𝑥 ∈ 𝑋. 

Where  ⊕ and ⊖ represents mset addition and mset subtraction resoectively. Let 𝑀 be an mset drawn from a set 𝑋, 

then the support set of  𝑀 denoted by 𝑀∗ is a subset of 𝑋 and  𝑀∗ = {𝑥 ∈ 𝑋: 𝐶𝑀 𝑥 > 0}. i.e., 𝑀∗ is an ordinary set 

and it is also called root set. The cardinality of an mset 𝑀 drawn from a set 𝑋 is denoted by 𝑐𝑎𝑟𝑑(𝑀) or |𝑀| and is 

given by  𝑀 =  𝐶𝑀(𝑥)𝑥∈𝑋 . 

 

Remark 2.4 [12, 16] A domain 𝑋 is defined as a set of elements from which msets are constructed. The mset space 

[𝑋]𝑚  is the set of all msets whose elements are in 𝑋 such that no element in the mset occurs more than m times. The 

mset space [𝑋]∞ is the set of all msets over a domain 𝑋 such that there is no limit on the number of occurrences of 

an element in an mset. If 𝑋 = {𝑥1 , 𝑥2 ,𝑥3 , … , 𝑥𝑘 }, then [𝑋]𝑚 = {{𝑚1/𝑥1 ,𝑚2/𝑥2 ,… , 𝑚𝑘/𝑥𝑘}: for 𝑖 = 1,2, … , 𝑘; 𝑚𝑖 ∈
{0,1,2, … , 𝑚}}. 
 

Definition 2.5 [12, 16] Let 𝑋 be a crisp set and  [𝑋]𝑚  be the mset space defined over 𝑋, then the complement 𝑀𝑐  of  

𝑀 in [𝑋]𝑚  is an element of  [𝑋]𝑚  such that 𝐶𝑀𝑐 𝑥 = 𝑚 − 𝐶𝑀 𝑥  for all 𝑥 ∈ 𝑋. 

 

Definition 2.6 (Different types of msets) 

(i) [14] Whole submset: A submset 𝑃 of an mset 𝑀 (i.e., 𝑃 ⊆ 𝑀) is a whole submset of 𝑀 if each element 

in 𝑃 has full multiplicity as in 𝑀. i.e., 𝐶𝑃 𝑥 = 𝐶𝑀(𝑥) for all 𝑥 ∈ 𝑃∗. 

(ii) [14] Partial whole submset: A submset 𝑃 of an mset 𝑀 (i.e., 𝑃 ⊆ 𝑀) is a partial whole submset of 𝑀 if 

at least one element in 𝑃 has the full multiplicity as in 𝑀. i.e., 𝐶𝑃 𝑥 = 𝐶𝑀(𝑥) for some 𝑥 ∈ 𝑃∗. 

(iii) [14] Full submset: A submset 𝑃 of an mset 𝑀 (i.e., 𝑃 ⊆ 𝑀) is a full submset of 𝑀 if 𝑃∗ = 𝑀∗ and 

𝐶𝑃 𝑥 ≤ 𝐶𝑀(𝑥) for all 𝑥 ∈ 𝑃∗. 

(iv) [6] Single whole submset and single submset: A submset 𝑃 of an mset 𝑀 drawn from a set 𝑋 is a 

single whole submset if 𝐶𝑃 𝑥  is either 𝐶𝑀  or 0 for all 𝑥 ∈ 𝑃∗ and {𝑥 ∈ 𝑃∗: 𝐶𝑃 𝑥 = 𝐶𝑀(𝑥) } is a 

singleton set, say {𝑎}, then let us denote it as 𝑀 𝑎  (= 𝑃), i.e., a single whole submset is such a 

submset of an mset for which exactly one element of the support set belongs to it with the same count 

as in the mset. 

An mset is called a single mset if it has a singleton support set and a submset  𝑃 of an mset 𝑀 drawn 

from a set 𝑋 is a single submset if 𝑃 is a single mset. 

So, immediately, each mset can be expressed as a union of all its single whole submsets. Therefore, 

𝑀 =  𝑀{𝑎}𝑎∈𝑀∗ . 

In this connection, we note that single whole submsets are pair wise disjoint. 

 

Definition 2.7 [6] (Axiomatic definition of multi-natural numbers) 

Let (𝑁, 1, 𝜍) be the unique ordinary natural number system defined by Peano. Then,  

Axiom 1: For all 𝑝, 𝑞 ∈ 𝑁, there exist a multi-natural number denoted by  Np
q
.  

Axiom 2: Two multi-natural numbers 𝑁𝑝
𝑞
 and 𝑁𝑟

𝑠 are equal if and only if 𝑝 = 𝑟 and 𝑞 = 𝑠. 

Axiom 3: For any multi-natural number 𝑁𝑝
𝑞

, 𝑝, 𝑞 ∈ 𝑁, there exist a multi-natural number 𝑁𝜍(𝑝)
𝑞

  (defined to be the 

support successor of  𝑁𝑝
𝑞
) and another there exist a multi-natural number  Np

σ(q)
 ( defined to be multiplicity 

successor of  𝑁𝑝
𝑞
). 

Axiom 4: 𝑁1
𝑞
 for all 𝑞 ∈ 𝑁 is not a support successor of any multi-natural number. Also, 𝑁𝑝

1 for all 𝑝 ∈ 𝑁 is not a 

multiplicity successor of any multi-natural number. 
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Axiom 5: Let 𝑃(𝑁𝑝
𝑞

) be any proposition involving 𝑁𝑝
𝑞
. Suppose that 𝑃(𝑁1

1) is true. Also suppose that whenever 

𝑃(𝑁𝑝
𝑞

) is true, then 𝑃(𝑁𝜍(𝑝)
𝑞

) and 𝑃(𝑁𝑝
𝜍(𝑞)

) both are also true. Then 𝑃(𝑁𝑝
𝑞

) is true for every multi-natural number 

𝑁𝑝
𝑞
.  

The set of all multi-natural numbers is denoted by 𝑚(𝑁). 𝑝 ∈ 𝑁 and 𝑞 ∈ 𝑁 are respectively the support and the 

multiplicity of a multi-natural number 𝑁𝑝
𝑞
. 

 

Definition 2.8 [6] (Successor Functions) 𝑆: 𝑚(𝑁) → 𝑚(𝑁) defined by 𝑆 𝑁𝑝
𝑞
 = 𝑁𝜍(𝑝)

𝑞
 is called the support 

successor function. 𝑀: 𝑚(𝑁) → 𝑚(𝑁) defined by 𝑀 𝑁𝑝
𝑞 = 𝑁𝑝

𝜍(𝑞)
 is called the multiplicity successor function. 𝑆 

and 𝑀 both are one to one since 𝜍 is one to one. 

 

Definition 2.9 [6] (Definition of addition) There exists a unique function 𝐴: 𝑚(𝑁) × 𝑚(𝑁) → 𝑚(𝑁) with the 

following properties: 

Axiom 1: 𝐴 𝑁𝑝
𝑞

, 𝑁1
1 = 𝑆(𝑁𝑝

𝑞
), 𝑁𝑝

𝑞
∈ 𝑚(𝑁), 

Axiom 2: 𝐴  𝑁𝑝
𝑞

, 𝑆 𝑁𝑛
𝑚   = 𝑆(𝐴(𝑁𝑝

𝑞
, 𝑁𝑛

𝑚 )), 𝑁𝑝
𝑞

, 𝑁𝑛
𝑚 ∈ 𝑚(𝑁), 

Axiom 3: A(𝑁𝑝
𝑞

, 𝑀(𝑁𝑛
𝑚 )) = 𝑀 𝑞 (𝐴(𝑁𝑝

𝑞
, 𝑁𝑛

𝑚 )) , 𝑁𝑝
𝑞

, 𝑁𝑛
𝑚 ∈ 𝑚(𝑁) which is called addition of two multi-natural 

numbers and it is given by 𝐴 𝑁𝑝
𝑞

, 𝑁𝑛
𝑚  = 𝑁𝑝+𝑛

𝑞𝑚
, 𝑁𝑝

𝑞
, 𝑁𝑛

𝑚 ∈ 𝑚(𝑁). 𝐴 𝑁𝑝
𝑞

,𝑁𝑛
𝑚   is also denoted by 𝑁𝑝

𝑞
+ 𝑁𝑛

𝑚 . 

Proposition 2.10 [6] (Properties of addition) 

(i) 𝑆 𝑁𝑝
𝑞 = 𝑁𝑝

𝑞
+ 𝑁1

1, for all 𝑁𝑝
𝑞
∈ 𝑚(𝑁), 

(ii) 𝑁𝑝
𝑞

+  𝑁𝑘
𝑡 + 𝑁1

1 = (𝑁𝑝
𝑞

+ 𝑁𝑘
𝑡) + 𝑁1

1 for all 𝑁𝑝
𝑞

, 𝑁𝑘
𝑡 ∈ 𝑚(𝑁), 

(iii) 𝑁1
1 + 𝑁𝑝

𝑞
= 𝑁𝑝

𝑞
+ 𝑁1

1 for all 𝑁𝑝
𝑞
∈ 𝑚(𝑁), 

(iv) (𝑁𝑝
𝑞

+ 𝑁1
1) + 𝑁𝑘

𝑡 =  𝑁𝑝
𝑞

+ 𝑁𝑘
𝑡 + 𝑁1

1) for all 𝑁𝑝
𝑞

, 𝑁𝑘
𝑡 ∈ 𝑚(𝑁), 

(v) The commutative law of addition: 𝑁𝑝
𝑞

+ 𝑁𝑘
𝑡 = 𝑁𝑘

𝑡 + 𝑁𝑝
𝑞
 for all 𝑁𝑝

𝑞
, 𝑁𝑘

𝑡 ∈ 𝑚(𝑁), 

(vi) The associative law of addition:  𝑁𝑝
𝑞

+ 𝑁𝑘
𝑡 + 𝑁𝑛

𝑚 = 𝑁𝑘
𝑡 + (𝑁𝑝

𝑞
+ 𝑁𝑛

𝑚 ) for all 𝑁𝑝
𝑞

, 𝑁𝑘
𝑡 , 𝑁𝑛

𝑚 ∈ 𝑚(𝑁), 

(vii) The cancellation law for addition: 𝑁𝑝
𝑞

+ 𝑁𝑘
𝑡 = 𝑁𝑝

𝑞
+ 𝑁𝑛

𝑚 ⇒ 𝑁𝑘
𝑡 = 𝑁𝑛

𝑚  for all 𝑁𝑝
𝑞

, 𝑁𝑘
𝑡 ,𝑁𝑛

𝑚 ∈ 𝑚(𝑁). 

Example 2.11 For two multi-natural numbers 𝑁5
6 and 𝑁3

4, 𝑁5
6 + 𝑁3

4 = 𝑁5+3
6.4 = 𝑁8

24. 
 

Definition 2.12 [6] (Definition of multiplication) 

There exists a unique function 𝑃: 𝑚(𝑁) × 𝑚(𝑁) → 𝑚(𝑁) with the following properties:  

(i) 𝑃(𝑁𝑝
𝑞

, 𝑁1
1) = 𝑁𝑝

𝑞
, 𝑁𝑝

𝑞
∈ 𝑚(𝑁), 

(ii) 𝑃  𝑁𝑝
𝑞

, 𝑆 𝑁𝑛
𝑚   = 𝑆 𝑝 (𝑃(𝑁𝑝

𝑞
, 𝑁𝑛

𝑚 )), 𝑁𝑝
𝑞

, 𝑁𝑛
𝑚 ∈ 𝑚(𝑁), 

(iii) 𝑃  𝑁𝑝
𝑞

, 𝑀 𝑁𝑛
𝑚   = 𝑀 𝑝 (𝑃(𝑁𝑝

𝑞
, 𝑁𝑛

𝑚 )), 𝑁𝑝
𝑞

, 𝑁𝑛
𝑚 ∈ 𝑚(𝑁) which is called multiplication of two multi-

natural numbers and it is given by 𝑃 𝑁𝑝
𝑞

, 𝑁𝑛
𝑚  = 𝑁𝑝

𝑞
. 𝑁𝑛

𝑚 , 𝑁𝑝
𝑞

, 𝑁𝑛
𝑚 ∈ 𝑚(𝑁). 𝑃 𝑁𝑝

𝑞
, 𝑁𝑛

𝑚   is also 

denoted by 𝑁𝑝
𝑞

. 𝑁𝑛
𝑚 . 

Properties 2.13.  [6] (Properties of multiplication) 

(i) 𝑁𝑝
𝑞

. 𝑁1
1 = 𝑁𝑝

𝑞
= 𝑁1

1 . 𝑁𝑝
𝑞
, for all 𝑁𝑝

𝑞
∈ 𝑚(𝑁), 

(ii) The commutative law of multiplication: 𝑁𝑝
𝑞

. 𝑁𝑘
𝑡 = 𝑁𝑘

𝑡 . 𝑁𝑝
𝑞
 for all 𝑁𝑝

𝑞
, 𝑁𝑘

𝑡 ∈ 𝑚(𝑁), 

(iii) The associative law of multiplication::  𝑁𝑝
𝑞

. 𝑁𝑘
𝑡 . 𝑁𝑛

𝑚 = 𝑁𝑘
𝑡 . (𝑁𝑝

𝑞
. 𝑁𝑛

𝑚 ) for all 𝑁𝑝
𝑞

, 𝑁𝑘
𝑡 , 𝑁𝑛

𝑚 ∈ 𝑚(𝑁), 

(iv) 𝑃 does not obey distributive property over 𝐴. i.e., 𝑁𝑝
𝑞

.   𝑁𝑘
𝑡 + 𝑁𝑛

𝑚  ≠ 𝑁𝑝
𝑞

. 𝑁𝑘
𝑡 + 𝑁𝑝

𝑞
. 𝑁𝑛

𝑚 , 𝑁𝑝
𝑞

, 𝑁𝑘
𝑡 , 𝑁𝑛

𝑚 ∈

𝑚(𝑁). 

Example 2.14.  For two multi-natural numbers 𝑁5
6 and 𝑁3

4, 𝑁5
6 . 𝑁3

4 = 𝑁5.3
6.4 = 𝑁15

24. 
 

Definition 2.15.  [6] (Order on 𝑚(𝑁)) For 𝑁𝑝
𝑞

, 𝑁𝑛
𝑚 ∈ 𝑚(𝑁), 𝑁𝑝

𝑞
= 𝑁𝑛

𝑚  if and only if (𝑝 = 𝑚 as well as 𝑞 = 𝑛). 

Also, for  𝑁𝑝
𝑞

, 𝑁𝑛
𝑚 ∈ 𝑚(𝑁), 𝑁𝑝

𝑞
 is greater than 𝑁𝑛

𝑚 , i.e., 𝑁𝑝
𝑞

> 𝑁𝑛
𝑚  if there exists 𝑁𝑟

𝑠 ∈ 𝑚(𝑁) such that 𝑁𝑝
𝑞

= 𝑁𝑛
𝑚 +

𝑁𝑟
𝑠   = 𝑁𝑛+𝑟

𝑚𝑠  , i.e., if (𝑝 > 𝑛 as well as 𝑚|𝑞). Again, 𝑁𝑝
𝑞
 is greater than or equal to 𝑁𝑛

𝑚  and we write 𝑁𝑝
𝑞
≥ 𝑁𝑛

𝑚  if 

𝑁𝑝
𝑞

> 𝑁𝑛
𝑚  or 𝑁𝑝

𝑞
= 𝑁𝑛

𝑚 , i.e., if (𝑝 > 𝑛 as well as 𝑚|𝑞) or (𝑝 = 𝑛 as well as 𝑞 = 𝑚). The relation ≥ defined on 

𝑚(𝑁) is a partial order relation which is not total. 
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Definition 2.16.  [6] (Multi number of elements in a multiset) Let 𝑁 be a single mset. Also, let 𝑥 is the only element 

of 𝑁 with 𝐶𝑁 𝑥 = 𝑛. Then, we define 𝑁1
𝑛  as the multi number of elements in 𝑁.Next, we consider an mset 𝑀 

whose support 𝑁∗ = {𝑥1 , 𝑥2 , … , 𝑥𝑛 } is a finite set and multiplicity of each of its elements is finite and is given by the 

count function as 𝐶𝑁 𝑥𝑖 = 𝑡𝑖 , 𝑖 = 1,2, … , 𝑛.Then we define the multi number of elements in 𝑀  as the sum of the 

multi numbers of the elements in all its single whole submsets, i.e., 𝑁1
𝑡1 + 𝑁1

𝑡2 + ⋯𝑁1
𝑡𝑛 = 𝑁𝑛

𝑡1𝑡2…𝑡𝑛 . 

Example 2.17.   

(i) The multi number of elements in the multiset {𝑎, 𝑎, 𝑎} is 𝑁1
3. 

(ii) The multi number of elements in the multiset {𝑏, 𝑏} is 𝑁1
2. 

(iii) The multi number of elements in the multiset {𝑎, 𝑎, 𝑎, 𝑏, 𝑏, 𝑐, 𝑐} is 𝑁1
3 + 𝑁1

2 + 𝑁1
2 = 𝑁2

6 + 𝑁1
2 = 𝑁3

12 . 

(iv) The multi number of elements in the multiset {𝑎, 𝑎, 𝑎, 𝑎, 𝑎, 𝑎, 𝑎, 𝑎, 𝑎, 𝑎, 𝑎, 𝑎, 𝑏, 𝑐} is 𝑁1
12 + 𝑁1

1 + 𝑁1
1 =

𝑁2
12 + 𝑁1

1 = 𝑁3
12. 

(v) The multi number of roots of the equation (𝑥 − 1)2(𝑥 − 2)3 = 0 is 𝑁1
2 + 𝑁1

3 = 𝑁2
6. 

 
Remark 2.18.  Now we shall represent multi-integer system in terms of multi-natural numbers that we have already 

constructed in a previous paper [8]. First of all, we shall introduce the concept of multi-difference system together 

with some binary operations and order relation. Let us now introduce the following binary relation on 𝑚(𝑁) ×
𝑚(𝑁): 

 

Definition 2.19. [7] For  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑 , (𝑁𝑝
𝑞

, 𝑁𝑟
𝑠) ∈ 𝑚(𝑁) × 𝑚(𝑁), we say  𝑁𝑎

𝑏 , 𝑁𝑐
𝑑  is equivalent to (𝑁𝑝

𝑞
, 𝑁𝑟

𝑠) and we 

write  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑 ~(𝑁𝑝
𝑞

, 𝑁𝑟
𝑠) if and only if  𝑁𝑎

𝑏 + 𝑁𝑟
𝑠 = 𝑁𝑐

𝑑 + 𝑁𝑝
𝑞
. 

 

Theorem 2.20. [7] The relation ~ is an equivalence relation defined on 𝑚(𝑁) × 𝑚(𝑁). 

 

Remark 2.21. [7] The set of all equivalence classes of 𝑚(𝑁) × 𝑚(𝑁) is denoted by 𝑚𝑑 (𝑍) and is called multi-

difference system. An element [ 𝑁𝑎
𝑏 , 𝑁𝑐

𝑑 ] of  𝑚𝑑 (𝑍) is simply denoted by  [𝑁𝑎
𝑏 ,𝑁𝑐

𝑑 ] and  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  = [𝑁𝑝
𝑞

, 𝑁𝑟
𝑠] if 

and only if 𝑁𝑎
𝑏 + 𝑁𝑟

𝑠 = 𝑁𝑐
𝑑 + 𝑁𝑝

𝑞
. 

 

Remark 2.22. [7] For  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  , [𝑁𝑝
𝑞

, 𝑁𝑟
𝑠] ∈ 𝑚𝑑 (𝑍),  𝑁𝑎

𝑏 , 𝑁𝑐
𝑑  =  𝑁𝑝

𝑞
, 𝑁𝑟

𝑠 ⇔ 𝑎 − 𝑐 = 𝑝 − 𝑟  and 
𝑏

𝑑
=

𝑞

𝑠
 . 

Lemma 2.23. [7]   𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  =  𝑁𝑎
𝑏 + 𝑁𝑘

𝑡 , 𝑁𝑐
𝑑 + 𝑁𝑘

𝑡  = [𝑁𝑘
𝑡 + 𝑁𝑎

𝑏 , 𝑁𝑘
𝑡 + 𝑁𝑐

𝑑 ] for all  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  , [𝑁𝑝
𝑞

, 𝑁𝑟
𝑠] ∈ 𝑚𝑑 (𝑍). 

 

Definition 2.24. [7] (Addition on 𝑚𝑑 (𝑍)) There exist a well-defined binary operation ⊕ on 𝑚𝑑 (𝑍) defined by  

 𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊕   𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 = [𝑁𝑎

𝑏 + 𝑁𝑝
𝑞

, 𝑁𝑐
𝑑 + 𝑁𝑟

𝑠],  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  , [𝑁𝑝
𝑞

, 𝑁𝑟
𝑠] ∈ 𝑚𝑑 (𝑍). 

 

Proposition 2.25. [7] (Properties of 𝑚𝑑 (𝑍)) 

(i) ⊕ is commutative on 𝑚𝑑  𝑍 . 
(ii) ⊕ is associative on 𝑚𝑑 𝑍 . 
(iii) [𝑁1

1 , 𝑁1
1] is the identity element in  𝑚𝑑 𝑍  for ⊕. 

(iv) For each   𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ∈ 𝑚𝑑 (𝑍), its ⊕ − inverse exists and is given by [𝑁𝑐
𝑑 , 𝑁𝑎

𝑏] ∈ 𝑚𝑑 (𝑍) such that 

 𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊕ [𝑁𝑐
𝑑 , 𝑁𝑎

𝑏] = [𝑁1
1 , 𝑁1

1].  
 

Remark 2.26. [7] (𝑚𝑑 𝑍 ,⊕) is a commutative group. 

 

Remark 2.27. [7]  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊕   𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 =  𝑁𝑎+𝑝

𝑏𝑞
, 𝑁𝑐+𝑟

𝑑𝑠  ,  𝑁𝑎
𝑏 ,𝑁𝑐

𝑑  , [𝑁𝑝
𝑞

, 𝑁𝑟
𝑠] ∈ 𝑚𝑑 (𝑍). 

 

Definition 2.28. [9] (Multiplication on 𝑚𝑑 (𝑍)) There exists a well-defined binary operation ⊙ on 𝑚𝑑 (𝑍) defined 

by  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊙   𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 =  𝑁𝑎𝑝+𝑐𝑟

𝑏𝑞
, 𝑁𝑎𝑟+𝑐𝑝

𝑑𝑠  ,  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  , [𝑁𝑝
𝑞

, 𝑁𝑟
𝑠] ∈ 𝑚𝑑 (𝑍). 

 

Proposition 2.29. [7] (Properties of multiplication on 𝑚𝑑 (𝑍)) 

(i) ⊙  is commutative on 𝑚𝑑  𝑍 . 
(ii) ⊙  is associative on 𝑚𝑑 𝑍 . 
(iii) The identity element exists for ⊙ in 𝑚𝑑 (𝑍) and is [𝑁2

1 , 𝑁1
1]. 

(iv)  𝑁𝑎
1 , 𝑁𝑏

1 ⊙ (  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 ⊕  𝑁𝑥

𝑦
, 𝑁𝑧

𝑡  ) =   𝑁𝑎
1 , 𝑁𝑏

1 ⊙  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠  ⊕ ( 𝑁𝑎

1 , 𝑁𝑏
1 ⊙  𝑁𝑥

𝑦
, 𝑁𝑧

𝑡  ). 
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(v) (Remark on distributive property)  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊙ (  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 ⊕  𝑁𝑥

𝑦
, 𝑁𝑧

𝑡  ) ≠   𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊙  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠  ⊕

( 𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊙  𝑁𝑥
𝑦

, 𝑁𝑧
𝑡  ) in general. 

Actually,  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊙ (  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 ⊕  𝑁𝑥

𝑦
, 𝑁𝑧

𝑡  ) =   𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊙  𝑁𝑝+𝑥
𝑞𝑦

, 𝑁𝑟+𝑧
𝑠𝑡  = 

 𝑁𝑎𝑝+𝑎𝑥+𝑐𝑟 +𝑐𝑧
𝑏𝑞𝑦

, 𝑁𝑎𝑟+𝑎𝑧+𝑐𝑝 +𝑐𝑥
𝑑𝑠𝑡  . 

But,   𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊙  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠  ⊕ ( 𝑁𝑎

𝑏 , 𝑁𝑐
𝑑  ⊙  𝑁𝑥

𝑦
, 𝑁𝑧

𝑡  ) =  𝑁𝑎𝑝+𝑐𝑟
𝑏𝑞

, 𝑁𝑎𝑟+𝑐𝑝
𝑑𝑠  ⊕  𝑁𝑎𝑥+𝑐𝑧

𝑏𝑦
, 𝑁𝑎𝑧+𝑐𝑥

𝑑𝑡   = 

 𝑁𝑎𝑝+𝑐𝑟 +𝑎𝑥+𝑐𝑧
𝑏2𝑞𝑦

, 𝑁𝑎𝑟+𝑐𝑝 +𝑎𝑧+𝑐𝑥
𝑑2𝑠𝑡   =  𝑁2

𝑏 , 𝑁1
𝑑  ⊙  𝑁𝑎𝑝+𝑐𝑟+𝑎𝑥+𝑐𝑧

𝑏𝑞𝑦
, 𝑁𝑎𝑟+𝑐𝑝 +𝑎𝑧+𝑐𝑥

𝑑𝑠𝑡  . 

(vi) (Multi-distributive property) For all  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ,  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 ,  𝑁𝑥

𝑦
, 𝑁𝑧

𝑡  ∈ 𝑚𝑑 𝑍 ,  𝑁2
𝑏 , 𝑁1

𝑑  ⊙   𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊙

   𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 ⊕  𝑁𝑥

𝑦
, 𝑁𝑧

𝑡    =    𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊙  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠  ⊕ ( 𝑁𝑎

𝑏 , 𝑁𝑐
𝑑  ⊙  𝑁𝑥

𝑦
,𝑁𝑧

𝑡  ). Let us define the 

above property to be the multi-distributive property of ⊙ over ⊕ on 𝑚𝑑 𝑍 . 
 

Definition 2.30.  [7] The subset  𝑚𝑑 𝑁𝑍  of 𝑚𝑑 𝑍  is defined by  𝑚𝑑 𝑁𝑍 = { 𝑁𝑛
𝑚 + 𝑁1

1 , 𝑁1
1 ∈  𝑚𝑑 𝑍 : 𝑁𝑛

𝑚 ∈
𝑚 𝑁 }. 

 

Proposition 2.31. [7]  𝑁𝑢
𝑣 , 𝑁𝑤

𝑥  ∈ 𝑚𝑑 𝑁𝑍 ⇔ 𝑢 − 𝑤 ∈ 𝑁 and 𝑥|𝑣. 

Theorem 2.32. [7] For the set  𝑚𝑑 𝑁𝑍  the following hold: 

(i) (𝑚𝑑 𝑁𝑍 ,⊕) is a sub semi group of (𝑚𝑑 𝑍 ,⊕). 

(ii) (𝑚𝑑 𝑁𝑍 ,⊙) is a sub semi group of (𝑚𝑑 𝑍 ,⊙). 

(iii) (𝑚𝑑 𝑁𝑍 ,⊕) is isomorphic to (𝑚 𝑁 , +) and (𝑚𝑑 𝑁𝑍 ,⊙) is isomorphic to (𝑚 𝑁 ,∙) as semigroup 

under the same isomorphism. 

(iv) For every 𝑥 ∈ 𝑚𝑑 𝑍 , there exist 𝑦, 𝑧 ∈ 𝑚𝑑 𝑁𝑍  such that 𝑥 = 𝑦 ⊕ (− 𝑧). 

 

Definition 2.33. [7] Each member of 𝑚𝑑 𝑍  is called a multi-integer. Each member of 𝑚𝑑 𝑁𝑍  is called a positive 

multi-integer. 

 

Remark 2.34. [7] (𝑚𝑑 𝑁𝑍 ,⊕) is isomorphic to (𝑚 𝑁 , +) and (𝑚𝑑 𝑁𝑍 ,⊙) is isomorphic to (𝑚 𝑁 ,∙) as 

semigroup under the same isomorphism. So, each member of 𝑚 𝑁  is also called a positive multi-integer. 

 

Definition 2.35. [7] The subset (− 𝑚𝑑 𝑁𝑍 ) of 𝑚𝑑 𝑍  is defined by (− 𝑚𝑑 𝑁𝑍 ) =   𝑁𝑐
𝑑 , 𝑁𝑎

𝑏 :  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ∈
𝑚𝑑 𝑁𝑍  . Every member of (− 𝑚𝑑 𝑁𝑍 ) is called a negative multi-integer. 

 

Definition 2.36. [7] (Positive multi-integer, negative multi-integer, zero, special multi-integer, multi-zero) 

𝑚𝑑 𝑍𝑆 = 𝑚𝑑 𝑍 −  (𝑚𝑑 𝑁𝑍 ∪  −(𝑚𝑑 𝑁𝑍   ∪ { 𝑁1
1 , 𝑁1

1 }).    𝑁1
1 , 𝑁1

1   is called zero and every member of  

𝑚𝑑 𝑍𝑆  is called a special multi-integer. Any multi-integer of the form  𝑁𝑎
𝑝

, 𝑁𝑎
𝑞  is called a multi-zero which is 

obviously a special multi-integer or zero. 

 

Theorem 2.37. [7] If product of two multi-integer be zero, then at least one of them must be a multi-zero. 

Definition 2.38. [7] (Order on 𝑚𝑑 𝑍 ) Let  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ,  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 ∈ 𝑚𝑑 𝑍 . Then  𝑁𝑎

𝑏 , 𝑁𝑐
𝑑  >  𝑁𝑝

𝑞
, 𝑁𝑟

𝑠  if and only if   

 𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊕ (−  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 ) ∈ 𝑚𝑑 𝑁𝑍 . i.e., there exist  𝑁𝑛

𝑚 + 𝑁1
1 , 𝑁1

1 ∈ 𝑚𝑑 𝑁𝑍  such that  𝑁𝑎
𝑏 ,𝑁𝑐

𝑑  ⊕

 −  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠  =  𝑁𝑛

𝑚 + 𝑁1
1 , 𝑁1

1  or,  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  =  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 ⊕  𝑁𝑛

𝑚 + 𝑁1
1 , 𝑁1

1 . Also,  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ≥  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠  if and only 

if  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  >  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠  or  𝑁𝑎

𝑏 , 𝑁𝑐
𝑑  =  𝑁𝑝

𝑞
, 𝑁𝑟

𝑠 . 

 

Remark 2.39. [7] ≥ defined on 𝑚𝑑 𝑍  is a partial order relation. So, (𝑚𝑑 𝑍 , ≥) is a poset but not a chain. 

Immediately, (𝑚𝑑 𝑍 , ≥) do not obey law of trichotomy. e.g.,   𝑁2
3 + 𝑁1

1 , 𝑁1
1  and  𝑁2

2 + 𝑁1
1 , 𝑁1

1  are two 

incomparable elements of (𝑚𝑑 𝑍 , ≥). 

 

Proposition 2.40. [7] (Properties of order) 

(i)  For  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ,  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 ∈ 𝑚𝑑 𝑍 ,  𝑁𝑎

𝑏 , 𝑁𝑐
𝑑  >  𝑁𝑝

𝑞
, 𝑁𝑟

𝑠 ⇒ 𝑎 − 𝑐 > 𝑝 − 𝑟 and 𝑑𝑞|𝑏𝑠 and conversely. 

(ii) For all  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ∈ 𝑚𝑑 𝑍 ,  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ≯  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  . 

(iii) For  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ,  𝑁𝑒
𝑓

, 𝑁𝑔
  ∈ 𝑚𝑑 𝑍 ,  𝑁𝑎

𝑏 , 𝑁𝑐
𝑑  >  𝑁𝑒

𝑓
, 𝑁𝑔

  ⇔   𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊕  𝑁𝑢
𝑣 ,𝑁𝑤

𝑥  >  𝑁𝑒
𝑓

, 𝑁𝑔
   for all 

 𝑁𝑢
𝑣 , 𝑁𝑤

𝑥  ∈ 𝑚𝑑 𝑁𝑍 . 
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(iv) For   𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ,  𝑁𝑒
𝑓

, 𝑁𝑔
  ,  𝑁𝑢

𝑣 , 𝑁𝑤
𝑥  ,  𝑁𝑝

𝑞
, 𝑁𝑟

𝑠 ∈ 𝑚𝑑 𝑍 ,   𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  >  𝑁𝑒
𝑓

, 𝑁𝑔
   and  𝑁𝑢

𝑣 ,𝑁𝑤
𝑥  >

  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 ⇒  𝑁𝑎

𝑏 ,𝑁𝑐
𝑑  ⊕  𝑁𝑢

𝑣 , 𝑁𝑤
𝑥  >  𝑁𝑒

𝑓
, 𝑁𝑔

  ⊕  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠 . 

(v) For  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ,  𝑁𝑒
𝑓

, 𝑁𝑔
  ∈ 𝑚𝑑 𝑍 ,  𝑁𝑎

𝑏 , 𝑁𝑐
𝑑  ≥  𝑁𝑒

𝑓
, 𝑁𝑔

  ⇒  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊕  𝑁2
1 , 𝑁1

1 >  𝑁𝑒
𝑓

, 𝑁𝑔
  . 

(vi) For all  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ∈ 𝑚𝑑 𝑍 ,  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊕  𝑁𝑒
𝑓

, 𝑁𝑔
  >  𝑁𝑎

𝑏 , 𝑁𝑐
𝑑   for all  𝑁𝑒

𝑓
, 𝑁𝑔

  ∈ 𝑚𝑑 𝑁𝑍 . 

(vii) For  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ,  𝑁𝑒
𝑓

, 𝑁𝑔
  ∈ 𝑚𝑑 𝑍 ,   𝑁𝑎

𝑏 , 𝑁𝑐
𝑑  >  𝑁𝑒

𝑓
, 𝑁𝑔

  ⇔  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ⊙  𝑁𝑝
𝑞

, 𝑁𝑟
𝑠  >  𝑁𝑒

𝑓
, 𝑁𝑔

  ⊙

 𝑁𝑝
𝑞

, 𝑁𝑟
𝑠   for all  𝑁𝑝

𝑞
, 𝑁𝑟

𝑠 ∈ 𝑚𝑑 𝑁𝑍 . 

 

Definition 2.41. [7] (General multiset, Real multiset and Natural multiset) 

(i) Let 𝑋 be a non-empty set. A general multiset (General mset in short) 𝑀 drawn from 𝑋  is characterized 

by a relation  𝜌𝑀 between 𝑋 and 𝑅 (𝑅  being the set of all real numbers). 

If (𝑥, 𝑟) ∈ 𝜌𝑀 for some 𝑥 ∈ 𝑋 and 𝑟 ∈ 𝑅 − {0}, then we represent it by writing 𝑋𝑥
𝑟 ∈ 𝑀. 

(ii) Let 𝑋 be a non-empty set. A real multiset (Real mset in short) 𝑀 drawn from 𝑋  is characterized by a 

function 𝐶𝑜𝑢𝑛𝑡𝑀  or  𝐶𝑀 :𝑋 → 𝑅.  

If 𝐶𝑀 𝑥 = 𝑟 for some 𝑥 ∈ 𝑋 and 𝑟 ∈ 𝑅 − {0}, then we represent it by writing 𝑋𝑥
𝑟 ∈ 𝑀. Also, we shall 

denote a real mset 𝑀 drawn from 𝑋 as {𝑋𝑥1

𝑘1 , 𝑋𝑥2

𝑘2 ,… , 𝑋𝑥𝑛

𝑘𝑛 , … } where 𝐶𝑀 𝑥𝑖 = 𝑘𝑖  , 𝑥𝑖 ∈ 𝑋 and 𝑟 ∈ 𝑅 −

{0}. 

(iii)  Let 𝑋 be a non-empty set. A natural multiset (Natural mset in short) 𝑀 drawn from 𝑋  is characterized 

by a function 𝐶𝑜𝑢𝑛𝑡𝑀  or  𝐶𝑀 :𝑋 → 𝑁 ∪ {0}.  

If 𝐶𝑀 𝑥 = 𝑟 for some 𝑥 ∈ 𝑋 and 𝑟 ∈ 𝑁 − {0}, then we represent it by writing 𝑋𝑥
𝑟 ∈ 𝑀. Also, we shall 

denote a natural mset 𝑀 drawn from 𝑋 as {𝑋𝑥1

𝑘1 , 𝑋𝑥2

𝑘2 , … , 𝑋𝑥𝑛

𝑘𝑛 , … } where 𝐶𝑀 𝑥𝑖 = 𝑘𝑖  , 𝑥𝑖 ∈ 𝑋 and 

𝑟 ∈ 𝑁 − {0}. 𝑘𝑖 ∈ 𝑁 − {0} is called the multiplicity of the element 𝑥𝑖 ∈ 𝑋 in 𝑀.  

 

Example 2.42. Consider the set 𝑋 = {𝑎, 𝑏, 𝑐}. Consider the relation 𝜌𝑀 between 𝑋 and 𝑅 where 

𝜌𝑀 = { 𝑎,
1

4
 ,  𝑏, 3 , (𝑏,  2)}. Then 𝜌𝑀 represents a general mset 𝑀 drawn from 𝑋 which is given by {𝑋𝑎

1

4 , 𝑋𝑏
3 , 𝑋𝑏

 2}. 

Next consider the function 𝐶𝑀:𝑋 → 𝑅 defined by 𝐶𝑀 𝑎 =
1

4
, 𝐶𝑀 𝑏 = 3, 𝐶𝑀 𝑐 = 0. Then 𝐶𝑀  represents a real 

mset 𝑀 drawn from 𝑋 which is given by 𝑀 = {𝑋𝑎

1

4 , 𝑋𝑏
3}. Finally, consider the function 𝐶𝑀 :𝑋 → 𝑁 ∪ {0} defined by 

𝐶𝑀 𝑎 = 1, 𝐶𝑀 𝑏 = 3, 𝐶𝑀 𝑐 = 0. Then 𝐶𝑀  represents a natural mset 𝑀 drawn from 𝑋 which is given by 𝑀 =
{𝑋𝑎

1 , 𝑋𝑏
3}. It is worth noting that 𝑚(𝑁) is a general mset drawn from 𝑁. 

 

Remark 2.43. [7] 

(i) Clearly, general mset is a generalization of real mset. Also, real mset is a generalization of natural mset. 

(ii) Let 𝐴′  and 𝐵′  be two general msets drawn from the sets 𝐴 and 𝐵 respectively. If for  𝑎 ∈ 𝐴 ∩ 𝐵 and 

𝑟 ∈ 𝑅 − {0}, 𝐴𝑎
𝑟 ∈ 𝐴′  and 𝐵𝑎

𝑟 ∈ 𝐵′ , then we shall consider 𝐴𝑎
𝑟 = 𝐵𝑎

𝑟 . 

(iii) We note that for all 𝑖, 𝑗 ∈ 𝑁, 𝑍𝑗
𝑖 and 𝑁𝑗

𝑖  both are immediately identical. i.e., 𝑍𝑗
𝑖 = 𝑁𝑗

𝑖  for all 𝑖, 𝑗 ∈ 𝑁. 

(iv) Let 𝑋 be a non-empty set. Let us denote the general mset drawn from 𝑋 and characterized by the universal 

relation between 𝑋 and 𝑅 as 𝜋(𝑋) and accordingly denote the relation 𝑋 × 𝑅 between 𝑋 and 𝑅 as 𝜌𝜋(𝑋) as 

the most general mset drawn from 𝑋. 

 

Theorem 2.44. [7] (Isomorphism theorem) Let us consider the general mset 𝑚(𝑍 ) drawn from 𝑍 characterized by 

universal relation  𝜌𝑚 (𝑍 ) = 𝑍 × 𝑄+ (𝑄+ is the set of all positive rational numbers). i.e., 𝑍𝑝
𝑞
∈ 𝑚(𝑍 ) if and only if 

𝑝 ∈ 𝑍 and 𝑞 ∈ 𝑄+. Consider two binary operations ⊕  and ⊙  on 𝑚(𝑍 )  as follows: for 𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚(𝑍 ), 𝑍𝑝

𝑞
⊕ 𝑍𝑟

𝑠 =

𝑍𝑝+𝑟
𝑞𝑠

 and 𝑍𝑝
𝑞
⊙  𝑍𝑟

𝑠 = 𝑍𝑝𝑟
𝑞𝑠

. Also define ≥  on 𝑚(𝑍 ) as follows: for 𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚(𝑍 ), 𝑍𝑝

𝑞
>  𝑍𝑟

𝑠 if and only if there 

exists 𝑍𝑎
𝑏 ∈ 𝑚(𝑍 ) with 𝑎, 𝑏 ∈ 𝑁 such that  𝑍𝑝

𝑞
= 𝑍𝑟

𝑠 ⊕ 𝑍𝑎
𝑏 . For 𝑍𝑝

𝑞
, 𝑍𝑟

𝑠 ∈ 𝑚(𝑍 ) define 𝑍𝑝
𝑞

= 𝑍𝑟
𝑠 if and only if 𝑝 = 𝑟 

and 𝑞 = 𝑠. Also, for 𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚(𝑍 ) define 𝑍𝑝

𝑞
≥  𝑍𝑟

𝑠 if and only if 𝑍𝑝
𝑞

>  𝑍𝑟
𝑠 or 𝑍𝑝

𝑞
= 𝑍𝑟

𝑠. Then (𝑚𝑑 𝑍 ,⊕,⊙,≥) 

(𝑚(𝑍 ),⊕ ,⊙ , ≥ ) are isomorphic as the mapping 𝜏: 𝑚𝑑 𝑍 → 𝑚(𝑍 ) defined by 𝜏  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑   = 𝑍𝑎−𝑐

𝑏

𝑑 ,  𝑁𝑎
𝑏 , 𝑁𝑐

𝑑  ∈
𝑚𝑑 𝑍  is an isomorphism. 

 

Remark 2.45. [7] (Properties of (𝑚(𝑍 ),⊕ ,⊙ ,≥ )) 
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Since (𝑚𝑑 𝑍 ,⊕,⊙, ≥) and (𝑚(𝑍 ),⊕ ,⊙ , ≥ ) are isomorphic, so (𝑚(𝑍 ),⊕ ) is a commutative group, (𝑚(𝑍 ),⊙ ) is a 

commutative monoid and ⊙  obeys multi-distributive property over ⊕ . Also, (𝑚 𝑍  ,≥ ) is a poset. Moreover, ≥  

defined on 𝑚 𝑍   is an extension of ≥ defined on 𝑚(𝑁). 

 

Remark 2.46. [7] (𝑚(𝑍 ),⊕ ) is a commutative group and (𝑚(𝑍 ),⊙ ) is a commutative monoid but (𝑚(𝑍 ),⊕ ,⊙ ) is 

not a ring, since ⊙  can not be distributed over ⊕ . But ⊙  obeys multi-distributive property over ⊕ . 

 

Definition 2.47. [7] (General mset drawn from a ring) Let (𝑋, +,∙) be a ring. Let 𝑀 be a general mset drawn from 𝑋. 

Consider two functions ⊕:𝑀 × 𝑀 → 𝜋(𝑋) and ⊙∶ 𝑀 × 𝑀 → 𝜋(𝑋) defined as follows: for 𝑋𝑎
𝑟 , 𝑋𝑏

𝑠 ∈ 𝑀, 𝑋𝑎
𝑟 ⊕

𝑋𝑏
𝑠 = 𝑋𝑎+𝑏

𝑟𝑠  and 𝑋𝑎
𝑟 ⊙ 𝑋𝑏

𝑠 = 𝑋𝑎𝑏
𝑟𝑠 . ⊕ and ⊙ respectively called m-addition and m-multiplication defined on 𝑀 

induced by the ring (𝑋, +,∙). Also, let 𝑀 be closed under ⊕ and ⊙. Then immediately, ⊕ obeys commutative and 

associative property on 𝑀. So, (𝑀,⊕) is a commutative semi group. Also, immediately, ⊙ obeys associative 

property on 𝑀. So, (𝑀,⊙) is a semi group. M is defined to be a general mset drawn from the ring (𝑋, +,∙). 

 

Theorem 2.48. [7] Let 𝑀 be a general mset drawn from a ring (𝑋, +,∙). Then, ⊙ obey multi-distributive property 

over ⊕. 

 

Definition 2.49. [7] (Multi-ring) Let 𝑀 be a general mset drawn from a ring (𝑋, +,∙). Let ⊕ and ⊙ are called m-

addition and m-multiplication respectively defined on 𝑀 induced by the ring (𝑋, +,∙). If the structure (𝑀,⊕,⊙) 
satisfies the followings:  

(1) (𝑀,⊕) is an abelian group 

(2) (𝑀,⊙) is a semigroup and  

(3) ⊙ is distributive over ⊕, then (𝑀,⊕,⊙) is called a multi-ring induced by the ring (𝑋, +,∙). 

 

Theorem 2.50. [7] ) Let 𝑀 be a general mset drawn from a ring (𝑋, +,∙). Let ⊕ and ⊙ are called m-addition and m-

multiplication respectively defined on 𝑀 induced by the ring (𝑋, +,∙). Then (𝑀,⊕,⊙) will be a multi-ring induced 

by the ring (𝑋, +,∙) if and only if the following conditions are satisfied: 

(1) There exists 𝑋𝜃
1 ∈ 𝑀 (𝜃 being the zero element in the ring (𝑋, +,∙)). 

(2) For 𝑎 ∈ 𝑋 and 𝑟 ∈ 𝑅 − {0}, 𝑋𝑎
𝑟 ∈ 𝑀 ⇒ 𝑋

(−𝑎)

1

𝑟 ∈ 𝑀. 

 

Example 2.51. [7]  

(i) Let us consider the ring (𝑋, +,∙) where 𝑋 = 𝑍4, the set of all residue classes modulo 4, also, + and ∙ are 

respectively addition and multiplication modulo 4. Consider the general mset 𝑀 characterized by the 

relation 𝜌𝑀 = 𝑋 × 𝐺 where 𝐺 = {2𝑛 :𝑛 ∈ 𝑍} between 𝑋 and 𝐺. Then, for all 𝑎 ∈ 𝑋 and for all 𝑟 ∈ 𝐺, 

𝑋𝑎
𝑟 ∈ 𝑀. Let ⊕ and ⊙ are m-addition and m-multiplication respectively defined on 𝑀 induced by the ring 

(𝑋, +,∙). Then  𝑀,⊕,⊙  forms a multi-ring induced by the ring (𝑋, +,∙). 

(ii)  (𝑚 𝑍  ,⊕ ,⊙ ) is a a multi-ring induced by the ring (𝑍, +,∙). 

 

Remark 2.52. [7] Let (𝑀,⊕,⊙) be a multi-ring induced by the ring (𝑋, +,∙) where 𝑀 is a general mset drawn from 

the ring (𝑋, +,∙). 𝜃 be the zero element in the ring (𝑋, +,∙). Then 𝑋𝜃
1 must be the zero element in (𝑀,⊕,⊙). Let us 

also define any element in 𝑀 of the form 𝑋𝜃
𝑟  for some 𝑟 ∈ 𝑅 −  0  to be the multi-zero elements of 𝑀 such that the 

product of any element of the multi-ring with a multi-zero element of the same is again a multi zero of the multi-

ring. Clearly, the zero element in a multi-ring is a multi-zero element. 

 

Remark 2.53. [7] In the multi-ring (𝑚 𝑍  ,⊕ ,⊙ ) induced by the ring (𝑍, +,∙), the non-zero multi-zeros are only 

divisors of zero. 

 

Theorem .2.54. [7] In the multi-ring, the non-zero multi-zero elements are divisors of zero. 
Definition 2.55. [7] A multi-ring is said to have no non-multi-zero divisors of zero if its non-zero multi-zero 

elements are the only divisors of zero. 

 

Example 2.56. [7] The multi-ring (𝑚 𝑍  ,⊕ ,⊙ ) induced by the ring (𝑍, +,∙) has no non-multi-zero divisors of zero. 
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Remark .2.57. [7] Let (𝑀,⊕,⊙) be a multi-ring induced by the ring (𝑋, +,∙) with divisors of zero. Let 𝜃 be the zero 

element of the ring (𝑋, +,∙). As (𝑋, +,∙) is a ring with divisors of zero, so, there exists two non zero elements 𝑎 and 

𝑏 in the ring (𝑋, +,∙) such that 𝑎 ∙ 𝑏 = 𝜃. Now, for some 𝑟, 𝑠 ∈ 𝑅 − {0}, let 𝑋𝑎
𝑟 , 𝑋𝑏

𝑠 ∈ 𝑀. Then, 𝑋𝑎
𝑟 ⊙ 𝑋𝑏

𝑠 = 𝑋𝑎𝑏
𝑟𝑠 =

𝑋𝜃
𝑟𝑠 ∈ 𝑀 (since 𝑀 is closed under ⊙). Again, 𝑋𝑎

𝑟  and 𝑋𝑏
𝑠 both are non-zero non-multi-zero elements of (𝑀,⊕,⊙). 

So, 𝑋𝑎
𝑟  and 𝑋𝑏

𝑠 are non-multi-zero divisors of the multi-ring (𝑀,⊕,⊙). 

 

Example 2.58. [7] Consider the multi-ring (𝑀,⊕,⊙) induced by the ring (𝑋, +,∙) as mentioned in (i) of Example 

2.51. where 𝑋 = 𝑍4. Then, for 𝑋[2]
2 , 𝑋

[2]

1

2 ∈ 𝑀, 𝑋[2]
2 ⊙ 𝑋

[2]

1

2 = 𝑋[0]
1  which is the zero element of the multi-ring 

(𝑀,⊕,⊙). Also, 𝑋[2]
2  and 𝑋

[2]

1

2  are the non-zero non-multi-zero elements of the multi-ring (𝑀,⊕,⊙). So, the multi-

ring (𝑀,⊕,⊙) contains multi-divisors of zero. 

 

Definition 2.59. [7] (Multi-integral domain) Let 𝑀 be a general mset drawn from a ring (𝑋, +,∙) (or, an integral 

domain (𝑋, +,∙)) . Let ⊕ and ⊙ are m-addition and m-multiplication respectively defined on 𝑀 induced by the ring 

(𝑋, +,∙) (or, an integral domain (𝑋, +,∙)). If the structure (𝑀,⊕,⊙) satisfies the followings: 

(1) (𝑀,⊕) is a commutative group 

(2) (𝑀,⊙)  is a commutative monoid 

(3) ⊙ is distributive over ⊕ and  

(4) 𝑀 has no non-multi-zero divisors of zero, then (𝑀,⊕,⊙) is called a multi-integral domain induced by the ring 

(𝑋, +,∙) (or, the integral domain (𝑋, +,∙)). 

It is worth noting that if 𝑀 be a general mset drawn from an integral domain (𝑋, +,∙) which is closed under ⊕ 

and ⊙, then immediately (𝑀,⊕,⊙) has no non-multi-zero divisors of zero. 

Example 2.60. [7] (𝑚 𝑍  ,⊕ ,⊙ ) is a multi-integral domain induced by the integral domain (𝑍, +,∙). 

Example 2.61. [7] The multi-ring (𝑀,⊕,⊙) induced by the ring (𝑋, +,∙) as mentioned in Example 2.51. and 

Example 2.58. where 𝑋 = 𝑍4 is not a multi-integral domain. 

Remark 2.62. [7] (𝑚 𝑍  ,⊕ ,⊙ ,≥ ) is a partially ordered multi-integral domain induced by the integral domain 

(𝑍, +,∙) . 

 

Definition 2.63. [7] (Definition of Multi-integer system) A partially ordered multi-integral domain (𝑀,⊕,⊙,≥) is 

called a multi-integer system if there exists a subset 𝑁𝑀 of 𝑀 such that 

(1) Both (𝑁𝑀,⊕) and (𝑁𝑀 ,⊙) are semigroups and under the same isomorphism ∅: 𝑁𝑀 → 𝑁 we have 

 𝑁𝑀,⊕ ≅ (m N , +) and (𝑁𝑀 ,⊙) ≅ (m N ,∙) as semi group. Furthermore, for every 𝑥, 𝑦 ∈ 𝑁𝑀, 

we have 𝑥 > 𝑦 ⇒ ∅ 𝑥 > ∅(𝑦). 

(2) For every 𝑥 ∈ 𝑀, there exists 𝑦, 𝑧 ∈ 𝑁𝑀 such that 𝑥 = 𝑦 ⊕ (−𝑧). 

 
Theorem 2.64. [7] (Existence and uniqueness of multi-integer system) Multi-integer system exists and 

any two multi-integer systems are isomorphic. 

Remark 2.65. [7] (𝑚 𝑍  ,⊕ ,⊙ ,≥ ) multi-integer system. Also, multi-integer system is unique.  

So, (𝑚 𝑍  ,⊕ ,⊙ ,≥ ) can be considered as the multi-integer system. Any multi-integer system is afterwards denoted 

by (𝑚 𝑍 ,⊕,⊙) where 𝑚(𝑍) is the general mset drawn from 𝑍 characterized by the universal relation 𝑍 × 𝑄+, i.e., 

𝑍𝑝
𝑞
∈ 𝑚(𝑍) if and only if 𝑝 ∈ 𝑍 and 𝑞 ∈ 𝑄+. Binary operations ⊕ and ⊙ are defined on 𝑚(𝑍) as follows: for 

𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚(𝑍), 𝑍𝑝

𝑞
⊕ 𝑍𝑟

𝑠 = 𝑍𝑝+𝑟
𝑞𝑠

 and 𝑍𝑝
𝑞
⊙ 𝑍𝑟

𝑠 = 𝑍𝑝𝑟
𝑞𝑠

 . > is defined on 𝑚(𝑍) as follows: for 𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚(𝑍), 

𝑍𝑝
𝑞

> 𝑍𝑟
𝑠 if and only if there exists 𝑍𝑎

𝑏 ∈ 𝑚(𝑍) with 𝑎, 𝑏 ∈ 𝑁 such that 𝑍𝑝
𝑞

= 𝑍𝑟
𝑠 ⊕ 𝑍𝑎

𝑏 . Also, for 𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚(𝑍), 

𝑍𝑝
𝑞
≥ 𝑍𝑟

𝑠 if and only if 𝑍𝑝
𝑞

> 𝑍𝑟
𝑠 or 𝑍𝑝

𝑞
= 𝑍𝑟

𝑠. The copy of the multi-natural numbers embedded in 𝑚(𝑍) is still 

denoted by 𝑚(𝑁) and it has all the properties that we have proven in paper [6] if we consider it in isolation. 

Example 2.66. Consider three multi-integers 𝑍5
3, 𝑍3

4 , 𝑍−3

3

5 . Then 𝑍5
3 ⊕ 𝑍3

4 = 𝑍5+3
3∙4 = 𝑍8

12  and 𝑍3
4 ⊙ 𝑍−3

3

5 = 𝑍
3∙ −3 

4∙
3

5  

= 𝑍−9

12

5 . 

III. The Multi-Fractional System 

Here we shall represent multi-rational number system in terms of multi-integers that we have already constructed in 

a previous paper [7]. First of all, we shall introduce the concept of Multi-Fractional System together with some 

binary operations and order relations. Let us now introduce the following binary operation on m(Z)× (𝑚 𝑍 −
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 𝑍0
𝑞

: 𝑞 ∈ 𝑄+ ). Let us rename the set  (𝑚 𝑍 −  𝑍0
𝑞

:𝑞 ∈ 𝑄+ ) as 𝑚(𝑍0) and it is the set of all non-multi-zero multi-

integers. 

 

Definition 3.1. For  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 ,  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚(𝑍) ×  𝑚(𝑍0), we say  𝑍𝑎

𝑏 , 𝑍𝑐
𝑑  is equivalent to  𝑍𝑝

𝑞
,𝑍𝑟

𝑠  and we write 

 𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 ~ 𝑍𝑝
𝑞

, 𝑍𝑟
𝑠  if and only if 𝑍𝑎

𝑏 ⊙ 𝑍𝑟
𝑠 = 𝑍𝑐

𝑑 ⊙ 𝑍𝑝
𝑞
. 

Theorem 3.2. For 𝑍𝑎
𝑏 ∈ 𝑚(𝑍0) and 𝑍𝑝

𝑞
, 𝑍𝑟

𝑠 ∈ 𝑚(𝑍), 𝑍𝑎
𝑏 ⊙ 𝑍𝑝

𝑞
= 𝑍𝑎

𝑏 ⊙ 𝑍𝑟
𝑠 ⇒ 𝑍𝑝

𝑞
= 𝑍𝑟

𝑠, 𝑚(𝑍0) being the set of all 

non-multi-zero multi-integers. 

Proof: 𝑍𝑎
𝑏 ⊙ 𝑍𝑝

𝑞
= 𝑍𝑎

𝑏 ⊙ 𝑍𝑟
𝑠 ⇒ 𝑍𝑎𝑝

𝑏𝑞
= 𝑍𝑎𝑟

𝑏𝑠   ⇒ 𝑎𝑝 = 𝑎𝑟 and 𝑏𝑞 = 𝑏𝑠 ⇒ 𝑝 = 𝑟 and 𝑞 = 𝑠 (Since, 𝑍𝑎
𝑏 ∈ 𝑚(𝑍0), so, 

𝑎 ≠ 0 and 𝑏 ≠ 0) ⇒ 𝑍𝑝
𝑞

= 𝑍𝑟
𝑠. We can prove the second part in a similar argument. 

 

Theorem 3.3. The relation ~ is an equivalence relation defined on 𝑚(𝑍) ×  𝑚(𝑍0). 

Proof: Since for all  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 ∈ 𝑚(𝑍) ×  𝑚(𝑍0), we have 𝑍𝑎
𝑏 ⊙ 𝑍𝑐

𝑑 = 𝑍𝑐
𝑑 ⊙ 𝑍𝑎

𝑏. So, for all  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 ∈ 𝑚(𝑍) ×
 𝑚(𝑍0),  𝑍𝑎

𝑏 ,𝑍𝑐
𝑑 ~ 𝑍𝑎

𝑏 ,𝑍𝑐
𝑑 . Therefore, ~ is a reflexive relation on 𝑚(𝑍) ×  𝑚(𝑍0). 

Next, for  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 , 𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚(𝑍) ×  𝑚(𝑍0), let  𝑍𝑎

𝑏 , 𝑍𝑐
𝑑 ~ 𝑍𝑝

𝑞
, 𝑍𝑟

𝑠 . Then, 𝑍𝑎
𝑏 ⊙ 𝑍𝑟

𝑠 = 𝑍𝑐
𝑑 ⊙ 𝑍𝑝

𝑞
 ⇒ 𝑍𝑟

𝑠 ⊙ 𝑍𝑎
𝑏 =

𝑍𝑝
𝑞
⊙ 𝑍𝑐

𝑑  ⇒   𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ~ 𝑍𝑎

𝑏 ,𝑍𝑐
𝑑 . Therefore, ~ is a symmetric relation on 𝑚(𝑍) ×  𝑚(𝑍0). 

Finally, for  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 ,  𝑍𝑝
𝑞

,𝑍𝑟
𝑠 ,  𝑍𝑢

𝑣 ,𝑍𝑤
𝑥  ∈ 𝑚(𝑍) ×  𝑚(𝑍0), let  𝑍𝑎

𝑏 , 𝑍𝑐
𝑑 ~ 𝑍𝑝

𝑞
, 𝑍𝑟

𝑠  also  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ~ 𝑍𝑢

𝑣 ,𝑍𝑤
𝑥  . Then 

𝑍𝑎
𝑏 ⊙ 𝑍𝑟

𝑠 = 𝑍𝑐
𝑑 ⊙ 𝑍𝑝

𝑞
 as well as 𝑍𝑝

𝑞
⊙ 𝑍𝑤

𝑥 = 𝑍𝑟
𝑠 ⊙ 𝑍𝑢

𝑣. Therefore, (𝑍𝑎
𝑏 ⊙ 𝑍𝑟

𝑠) ⊙ 𝑍𝑤
𝑥 = (𝑍𝑐

𝑑 ⊙ 𝑍𝑝
𝑞

) ⊙ 𝑍𝑤
𝑥  and 

(𝑍𝑝
𝑞
⊙ 𝑍𝑤

𝑥 ) ⊙ 𝑍𝑐
𝑑 = (𝑍𝑟

𝑠 ⊙ 𝑍𝑢
𝑣) ⊙ 𝑍𝑐

𝑑  so that (𝑍𝑎
𝑏 ⊙ 𝑍𝑟

𝑠) ⊙ 𝑍𝑤
𝑥 =  𝑍𝑐

𝑑 ⊙ 𝑍𝑝
𝑞 ⊙ 𝑍𝑤

𝑥 = 𝑍𝑐
𝑑 ⊙ (𝑍𝑝

𝑞
⊙ 𝑍𝑤

𝑥 ) =

 𝑍𝑝
𝑞
⊙ 𝑍𝑤

𝑥  ⊙ 𝑍𝑐
𝑑 = (𝑍𝑟

𝑠 ⊙ 𝑍𝑢
𝑣) ⊙ 𝑍𝑐

𝑑  ⇒  𝑍𝑟
𝑠 ⊙ 𝑍𝑎

𝑏 ⊙ 𝑍𝑤
𝑥 = (𝑍𝑟

𝑠 ⊙ 𝑍𝑢
𝑣) ⊙ 𝑍𝑐

𝑑  ⇒ 𝑍𝑟
𝑠 ⊙  𝑍𝑎

𝑏 ⊙ 𝑍𝑤
𝑥  = 𝑍𝑟

𝑠 ⊙

(𝑍𝑢
𝑣 ⊙ 𝑍𝑐

𝑑) ⇒ 𝑍𝑎
𝑏 ⊙ 𝑍𝑤

𝑥 = 𝑍𝑢
𝑣 ⊙ 𝑍𝑐

𝑑  (By theorem 3.2., since 𝑍𝑟
𝑠 ∈  𝑚(𝑍0)) ⇒ 𝑍𝑎

𝑏 ⊙ 𝑍𝑤
𝑥 = 𝑍𝑐

𝑑 ⊙ 𝑍𝑢
𝑣. 

Thus,  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 ~ 𝑍𝑢
𝑣 ,𝑍𝑤

𝑥  . Therefore, ~ is a transitive relation on 𝑚(𝑍) ×  𝑚(𝑍0). 

 Therefore, ~ is a equivalence relation on 𝑚(𝑍) ×  𝑚(𝑍0). 

 

Remark 3.4. Let us denote the set of all equivalence classes of  𝑚(𝑍) ×  𝑚(𝑍0) by 𝑚𝑓 𝑄  and we call it as multi-

fractional system. An element [ 𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 ] on  𝑚𝑓 𝑄  will now be simply be denoted by [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] and accordingly  

[𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] = [𝑍𝑝
𝑞

, 𝑍𝑟
𝑠] if and only if 𝑍𝑎

𝑏 ⊙ 𝑍𝑟
𝑠 = 𝑍𝑐

𝑑 ⊙ 𝑍𝑝
𝑞
. Now we have only produced the elements of 𝑚𝑓 𝑄 . A 

bunch of elements can hardly be a system. We still need to define appropriate binary operations and order relations 

on it just as we did for 𝑚𝑑 (𝑍) [9]. Before we do so, let us note the following elementary properties of  𝑚𝑓 𝑄 . 

Remark 3.5. For  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ,  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚𝑓 𝑄  , [𝑍𝑎

𝑏 ,𝑍𝑐
𝑑 ] = [𝑍𝑝

𝑞
,𝑍𝑟

𝑠] ⇔ 𝑍𝑎
𝑏 ⊙ 𝑍𝑟

𝑠 = 𝑍𝑐
𝑑 ⊙ 𝑍𝑝

𝑞
 ⇔ 𝑍𝑎𝑟

𝑏𝑠 = 𝑍𝑐𝑝
𝑑𝑞

 ⇔ 𝑎𝑟 =

𝑐𝑝 and 𝑏𝑠 = 𝑑𝑞 ⇔
𝑎

𝑐
=

𝑝

𝑟
 and 

𝑏

𝑑
=

𝑞

𝑠
. 

Lemma 3.6. For [𝑍𝑎
𝑏 , 𝑍𝑐

𝑑] ∈ 𝑚𝑓 𝑄 , and for all 𝑍𝑞
𝑝
∈  𝑚(𝑍0), [𝑍𝑎

𝑏 , 𝑍𝑐
𝑑 ] = [𝑍𝑝

𝑞
⊙ 𝑍𝑎

𝑏 , 𝑍𝑝
𝑞
⊙ 𝑍𝑐

𝑑] = [𝑍𝑎
𝑏 ⊙ 𝑍𝑝

𝑞
, 𝑍𝑐

𝑑 ⊙

𝑍𝑝
𝑞

]. 

Proof: [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] = [𝑍𝑝
𝑞
⊙ 𝑍𝑎

𝑏 , 𝑍𝑝
𝑞
⊙ 𝑍𝑐

𝑑 ] ⇔ 𝑍𝑎
𝑏 ⊙  𝑍𝑝

𝑞
⊙ 𝑍𝑐

𝑑 = 𝑍𝑐
𝑑 ⊙ (𝑍𝑝

𝑞
⊙ 𝑍𝑎

𝑏) ⇔ 𝑍𝑎
𝑏 ⊙  𝑍𝑐

𝑑 ⊙ 𝑍𝑝
𝑞 = 𝑍𝑐

𝑑 ⊙

(𝑍𝑎
𝑏 ⊙ 𝑍𝑝

𝑞
) ⇔  𝑍𝑎

𝑏 ⊙ 𝑍𝑐
𝑑 ⊙ 𝑍𝑝

𝑞
= (𝑍𝑐

𝑑 ⊙ 𝑍𝑎
𝑏) ⊙ 𝑍𝑝

𝑞
 ⇔  𝑍𝑎

𝑏 ⊙ 𝑍𝑐
𝑑  ⊙ 𝑍𝑝

𝑞
=  𝑍𝑎

𝑏 ⊙ 𝑍𝑐
𝑑 ⊙ 𝑍𝑝

𝑞
 which is a 

tautology. Also, a similar tautology can be established for the second part. Hence the result. 

Lemma 3.7. [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] = [𝑍0
1 ,𝑍1

1] if and only if 𝑎 = 0 and 𝑏 = 𝑑. 

Lemma 3.8. [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] = [𝑍1
1 ,𝑍1

1] if and only if 𝑎 = 𝑐 and 𝑏 = 𝑑.                           

 

Definition 3.9. (Addition on 𝑚𝑓 𝑄 ) There exists a well-defined binary operation ⊞ on 𝑚𝑓 𝑄   defined by 

[𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] ⊞  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 =   𝑍𝑎

𝑏 ⊙ 𝑍𝑟
1 ⊕  𝑍𝑐

1 ⊙ 𝑍𝑝
𝑞 , 𝑍𝑐

𝑑 ⊙ 𝑍𝑟
𝑠 = [𝑍𝑎𝑟+𝑐𝑝

𝑏𝑞
, 𝑍𝑐𝑟

𝑑𝑠 ], [𝑍𝑎
𝑏 , 𝑍𝑐

𝑑],  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚𝑓 𝑄 . 

Proof: To show that ⊞  is well-defined, we need to show that for any [𝑍𝑎
𝑏 , 𝑍𝑐

𝑑],  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚𝑓 𝑄 , there is one and 

only one image under ⊞ . 

Hence let,  [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] =  [𝑍𝑎 ′
𝑏 ′

,𝑍𝑐 ′
𝑑 ′

]  and  𝑍𝑝
𝑞

,𝑍𝑟
𝑠 =  [𝑍

𝑝′
𝑞 ′

, 𝑍𝑟 ′
𝑠′

]. 

Now, [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] =  [𝑍𝑎 ′
𝑏 ′

,𝑍𝑐 ′
𝑑 ′

] ⇒ 𝑎𝑐′ = 𝑐𝑎′  and 𝑏𝑑′ = 𝑑𝑏′ , also,  𝑍𝑝
𝑞

,𝑍𝑟
𝑠 =  [𝑍

𝑝′
𝑞 ′

, 𝑍𝑟 ′
𝑠′

] ⇒ 𝑝𝑟′ = 𝑟𝑝′  and 𝑞𝑠′ = 𝑠𝑞′ . 

Then [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] ⊞  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 = [𝑍𝑎𝑟+𝑐𝑝

𝑏𝑞
, 𝑍𝑐𝑟

𝑑𝑠 ] and  [𝑍𝑎 ′
𝑏 ′

, 𝑍𝑐 ′
𝑑 ′

] ⊞ [𝑍
𝑝′
𝑞 ′

, 𝑍𝑟 ′
𝑠′

] = [𝑍
𝑎 ′ 𝑟 ′ +𝑐 ′ 𝑝′
𝑏 ′ 𝑞 ′

, 𝑍𝑐 ′ 𝑟 ′
𝑑 ′ 𝑠′

]. 

Also,  𝑎𝑟 + 𝑐𝑝 𝑐′𝑟′ = 𝑐𝑟(𝑎′𝑟′ + 𝑐′𝑝′) and 𝑏𝑞𝑑′𝑠′ = 𝑑𝑠𝑏′𝑞′ . 

Therefore, [𝑍𝑎𝑟+𝑐𝑝
𝑏𝑞

, 𝑍𝑐𝑟
𝑑𝑠 ] =  [𝑍

𝑎 ′ 𝑟 ′ +𝑐 ′ 𝑝′
𝑏 ′ 𝑞 ′

, 𝑍𝑐 ′ 𝑟 ′
𝑑 ′ 𝑠′

] ⇒ [𝑍𝑎
𝑏 , 𝑍𝑐

𝑑] ⊞  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 =  𝑍𝑝

𝑞
, 𝑍𝑟

𝑠 =  [𝑍
𝑝′
𝑞 ′

,𝑍𝑟 ′
𝑠′

]. 

Therefore, ⊞  is well-defined. 
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Proposition 3.10. (Properties of addition on 𝑚𝑓 𝑄 ) Following properties of addition can be deduced: 

(i) ⊞  is commutative on 𝑚𝑓 𝑄 . 

(ii) ⊞  is associative on 𝑚𝑓 𝑄 . 

(iii) [𝑍0
1 ,𝑍1

1] is the identity element in 𝑚𝑓 𝑄   for ⊞. 

(iv) For each [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] ∈ 𝑚𝑓 𝑄 , its  ⊞- inverse exists and is given by [𝑍−𝑎

1

𝑏 , 𝑍𝑐

1

𝑑 ] ∈ 𝑚𝑓 𝑄  denoted by 

([𝑍𝑎
𝑏 , 𝑍𝑐

𝑑]). 

(v) (𝑚𝑓 𝑄 ,⊞) is a commutative group. 

Proof: The proof is immediate. 

 

Definition 3.11. (Multiplication on 𝑚𝑓 𝑄 ) There exists a well-defined binary operation  ⊡ on 𝑚𝑓 𝑄  defined by  

[𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] ⊡  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 = [𝑍𝑎

𝑏 ⊙ 𝑍𝑝
𝑞

, 𝑍𝑐
𝑑 ⊙ 𝑍𝑟

𝑠] = [𝑍𝑎𝑝
𝑏𝑞

, 𝑍𝑐𝑟
𝑑𝑠 ], [𝑍𝑎

𝑏 ,𝑍𝑐
𝑑 ],  𝑍𝑝

𝑞
, 𝑍𝑟

𝑠 ∈ 𝑚𝑓 𝑄 . 

To show that ⊡ is well defined, we need to show that for any [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ],  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚𝑓 𝑄 , there is one and only one 

image under ⊡. 

Hence let,  [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] =  [𝑍𝑎 ′
𝑏 ′

,𝑍𝑐 ′
𝑑 ′

]  and  𝑍𝑝
𝑞

,𝑍𝑟
𝑠 =  [𝑍

𝑝′
𝑞 ′

, 𝑍𝑟 ′
𝑠′

]. 

Now, [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] =  [𝑍𝑎 ′
𝑏 ′

,𝑍𝑐 ′
𝑑 ′

] ⇒ 𝑎𝑐′ = 𝑐𝑎′  and 𝑏𝑑′ = 𝑑𝑏′ , also,  𝑍𝑝
𝑞

,𝑍𝑟
𝑠 =  [𝑍

𝑝′
𝑞 ′

, 𝑍𝑟 ′
𝑠′

] ⇒ 𝑝𝑟′ = 𝑟𝑝′  and 𝑞𝑠′ = 𝑠𝑞′ . 

Then [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] ⊡  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 = [𝑍𝑎𝑝

𝑏𝑞
, 𝑍𝑐𝑟

𝑑𝑠 ] and  [𝑍𝑎 ′
𝑏 ′

,𝑍𝑐 ′
𝑑 ′

] ⊡ [𝑍
𝑝′
𝑞 ′

,𝑍𝑟 ′
𝑠′

] = [𝑍
𝑎 ′ 𝑝′
𝑏 ′ 𝑞 ′

, 𝑍𝑐 ′ 𝑟 ′
𝑑 ′ 𝑠′

]. 

Also, 𝑎𝑐′𝑝𝑟′ = 𝑐𝑎′𝑟𝑝′  and 𝑏𝑞𝑑′𝑠′ = 𝑑𝑠𝑏′𝑞′ . 

Therefore, 𝑍
𝑎𝑐 ′ 𝑝𝑟 ′
𝑏𝑞𝑑 ′ 𝑠′

= 𝑍
𝑐𝑎 ′ 𝑟𝑝′
𝑑𝑠𝑏 ′ 𝑞 ′

⇒  𝑍𝑎𝑝
𝑏𝑞

⊙ 𝑍𝑐 ′ 𝑟 ′
𝑑 ′ 𝑠′

= 𝑍𝑐𝑟
𝑑𝑠 ⊙ 𝑍

𝑎 ′ 𝑝′
𝑏 ′ 𝑞 ′

  

⇒  𝑍𝑎𝑝
𝑏𝑞

, 𝑍𝑐𝑟
𝑑𝑠  =  𝑍

𝑎 ′ 𝑝′
𝑏 ′ 𝑞 ′

, 𝑍𝑐 ′ 𝑟 ′
𝑑 ′ 𝑠′

  ⇒ [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] ⊡  𝑍𝑝
𝑞

,𝑍𝑟
𝑠 = [𝑍𝑎 ′

𝑏 ′
,𝑍𝑐 ′

𝑑 ′
] ⊡ [𝑍

𝑝′
𝑞 ′

, 𝑍𝑟 ′
𝑠′

] 

Therefore, ⊡  is well-defined. 

 

Proposition 3.12. (Properties of multiplication on 𝑚𝑓 𝑄 ) 

(i) ⊡  is commutative on 𝑚𝑓 𝑄 . 

(ii) ⊡  is associative on 𝑚𝑓 𝑄 . 

(iii) [𝑍1
1 ,𝑍1

1] is the identity element in 𝑚𝑓 𝑄   for ⊡. 

Proof: For all [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] ∈ 𝑚𝑓 𝑄 , [𝑍𝑎
𝑏 , 𝑍𝑐

𝑑] ⊡ [𝑍1
1 ,𝑍1

1] = [𝑍𝑎
𝑏 ⊙ 𝑍1

1 , 𝑍𝑐
𝑑 ⊙ 𝑍1

1] = [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ]. 

(iv) For any element [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] ∈ 𝑚(𝑍0) × 𝑚(𝑍0), its  ⊡-inverse exists and is given by [𝑍𝑐
𝑑 ,𝑍𝑎

𝑏 ] denoted by 

[𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ]−1. 

(v) Let us denote 𝑚(𝑍0) × 𝑚(𝑍0) as 𝑚𝑓 𝑄0 , in fact (𝑚𝑓 𝑄0 ,⊡) is a commutative group. 

(vi) (Remark on distributive property) [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] ⊡ ( 𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ⊞ [𝑍𝑢

𝑣 ,𝑍𝑥
𝑦

]) ≠ ([𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] ⊡  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ) ⊞

([𝑍𝑎
𝑏 , 𝑍𝑐

𝑑] ⊡ [𝑍𝑢
𝑣 , 𝑍𝑥

𝑦
]) in general. 

Actually, [𝑍𝑎
𝑏 , 𝑍𝑐

𝑑] ⊡ ( 𝑍𝑝
𝑞

,𝑍𝑟
𝑠 ⊞ [𝑍𝑢

𝑣 , 𝑍𝑥
𝑦

]) = [𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] ⊡  𝑍𝑝𝑥+𝑟𝑢
𝑞𝑣

, 𝑍𝑟𝑥
𝑠𝑦   =  𝑍𝑎(𝑝𝑥+𝑟𝑢 )

𝑏𝑞𝑣
, 𝑍𝑐𝑟𝑥

𝑑𝑠𝑦  . 

But, ([𝑍𝑎
𝑏 , 𝑍𝑐

𝑑] ⊡  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ) ⊞ ([𝑍𝑎

𝑏 , 𝑍𝑐
𝑑 ] ⊡ [𝑍𝑢

𝑣 , 𝑍𝑥
𝑦

]) = [𝑍𝑎𝑝
𝑏𝑞

, 𝑍𝑐𝑟
𝑑𝑠 ]  ⊞ [𝑍𝑎𝑢

𝑏𝑣 ,𝑍𝑐𝑥
𝑑𝑦

] = [𝑍𝑎𝑝𝑐𝑥 +𝑐𝑟𝑎𝑢
𝑏2𝑞𝑣

, 𝑍
𝑐2𝑟𝑥

𝑑2𝑠𝑦
] 

= [𝑍𝑎𝑐(𝑝𝑥 +𝑟𝑢 )
𝑏2𝑞𝑣

, 𝑍
𝑐2𝑟𝑥

𝑑2𝑠𝑦
]. 

(vii) (Multi-distributive property) For all [𝑍𝑎
𝑏 , 𝑍𝑐

𝑑], [𝑍𝑝
𝑞

, 𝑍𝑟
𝑠], [𝑍𝑢

𝑣 ,𝑍𝑥
𝑦

] ∈ 𝑚𝑓 𝑄 , [𝑍1
𝑏 ,𝑍1

𝑑 ] ⊡ ([𝑍𝑎
𝑏 ,𝑍𝑐

𝑑 ] ⊡

( 𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ⊞ [𝑍𝑢

𝑣 ,𝑍𝑥
𝑦

])) = ([𝑍𝑎
𝑏 , 𝑍𝑐

𝑑] ⊡  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ) ⊞ ([𝑍𝑎

𝑏 , 𝑍𝑐
𝑑 ] ⊡ [𝑍𝑢

𝑣 , 𝑍𝑥
𝑦

]). Let us define the above 

property to be the multi-distributive property of ⊡ over ⊞ on 𝑚𝑓 𝑄 . 

 

Remark 3.13. (Order on 𝑚𝑓 𝑄 ) After defining two binary operations on 𝑚𝑓 𝑄 , the next natural thing is to 

order the elements of 𝑚𝑓 𝑄 . Our aim is to define an order that will make 𝑚𝑓 𝑄  a partially ordered multi-field. 

In this connection, we shall first define subsets of 𝑚𝑓 𝑄  that serves as the set of multi-natural numbers and 

multi-integers. Intuitively, these sets should turn out eventually to resemble 𝑚(𝑁) and 𝑚 𝑍 . Also, to define an 

appropriate order, the main job is to identify the subsets of  𝑚𝑓 𝑄  that will serve as the set of positive 

elements. So, we are representing the following notation: 

 

Proposition 3.14. The subset 𝑚𝑓
+(𝑄) of 𝑚𝑓(𝑄0) defined by 𝑚𝑓

+ 𝑄 = { 𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ∈ 𝑚𝑓 𝑄 :
𝑎

𝑐
> 0  and 

𝑏

𝑑
∈ 𝑁} is 

well defined. 
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Proof: To show that 𝑚𝑓
+(𝑄) is well-defined, we need to show that any  𝑍𝑎

𝑏 ,𝑍𝑐
𝑑   cannot be both in and out of the 

set. 

Hence let,  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 =  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠  and suppose that  𝑍𝑎

𝑏 , 𝑍𝑐
𝑑 ∈ 𝑚𝑓

+ 𝑄 . 

Then, 𝑍𝑎
𝑏 ⊙ 𝑍𝑟

𝑠 = 𝑍𝑐
𝑑 ⊙ 𝑍𝑝

𝑞
⇒ 𝑎𝑟 = 𝑐𝑝 and 𝑏𝑠 = 𝑑𝑞. 

Also, 
𝑎

𝑐
> 0 and  

𝑏

𝑑
∈ 𝑁. 

So, 
𝑝

𝑟
> 0 and  

𝑞

𝑠
∈ 𝑁. 

Therefore,  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚𝑓

+ 𝑄 . 

Hence, 𝑚𝑓
+ 𝑄  is well-defined subset of  𝑚𝑓(𝑄). 

  

Proposition 3.15. The subset 𝑚𝑓
−(𝑄) of 𝑚𝑓(𝑄) defined by 𝑚𝑓

− 𝑄 = {− 𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ∈ 𝑚𝑓 𝑄 :  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ∈ 𝑚𝑓
+ 𝑄 } 

is well-defined. 

Proof: The proof is immediate. 

 

Definition 3.16. We define the subset 𝑚𝑓 𝑍𝑄 = { 𝑍𝑎
𝑏 , 𝑍1

1 ∈ 𝑚𝑓 𝑄 : 𝑍𝑎
𝑏 ∈ 𝑚(𝑍)}. The following theorem tells 

us that 𝑚𝑓(𝑍𝑄) appears to be indeed a very good model of 𝑚(𝑍). 

Proposition3.17. [Zu
v , Zw

x ] ∈ 𝑚𝑓 𝑍𝑄 ⇔ 𝑤|𝑢 and 𝑥|𝑣. 

Proof: [Zu
v , Zw

x ] ∈ 𝑚𝑓 𝑍𝑄  ⇔ there exists 𝑍𝑎
𝑏 ∈ 𝑚(𝑍) such that  Zu

v , Zw
x  =  𝑍𝑎

𝑏 ,𝑍1
1  ⇔ Zu

v ⊙ 𝑍1
1 = Zw

x ⊙ 𝑍𝑎
𝑏 ⇔ 

Zu
v = Zwa

xb  ⇔ 𝑢 = 𝑤𝑎 and 𝑣 = 𝑥𝑏 ⇔ 𝑤|𝑢 and 𝑥|𝑣 as 𝑢, 𝑣, 𝑤, 𝑎, 𝑏 ∈ 𝑍. 

 

Theorem 3.18. For the set ∈ 𝑚𝑓 𝑍𝑄  the following hold: 

(i) (𝑚𝑓 𝑍𝑄 ,⊞) is a subgroup of (𝑚𝑓 𝑄 ,⊞). 

(ii) (𝑚𝑓 𝑍𝑄 ,⊡ ) is a subgroup of (𝑚𝑓 𝑄 ,⊡ ). 

(iii) (𝑚𝑓 𝑍𝑄 ,⊞) is isomorphic to (𝑚 𝑍 ,⊕) as group and (𝑚𝑓 𝑍𝑄 ,⊡ ) is isomorphic to (𝑚 𝑍 ,⊙) as 

semi group under the same isomorphism. 

(iv) For every 𝑥 ∈ 𝑚𝑓 𝑄 , there exists 𝑦, 𝑧 ∈ (𝑚𝑓 𝑍𝑄  such that 𝑥 = 𝑦−1 ⊡ 𝑧. 

Proof: Clearly, (𝑚𝑓 𝑍𝑄 ) is a non-empty subset of 𝑚𝑓 𝑄 . 

(i) Let  𝑍𝑎
𝑏 ,𝑍1

1 ,  𝑍𝑐
𝑑 , 𝑍1

1 ∈ 𝑚𝑓 𝑍𝑄 . 

Then  𝑍𝑎
𝑏 ,𝑍1

1 ⊞  − 𝑍𝑐
𝑑 , 𝑍1

1  =  𝑍𝑎
𝑏 ,𝑍1

1 ⊞  𝑍−𝑐

1

𝑑 , 𝑍1
1  =  𝑍𝑎−𝑐

𝑏

𝑑 ,𝑍1
1 ∈ 𝑚𝑓 𝑍𝑄 . 

      Therefore, (𝑚𝑓 𝑍𝑄 ,⊞) is a subgroup of (𝑚𝑓 𝑄 ,⊞). 

(ii)  𝑍𝑎
𝑏 ,𝑍1

1 ⊞  𝑍𝑐
𝑑 ,𝑍1

1 =  𝑍𝑎𝑐
𝑏𝑑 ,𝑍1

1 ∈ 𝑚𝑓 𝑍𝑄 . 

Therefore, 𝑚𝑓 𝑍𝑄  is closed under ⊡. 

       (𝑚𝑓 𝑍𝑄 ,⊡ ) is a subgroup of (𝑚𝑓 𝑄 ,⊡ ). 

(iii) Define 𝜓:𝑚𝑓 𝑍𝑄 → 𝑚(𝑍) by 𝜓  𝑍𝑎
𝑏 , 𝑍1

1  = 𝑍𝑎
𝑏 , 𝑍𝑎

𝑏 ∈ 𝑚(𝑍). 

We shall first show that 𝜓 is a well-defined function. 

So let,  𝑍𝑝
𝑞

, 𝑍1
1 =  𝑍𝑟

𝑠 , 𝑍1
1 . 

 𝑍𝑝
𝑞

, 𝑍1
1 =  𝑍𝑟

𝑠 , 𝑍1
1 ⇔ 𝑍𝑝

𝑞
⊙ 𝑍1

1 = 𝑍1
1 ⊙ 𝑍𝑟

𝑠 ⇔ 𝑍𝑝
𝑞

= 𝑍𝑟
𝑠 ⇔ 𝜓( 𝑍𝑝

𝑞
, 𝑍1

1 ) = 𝜓( 𝑍𝑟
𝑠 ,𝑍1

1 ). 

So, 𝜓 is well-defined. 

Immediately, 𝜓 is a bijection. 

Now for any  𝑍𝑝
𝑞

, 𝑍1
1 ,  𝑍𝑟

𝑠 ,𝑍1
1 ∈ 𝑚𝑓 𝑍𝑄 , 

𝜓  𝑍𝑝
𝑞

,𝑍1
1 ⊞  𝑍𝑟

𝑠 ,𝑍1
1  = 𝜓  𝑍𝑝+𝑟

𝑞𝑠
, 𝑍1

1  = 𝑍𝑝+𝑟
𝑞𝑠

= 𝑍𝑝
𝑞
⊙ 𝑍𝑟

𝑠 = 𝜓  𝑍𝑝
𝑞

,𝑍1
1 ) ⊕ 𝜓( 𝑍𝑟

𝑠 , 𝑍1
1  . 

Hence, (𝑚𝑓 𝑍𝑄 ,⊞) is isomorphic to (𝑚 𝑍 ,⊕). 

Similarly, we can show that (𝑚𝑓 𝑍𝑄 ,⊡ ) is isomorphic to (𝑚 𝑍 ,⊙). 

(iv) Let 𝑥 =  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ∈ 𝑚𝑓 𝑄 , then there exists 𝑦 =  𝑍𝑐
𝑑 ,𝑍1

1 , 𝑧 =  𝑍𝑎
𝑏 ,𝑍1

1 ∈ 𝑚𝑓 𝑍𝑄  such that 𝑦−1 ⊡  z = 

 𝑍𝑐
𝑑 , 𝑍1

1 −1 ⊡  𝑍𝑎
𝑏 ,𝑍1

1 =  𝑍1
1 ,𝑍𝑐

𝑑   ⊡  𝑍𝑎
𝑏 ,𝑍1

1 =  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑  = 𝑥 
       Hence the theorem. 

 

Definition 3.19. Let us define each member of 𝑚𝑓 𝑄  as a multi-rational number. Let us also define each member of 

𝑚𝑓
+(𝑄) as positive multi-rational number and each member of 𝑚𝑓

−(𝑄) as negative multi-rational number. 
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Definition 3.20. (Positive multi-rational number, Negative multi-rational number, Zero, Special multi-rational 

number and Multi-zero)  

Define 𝑚𝑓 𝑄𝑆 = 𝑚𝑓 𝑄 − (𝑚𝑓
+(𝑄) ∪ 𝑚𝑓

−(𝑄) ∪ {[𝑍0
1 ,𝑍1

1]}). 

We have defined every member of 𝑚𝑓
+(𝑄) as a positive multi-rational number, every member of 𝑚𝑓

−(𝑄) as a 

negative multi-rational number, [𝑍0
1 ,𝑍1

1] is the zero and every member of 𝑚𝑓 𝑄𝑆  as special multi-rational number. 

Also any multi-rational number of the form [𝑍0
𝑎 , 𝑍𝑐

𝑑 ] is a multi-zero which is obviously either a special multi-
rational number or zero. 

 

Theorem 3.21. If the product of two multi-rational numbers be zero, then at least one of them must be a multi-zero. 

Proof: For  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  , [𝑍𝑝
𝑞

, 𝑍𝑟
𝑠] ∈ 𝑚𝑓(𝑄), let,  𝑍𝑎

𝑏 ,𝑍𝑐
𝑑  ⊡  𝑍𝑝

𝑞
, 𝑍𝑟

𝑠 =  𝑍0
1, 𝑍1

1 , then  𝑍𝑎
𝑏 ⊙ 𝑍𝑝

𝑞
, 𝑍𝑐

𝑑 ⊙ 𝑍𝑟
𝑠 =  𝑍0

1 , 𝑍1
1  ⇒ 

 𝑍𝑎𝑝
𝑏𝑞

, 𝑍𝑐𝑟
𝑑𝑠  =  𝑍0

1 ,𝑍1
1  ⇒ 𝑍𝑎𝑝

𝑏𝑞
⊙ 𝑍1

1 = 𝑍𝑐𝑟
𝑑𝑠 ⊙ 𝑍0

1 ⇒ 𝑍𝑎𝑝
𝑏𝑞

= 𝑍0
𝑑𝑠  ⇒ 𝑎𝑝 = 0 and 𝑏𝑞 = 𝑑𝑠 ⇒ (either 𝑎 = 0 or 𝑝 = 0) ⇒ 

 𝑍𝑎
𝑏 ,𝑍𝑐

𝑑   or  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠  must be a multi-zero. 

 

Definition 3.22. (Order on 𝑚𝑓 𝑄 ) Let  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑  , [𝑍𝑝
𝑞

,𝑍𝑟
𝑠] ∈ 𝑚𝑓(𝑄). We define  𝑍𝑎

𝑏 ,𝑍𝑐
𝑑  > [𝑍𝑝

𝑞
,𝑍𝑟

𝑠] if  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 ⊞

(−[𝑍𝑝
𝑞

, 𝑍𝑟
𝑠]) ∈ 𝑚𝑓

+(𝑄) i.e., if  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑  ⊞ ([𝑍−𝑝

1

𝑞 , 𝑍𝑟

1

𝑠 ]) ∈ 𝑚𝑓
+(𝑄), i.e., if  [𝑍𝑎𝑟−𝑐𝑝

𝑏

𝑞 , 𝑍𝑐𝑟

𝑑

𝑠 ]) ∈ 𝑚𝑓
+(𝑄), i.e., if 

𝑎𝑟−𝑐𝑝

𝑐𝑟
> 0 

and 

𝑏

𝑞
𝑑

𝑠

∈ 𝑁 i.e., 
𝑎

𝑐
>

𝑝

𝑟
 and 

𝑏𝑠

𝑑𝑞
∈ 𝑁. Also, we define  𝑍𝑎

𝑏 , 𝑍𝑐
𝑑 ≥ [𝑍𝑝

𝑞
, 𝑍𝑟

𝑠] if  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  > [𝑍𝑝
𝑞

,𝑍𝑟
𝑠] or  𝑍𝑎

𝑏 , 𝑍𝑐
𝑑 = [𝑍𝑝

𝑞
, 𝑍𝑟

𝑠]. 

Remark 3.23. Let us denote  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ⊞ (−[𝑍𝑝
𝑞

, 𝑍𝑟
𝑠]) as  𝑍𝑎

𝑏 ,𝑍𝑐
𝑑  − [𝑍𝑝

𝑞
, 𝑍𝑟

𝑠]. 

Theorem 3.24. (Partial order relation) ≥ defined on 𝑚𝑓 𝑄  is a partial order relation. 

Proof: Proof is immediate. 

Remark 3.25. (𝑚𝑓 𝑄 , ≥) is a poset but not a chain. e.g.,  𝑍2
3, 𝑍5

7  and  𝑍3
4, 𝑍6

2  are two incomparable elements of 

𝑚𝑓 𝑄 . 

Since,  𝑍2
3 ,𝑍5

7 ⊞ (− 𝑍3
4, 𝑍6

2 ) =  𝑍2
3 ,𝑍5

7 ⊞  𝑍−3

1

4 , 𝑍6
2 = 𝑍−3

3

4 , 𝑍30
14 ∉ 𝑚𝑓

+(𝑄) (because −
3

30
= −

1

10
< 0) and  

 

 𝑍3
4 ,𝑍6

2 ⊞  − 𝑍2
3 ,𝑍5

7  =  𝑍3
4, 𝑍6

2 ⊞  𝑍−2

1

3 , 𝑍5
7 = [𝑍3

4

3, 𝑍30
14 ] ∉ 𝑚𝑓

+(𝑄) (because 

4

3

14
=

2

21
∉ 𝑁). 

Proposition 3.26. For all  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ∈ 𝑚𝑓 𝑄 ,  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ≯  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  . 

Proof: 𝑎 − 𝑐 ≯ 𝑎 − 𝑐 for all 𝑎, 𝑐 ∈ 𝑁 with 𝑎 ≠ 𝑐, so from Proposition 3.24., the above proposition immediately 

follows. 

Proposition 3.27. For all  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  , [𝑍𝑒
𝑓

, 𝑍𝑔
 ] ∈ 𝑚𝑓 𝑄 ,  𝑍𝑎

𝑏 ,𝑍𝑐
𝑑  >  𝑍𝑒

𝑓
, 𝑍𝑔

  ⇔  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ⊞  𝑍𝑢
𝑣 ,𝑍𝑤

𝑥  >  𝑍𝑒
𝑓

, 𝑍𝑔
  ⊞

 𝑍𝑢
𝑣 ,𝑍𝑤

𝑥   for all  𝑍𝑢
𝑣 , 𝑍𝑤

𝑥  ∈ 𝑚𝑓 𝑄 . 

Proof: Proof is immediate. 

Proposition 3.28. For all  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ,  𝑍𝑒
𝑓

, 𝑍𝑔
  ,  𝑍𝑢

𝑣 , 𝑍𝑤
𝑥  , [𝑍𝑝

𝑞
, 𝑍𝑟

𝑠] ∈ 𝑚𝑓 𝑄 ,  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  >  𝑍𝑒
𝑓

, 𝑍𝑔
   and  𝑍𝑢

𝑣 ,𝑍𝑤
𝑥  >

[𝑍𝑝
𝑞

, 𝑍𝑟
𝑠] ⇒  𝑍𝑎

𝑏 ,𝑍𝑐
𝑑  ⊞  𝑍𝑢

𝑣 ,𝑍𝑤
𝑥  >  𝑍𝑒

𝑓
, 𝑍𝑔

  ⊞ [𝑍𝑝
𝑞

, 𝑍𝑟
𝑠]. 

Proof: Proof is immediate. 

Proposition 3.29. For  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ,  𝑍𝑒
𝑓

, 𝑍𝑔
  ∈ 𝑚𝑓 𝑄 ,  𝑍𝑎

𝑏 ,𝑍𝑐
𝑑  ≥  𝑍𝑒

𝑓
, 𝑍𝑔

  ⇒  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 ⊞  𝑍1
1 ,𝑍1

1 >  𝑍𝑒
𝑓

, 𝑍𝑔
  . 

Proposition 3.30. For all   𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 ∈ 𝑚𝑓 𝑄 ,  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 ⊞  𝑍𝑒
𝑓

, 𝑍𝑔
  >  𝑍𝑎

𝑏 , 𝑍𝑐
𝑑  for all  𝑍𝑒

𝑓
,𝑍𝑔

  ∈ 𝑚𝑓 𝑍𝑄 . 

Proposition 3.31. For  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ,  𝑍𝑒
𝑓

, 𝑍𝑔
  ,  𝑍𝑢

𝑣 ,𝑍𝑤
𝑥  ∈ 𝑚𝑓 𝑄 ,  𝑍𝑎

𝑏 , 𝑍𝑐
𝑑 ⊞  𝑍𝑢

𝑣 , 𝑍𝑤
𝑥  =  𝑍𝑒

𝑓
, 𝑍𝑔

  ⊞  𝑍𝑢
𝑣 , 𝑍𝑤

𝑥   ⇒

 𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  =  𝑍𝑒
𝑓

, 𝑍𝑔
  . 

Proposition 3.32. For  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ,  𝑍𝑒
𝑓

, 𝑍𝑔
  ∈ 𝑚𝑓 𝑄 ,  𝑍𝑎

𝑏 ,𝑍𝑐
𝑑  >  𝑍𝑒

𝑓
, 𝑍𝑔

   ⇔   𝑍𝑎
𝑏 , 𝑍𝑐

𝑑 ⊡  𝑍𝑢
𝑣 , 𝑍𝑤

𝑥  >  𝑍𝑒
𝑓

, 𝑍𝑔
  ⊡

 𝑍𝑢
𝑣 ,𝑍𝑤

𝑥   for all  𝑍𝑢
𝑣 , 𝑍𝑤

𝑥  ∈ 𝑚𝑓
+(𝑄). 

Proof: Proof is immediate. 

 

Theorem 3.33. (Isomorphism theorem) Let us consider the general mset 𝑚(𝑄 )drawn from 𝑄 characterized by the 

universal relation 𝜌𝑚(𝑄 ) = 𝑄 × 𝑄+ (𝑄+ being the set of all positive rational numbers) i.e., 𝑄𝑝
𝑞
∈ 𝑚(𝑄 ) if and only if 

𝑝 ∈ 𝑄 and 𝑞 ∈ 𝑄+. Let us define two binary operations ⊞   and ⊡  as follows: 

For  𝑄𝑝
𝑞

, 𝑄𝑟
𝑠 ∈ 𝑚(𝑄 ), 𝑄𝑝

𝑞
⊞  𝑄𝑟

𝑠 = 𝑄𝑝+𝑟
𝑞𝑠

 and 𝑄𝑝
𝑞
⊡ 𝑄𝑟

𝑠 = 𝑄𝑝𝑟
𝑞𝑠

. 
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Also, define >  on 𝑚(𝑄 ) as follows: 𝑄𝑝
𝑞

, 𝑄𝑟
𝑠 ∈ 𝑚(𝑄 ), 𝑄𝑝

𝑞
> 𝑄𝑟

𝑠  if and only if there exists 𝑄𝑎
𝑏 ∈ 𝑚(𝑄 ) with 𝑎 ∈ 𝑄+ 

and 𝑏 ∈ 𝑁 such that 𝑄𝑝
𝑞

= 𝑄𝑟
𝑠⨁ 𝑄𝑎

𝑏 . 

For  𝑄𝑝
𝑞

, 𝑄𝑟
𝑠 ∈ 𝑚(𝑄 ), we define 𝑄𝑝

𝑞
= 𝑄𝑟

𝑠  if and only if 𝑝 = 𝑟 and 𝑞 = 𝑠. 

Also, for 𝑄𝑝
𝑞

, 𝑄𝑟
𝑠 ∈ 𝑚(𝑄 ), we define 𝑄𝑝

𝑞
≥ 𝑄𝑟

𝑠  if and only if 𝑄𝑝
𝑞

> 𝑄𝑟
𝑠  or 𝑄𝑝

𝑞
= 𝑄𝑟

𝑠 . 

Then (𝑚𝑓 𝑄 ,⊞,⊡, ≥) and (𝑚 𝑄  ,⊞  ,⊡, ≥ ) are isomorphic. 

Proof: Let us now define a function 𝜏: 𝑚𝑓 𝑄 → 𝑚 𝑄   as follows:  

𝜏  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑  = 𝑄𝑎

𝑐

𝑏

𝑑 ,  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ∈ 𝑚𝑓 𝑄 . 

 

 𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ,  𝑍𝑎 ′
𝑏 ′

, 𝑍𝑐 ′
𝑑′ ∈ 𝑚𝑓 𝑄 ,  𝑍𝑎

𝑏 , 𝑍𝑐
𝑑  =  𝑍𝑎 ′

𝑏 ′
,𝑍𝑐 ′

𝑑′  ⇔
𝑎

𝑐
=

𝑎 ′

𝑐 ′  and 
𝑏

𝑑
=

𝑏 ′

𝑑 ′ ⇔  𝑍𝑎

𝑐

𝑏

𝑑 , 𝑍
𝑎 ′

𝑐′

𝑏′

𝑑′
 ⇔ 𝜏  𝑍𝑎

𝑏 ,𝑍𝑐
𝑑   =

𝜏( 𝑍𝑎 ′
𝑏 ′

,𝑍𝑐 ′
𝑑′ ). 

So, 𝜏 is well-defined and one to one. 

Next, let 𝑄𝑝
𝑞
∈ 𝑚(𝑄 ), then 𝑝 ∈ 𝑄 and 𝑞 ∈ 𝑄+. 

Therefore, there exists 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑍 with 𝑎 > 0, 𝑑 > 0 such that 𝑝 =
𝑎

𝑐
 and 𝑞 =

𝑏

𝑑
. So, 𝑏 > 0 and consequently, 

 𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ∈ 𝑚𝑓(𝑄). 

Also, 𝜏  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑   = 𝑍𝑎

𝑐

𝑏

𝑑 = 𝑄𝑝
𝑞

. 

Therefore, 𝜏 is onto. 

Therefore, 𝜏 is a bijection. 

Now let  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑  ,  𝑍𝑎 ′
𝑏 ′

, 𝑍𝑐 ′
𝑑′ ∈ 𝑚𝑓 𝑄 , then 𝜏   𝑍𝑎

𝑏 , 𝑍𝑐
𝑑  ⊞  𝑍𝑎 ′

𝑏 ′
,𝑍𝑐 ′

𝑑 ′
  = 𝜏   𝑍𝑎𝑐 ′ +𝑐𝑎 ′

𝑏𝑏 ′
, 𝑍𝑐𝑐 ′

𝑑𝑑 ′
  = 𝑄

𝑎𝑐′ +𝑐𝑎 ′

𝑐𝑐′

𝑏𝑏′

𝑑𝑑′
=

𝑄𝑎

𝑐

𝑏

𝑑 ⊞ 𝑄
𝑎 ′

𝑐′

𝑏′

𝑑′
 

= 𝜏  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑   ⊞ 𝜏( 𝑍𝑎 ′
𝑏 ′

,𝑍𝑐 ′
𝑑 ′

 ). 

Also, 𝜏   𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ⊡  𝑍𝑎 ′
𝑏 ′

, 𝑍𝑐 ′
𝑑 ′

  = 𝜏   𝑍𝑎𝑎 ′
𝑏𝑏 ′

, 𝑍𝑐𝑐 ′
𝑑𝑑 ′

  = 𝑄
𝑎𝑎 ′

𝑐𝑐′

𝑏𝑏′

𝑑𝑑′
= 𝑄𝑎

𝑐

𝑏

𝑑 ⊡ 𝑄
𝑎 ′

𝑐′

𝑏′

𝑑′
 

= 𝜏  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑   ⊡ 𝜏( 𝑍𝑎 ′
𝑏 ′

,𝑍𝑐 ′
𝑑 ′

 ). 

Next for,  𝑍𝑎
𝑏 ,𝑍𝑐

𝑑  ,  𝑍𝑝
𝑞

, 𝑍𝑟
𝑠 ∈ 𝑚𝑓 𝑄 , let  𝑍𝑎

𝑏 , 𝑍𝑐
𝑑  >  𝑍𝑝

𝑞
,𝑍𝑟

𝑠 . 

Then,  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑  ⊞  − 𝑍𝑝
𝑞

, 𝑍𝑟
𝑠  ∈ 𝑚𝑓

+ 𝑄 ⇒
𝑎𝑟−𝑐𝑝

𝑐𝑟
> 0 and 

𝑏𝑠

𝑞𝑑
∈ 𝑁 ⇒ there exist 𝑠 ∈ 𝑄+ and 𝑡 ∈ 𝑁 such that 

𝑎𝑟−𝑐𝑝

𝑐𝑟
= 𝑠 and 

𝑏𝑠

𝑞𝑑
= 𝑡 ⇒

𝑎

𝑐
=

𝑝

𝑟
+ 𝑠 and 

𝑏

𝑑
=

𝑞

𝑠
𝑡 ⇒ 𝑄𝑎

𝑐

𝑏

𝑑 = 𝑄𝑝

𝑟
+𝑠

𝑞

𝑠
𝑡

⇒ 𝑄𝑎

𝑐

𝑏

𝑑 = 𝑄𝑝

𝑟

𝑞

𝑠 ⊞ 𝑄𝑠
𝑡  ⇒ there exist 𝑄𝑠

𝑡 ∈ 𝑚(𝑄 ) with 

𝑠 ∈ 𝑄+ and 𝑡 ∈ 𝑁 such that 𝑄𝑎

𝑐

𝑏

𝑑 = 𝑄𝑝

𝑟

𝑞

𝑠 ⊞ 𝑄𝑠
𝑡  ⇒ 𝑄𝑎

𝑐

𝑏

𝑑 ≥ 𝑄𝑝

𝑟

𝑞

𝑠  ⇒  𝜏  𝑍𝑎
𝑏 , 𝑍𝑐

𝑑   ≥ 𝜏  𝑍𝑝
𝑞

,𝑍𝑟
𝑠  . 

Therefore, (𝑚𝑓 𝑄 ,⊞,⊡, ≥) and (𝑚 𝑄  ,⊞  ,⊡, ≥ ) are isomorphic. 

 

Remark 3.34. (Properties of (𝑚 𝑄  ,⊞  ,⊡, ≥ )) 

Since (𝑚𝑓 𝑄 ,⊞,⊡, ≥) and (𝑚 𝑄  ,⊞  ,⊡, ≥ ) are isomorphic, so (𝑚 𝑄  ,⊞ ) is a commutative group, (𝑚 𝑄  ,⊡ ) is 

a commutative monoid and ⊡  obey multi-distributive property over ⊞ . (𝑚 𝑄0
  ,⊡ ) is a commutative group where 

𝑚 𝑄0
  = [𝑄 − {0}] × 𝑄+. Also, (𝑚 𝑄  , ≥ ) is a poset. Moreover, ≥  defined on 𝑚 𝑄   is an extension of ≥ defined 

on 𝑚(𝑍). 

 

Remark 3.35.  (𝑚 𝑄  ,⊞ ) is a commutative group and (𝑚 𝑄  ,⊡ ) is a commutative monoid but (𝑚 𝑄  ,⊞  ,⊡ ) is 

not a ring, since ⊡  cannot be distributed over ⊞ . But ⊡  obeys multi-distributive property over ⊞ . Let us now 

introduce a new concept of multi-field and (𝑚 𝑄  ,⊞  ,⊡ ) to be such a multi-field. 
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Definition 3.36. (General mset drawn from a ring) Let (𝑋, +,∙) be a ring. Let 𝑀 be a general mset drawn from 𝑋. 

Cosider two functions ⊕: 𝑀 × 𝑀 → 𝜋(𝑋) and ⊙: 𝑀 × 𝑀 → 𝜋(𝑋) defined as follows: 

For 𝑋𝑎
𝑟 , 𝑋𝑏

𝑠 ∈ 𝑀, 𝑋𝑎
𝑟 ⊕ 𝑋𝑏

𝑠 = 𝑋𝑎+𝑏
𝑟𝑠  and 𝑋𝑎

𝑟 ⊙ 𝑋𝑏
𝑠 = 𝑋𝑎𝑏

𝑟𝑠 . 

Let us call ⊕ and ⊙ respectively as m-addition and m-multiplication defined on 𝑀 induced by the ring (𝑋, +,∙). 

Also let 𝑀 be closed under ⊕ and ⊙. Then immediately ⊕ obey commutative property and associative property on 

𝑀. So, (𝑀,⊕) is then a commutative semi group. Also, immediately ⊙ obey associative property on 𝑀. So, (𝑀,⊙) 

is a semi group. We define 𝑀 to be a general mset drawn from the ring (𝑋, +,∙). 

 

Definition 3.37. Let 𝑀 be a general mset drawn from a ring (𝑋, +,∙).Then ⊙ obey multi-distributive property over 

⊕. 

 

Definition 3.38. (Multi-ring) Let 𝑀 be a general mset drawn from a ring (𝑋, +,∙). Let ⊕ and ⊙ are m-addition and 

m-multiplication respectively defined on 𝑀 induced by the ring (𝑋, +,∙). If the structure (𝑀,⊕,⊙) satisfies the 

followings: 

(1) (𝑀,⊕) is an abelian group 

(2) (𝑀,⊙) is a semi group and  

(3) ⊙ obey multi-distributive property over ⊕ 

then we define (𝑀,⊕,⊙) to be a multi-ring induced by the ring (𝑋, +,∙). 

 

Theorem 3.39. Let 𝑀 be a general mset drawn from a ring (𝑋, +,∙). Let ⊕ and ⊙ are m-addition and m-

multiplication respectively defined on 𝑀 induced by the ring (𝑋, +,∙). Then (𝑀,⊕,⊙) will be multi-ring induced by 

the ring (𝑋, +,∙) if and only if the following conditions are satisfied: 

(1) There exists 𝑋𝜃
1 ∈ 𝑀 (𝜃 being the zero element in the ring (𝑋, +,∙). 

(2) For 𝑎 ∈ 𝑋 and 𝑟 ∈ [𝑅 = {0}], 𝑋𝑎
𝑟 ∈ 𝑀 ⇒ 𝑋

(−𝑎)

1

𝑟 ∈ 𝑀. 

 

Remark 3.40. (i) Let us consider the ring (𝑋, +,∙) where 𝑋 = 𝑍4, the set of all residue classes modulo 4, also, + and 

∙ are respectively addition and multiplication modulo 4. Consider the general mset 𝑀 characterized by the relation 

𝜌𝑀 = 𝑋 × 𝐺 where 𝐺 = {2𝑛 :𝑛 ∈ 𝑍} between 𝑋 and 𝐺. Then for all 𝑎 ∈ 𝑋 and for all 𝑟 ∈ 𝐺, 𝑋𝑎
𝑟 ∈ 𝑀. Let ⊕ and ⊙ 

are m-addition and m-multiplication respectively defined on 𝑀 induced by the ring (𝑋, +,∙). Then  𝑀,⊕,⊙  forms a 

multi-ring induced by the ring (𝑋, +,∙). 

(iii) (𝑚 𝑍  ,⊕ ,⊙ ) is a multi-ring induced by the ring (𝑍, +,∙). 

 

Remark 3.41. Let (𝑀,⊕,⊙) to be a multi-ring induced by the ring (𝑋, +,∙) where 𝑀 is a general mset drawn from 

the ring (𝑋, +,∙). Let 𝜃 be the zero element in (𝑋, +,∙). Let 𝑋𝜃
1 must be the zero element in (𝑀,⊕,⊙). Let us also 

define any element in 𝑀 of the form 𝑋𝜃
𝑟  for some 𝑟 ∈ 𝑅 − {0} to be the multi-zero elements of 𝑀 such that the 

product of any element of the multi-ring with a multi-zero element of the same is again a multi-zero of the multi-

ring. Clearly, the zero element in a multi-ring is a multi-zero element. 

 

Remark 3.42. In a multi-ring (𝑚 𝑍  ,⊕ ,⊙ ) induced by the ring (𝑍, +,∙), the non-zero multi-zeros are only divisors 

of zero. 

 

Theorem 3.43. In a multi-ring, non-zero multi-zero elements are divisors of zero. 

Definition 3.44. A multi-ring is said to have no non-multi-zero divisors of zero if its non-zero multi-zero elements 

are the only divisors of zero. 

 

Example 3.45. The multi-ring (𝑚 𝑍  ,⊕ ,⊙ ) induced by the ring (𝑍, +,∙), has no non-multi-zeros divisors of zero. 

Remark 3.46. Let (𝑀,⊕,⊙) be a multi-ring induced by the ring (𝑋, +,∙) with divisors of zero. Let 𝜃 be the zero 

element in (𝑋, +,∙). As (𝑋, +,∙) is a ring with divisors of zero, so, there exists two non zero elements 𝑎 and 𝑏 in the 

ring (𝑋, +,∙) such that 𝑎 ∙ 𝑏 = 𝜃. 

Now, for some 𝑟, 𝑠 ∈ 𝑅 − {0}, let 𝑋𝑎
𝑟 , 𝑋𝑏

𝑠 ∈ 𝑀. 

Then 𝑋𝑎
𝑟 ⊙ 𝑋𝑏

𝑠 = 𝑋𝑎𝑏
𝑟𝑠 = 𝑋𝜃

𝑟𝑠 ∈ 𝑀 (since 𝑀 is closed under ⊙). 

Again, 𝑋𝑎
𝑟  and 𝑋𝑏

𝑠 are divisors of zero in the multi-ring (𝑀,⊕,⊙). So, 𝑋𝑎
𝑟  and 𝑋𝑏

𝑠 are non-multi-zero divisors of zero 

in the multi-ring (𝑀,⊕,⊙). 
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Example 3.47. Consider the multi-ring (𝑀,⊕,⊙) induced by the ring (𝑋, +,∙) as mentioned in (i) of Example 3.40. 

where 𝑋 = 𝑍4. 

Then, for 𝑋[2]
2 , 𝑋

[2]

1

2 ∈ 𝑀, 𝑋[2]
2 ⊙ 𝑋

[2]

1

2 = 𝑋[0]
1  which is the zero element of the multi-ring (𝑀,⊕,⊙) induced by the 

ring (𝑋, +,∙). Also, 𝑋[2]
2  and 𝑋

[2]

1

2  are the non-zero non-multi-zero elements of the multi-ring (𝑀,⊕,⊙) induced by 

the ring (𝑋, +,∙). So, the multi-ring (𝑀,⊕,⊙) induced by the ring (𝑋, +,∙) contains multi-divisors of zero. 

 

Definition 3.48. (Multi-field) Let 𝑀 be a general mset drawn from a ring  𝑋, +,∙  (or, a field Let ⊞ and ⊡ are m-

addition and m-multiplication respectively induced by the ring  𝑋, +,∙  (or, a field (𝑋, +,∙)). The structure (𝑀,⊞,⊡) 
satisfies the followings: 

(1) (𝑀,⊞) is an commutative group 

(2) (𝑀,⊡) is a commutative monoid 

(3)  Every non-zero non-multi-zero element of 𝑀 has god its inverse in 𝑀 with respect to ⊡. 

(4) ⊡ obeys multi-distributive over ⊞ 

Then we define  𝑀,⊞,⊡  to be a multi-field induced by the ring (or, a field) (𝑋, +,∙). 

 

Example 3.49. (𝑚 𝑄  ,⊞ ,⊡ ) is a multi-field induced by the field (𝑄, +,∙). 

Example 3.50. Consider the field (𝑋, +,∙) where 𝑋 = 𝑍4, the set of all residue classes modulo 3, also, + and ∙ 
respectively addition and multiplication modulo 3. Consider the general mset 𝑀 characterized by the relation 

𝜌𝑀 = 𝑋 × 𝐺 where 𝐺 = {2𝑛 :𝑛 ∈ 𝑍} between 𝑋 and 𝐺. Then for all 𝑎 ∈ 𝑋 and for all 𝑟 ∈ 𝐺, 𝑋𝑎
𝑟 ∈ 𝑀. Let ⊞ and ⊡ 

are m-addition and m-multiplication respectively defined on 𝑀 induced by the ring (𝑋, +,∙). Let (𝑀,⊞,⊡) forms a 

multi-field induced by the field (𝑋, +,∙). 

 

Remark 3.51. (𝑚 𝑄  ,⊞ ,⊡ ,≥ ) is a partially ordered multi-field induced by the field  (𝑄, +,∙). 

Definition 3.52. ( Definition of multi-rational number system) A partially ordered multi-field (𝐹,⊞,⊡, ≥) is called a 

multi-rational number system if there exists a partially ordered sub domain (𝑍𝐹 ,⊞,⊡,≥) such that 

(1)  𝑍𝐹 ,⊞,⊡, ≥ ≅ (𝑚 𝑍 ,⊕,⊙,≥)  

(2)  For every 𝑥 ∈ 𝐹, there exists 𝑦, 𝑧 ∈ 𝑍𝐹 such that 𝑥 = 𝑦−1 ⊡ 𝑧. 

 

Theorem 3.53. (Existence and uniqueness of multi-rational number system) Multi-rational number system exists and 

any two multi-rational number systems are isomorphic. 

Proof: We have previously shown that the system (𝑚 𝑄  ,⊞ ,⊡ , ≥ ) is a partially ordered multi-field drawn from the 

field  (𝑄, +,∙). 

Now consider the submset 𝑚 𝑍𝑄  = {𝑄𝑎
𝑏 : 𝑎 ∈ 𝑍, 𝑏 ∈ 𝑄+} of  𝑚 𝑄  . 

Again, 𝑎 ∈ 𝑍, 𝑏 ∈ 𝑄+ implies 𝑄𝑎
𝑏 = 𝑍𝑎

𝑏 . 

So, 𝑚 𝑍𝑄  = 𝑚(𝑍). 

Also consider the restrictions of  ⊞  and ⊡  defined on 𝑚(𝑍𝑄 ). Immediately they are ⊕ and ⊙ defined on 𝑚(𝑍). 

So, (𝑚(𝑍𝑄 ),⊞ ,⊡ , ≥ ) is an ordered sub domain of (𝑚 𝑄  ,⊞ ,⊡ , ≥ ) and they are isomorphic under the isomorphism 

∅: 𝑚(𝑍𝑄 ) → 𝑚(𝑍) defined by ∅ 𝑄𝑝
𝑞
 = 𝑍𝑝

𝑞
, 𝑄𝑝

𝑞
∈ 𝑚(𝑍𝑄 ). 

Now let 𝑄𝑝
𝑞

, 𝑄𝑚
𝑛 ∈ 𝑚(𝑍𝑄 ) such that 𝑄𝑝

𝑞
> 𝑄𝑚

𝑛 . 

As, 𝑝. 𝑚 ∈ 𝑍 and 𝑞, 𝑛 ∈ 𝑄+ so that 𝑄𝑝
𝑞

= 𝑍𝑝
𝑞
 and 𝑄𝑚

𝑛 = 𝑍𝑚
𝑛 . 

Now 𝑄𝑝
𝑞

> 𝑄𝑚
𝑛 ⇒ there exists 𝑄𝑎

𝑏 ∈ 𝑚 𝑄   with 𝑎 > 0 and 𝑏 ∈ 𝑁 such that 𝑄𝑝
𝑞

= 𝑄𝑚
𝑛 ⊞ 𝑄𝑎

𝑏 . 

i.e.,  𝑄𝑝
𝑞

= 𝑄𝑚+𝑎
𝑛𝑏 ⇒ 𝑝 = 𝑚 + 𝑎 ⇒ 𝑎 = 𝑝 − 𝑚 ∈ 𝑍 ⇒ 𝑄𝑎

𝑏 = 𝑍𝑎
𝑏 . 

So, 𝑍𝑝
𝑞

= 𝑍𝑚
𝑛 ⊞ 𝑍𝑎

𝑏  and accordingly, 𝑍𝑝
𝑞

= 𝑍𝑚
𝑛 ⊕ 𝑍𝑎

𝑏 . 

i.e., ∅ 𝑄𝑝
𝑞
 > ∅(𝑄𝑚

𝑛 ). 

Therefore, for all  𝑄𝑝
𝑞

, 𝑄𝑚
𝑛 ∈ 𝑚(𝑍𝑄 ), 𝑄𝑝

𝑞
> 𝑄𝑚

𝑛 ⇒ ∅ 𝑄𝑝
𝑞 > ∅(𝑄𝑚

𝑛 ). 

Finally let, 𝑥 = 𝑄𝑎
𝑏 ∈ 𝑚 𝑄  , then 𝑎 ∈ 𝑄 and 𝑏 ∈ 𝑄+. 

So, there exists 𝑚. 𝑛 ∈ 𝑍, 𝑛 > 0, 𝑝, 𝑞 ∈ 𝑁 such that 𝑎 =
𝑚

𝑛
 and 𝑏 =

𝑝

𝑟
. 

Then, 𝑥 = 𝑄𝑎
𝑏 = 𝑄𝑚

𝑛

𝑝

𝑞
= 𝑄1

𝑛

1

𝑞
⊡ 𝑄𝑚

𝑝
= (𝑍𝑛

𝑞
)−1 ⊡ 𝑍𝑚

𝑝
= 𝑦−1 ⊡ 𝑧, say, where 𝑦 = 𝑍𝑛

𝑞
, 𝑧 = 𝑍𝑚

𝑝
∈ 𝑚(𝑍𝑄 ) since 𝑚, 𝑛 ∈

𝑍; 𝑝, 𝑞 ∈ 𝑁. 
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Hence, (𝑚 𝑄  ,⊞ ,⊡ , ≥ ) is a multi-rational number system and so multi-rational number system exists. 

Next, let, (𝑚 𝑄 ,⊞,⊡,≥) and (𝑚 𝑄′ ,⊞′ ,⊡′ , ≥′) be any two multi-rational number systems (𝑚 𝑄  and 𝑚 𝑄′   
being two general msets). 

Then by transitivity of isomorphism there exists an isomorphism ∅: 𝑚(𝑍𝑄) → 𝑚(𝑍𝑄′ ) such that 

For all 𝑦, 𝑧 ∈ 𝑚(𝑍𝑄), ∅ 𝑦 ⊞ 𝑧 = ∅ 𝑦 ⊞′ ∅(𝑧) , ∅ 𝑦 ⊡ 𝑧 = ∅ 𝑦 ⊡′ ∅(𝑧) and 𝑦 > 𝑧 ⇒ ∅ 𝑦 ≥′ ∅(𝑧). 

Also, for any 𝑥 ∈ 𝑚(𝑄), there exists 𝑦𝑥 , 𝑧𝑥 ∈ 𝑚(𝑍𝑄) such that 𝑥 = (𝑦𝑥)−1 ⊞ 𝑧𝑥 . 

Define 𝜓: 𝑚(𝑄) → 𝑚(𝑄′ ) by 𝜓 𝑥 = (∅(𝑦𝑥))−1 ⊡′ ∅(𝑧𝑥). 

Then we can show that 𝜓 is well defined. 

Also we can show that 𝜓 is bijective. 

Again, for any 𝑢, 𝑣 ∈ 𝑚(𝑄), 𝜓(𝑢 ⊞ 𝑣) 

= 𝜓[( 𝑦𝑢  
−1 ⊡ (𝑧𝑢 )) ⊞ ( 𝑦𝑣 

−1 ⊡ (𝑧𝑣))] 
= 𝜓[  𝑦𝑢  

−1 ⊡  𝑦𝑣 
−1 ⊡ ( 𝑦𝑣 ⊡ 𝑧𝑢  ⊞  𝑦𝑢 ⊡ 𝑧𝑣 )] 

= 𝜓[ 𝑦𝑣 ⊡ 𝑦𝑢  
−1 ⊡ ( 𝑦𝑣 ⊡ 𝑧𝑢  ⊞  𝑦𝑢 ⊡ 𝑧𝑣 )] 

=  ∅ 𝑦𝑣 ⊡′ ∅ 𝑦𝑢  
−1

⊡′ ((∅ 𝑦𝑣 ⊡ 𝑧𝑢  ⊞′ ∅ 𝑦𝑢 ⊡ 𝑧𝑣 ) 

= ((∅ 𝑦𝑢  )−1 ⊡′ (∅ 𝑦𝑣 )−1) ⊡′   (∅ 𝑦𝑣 ⊡′ ∅ 𝑧𝑢   ⊞′ ((∅ 𝑦𝑢  ⊡′ ∅ 𝑧𝑣 )  

= (((∅ 𝑦𝑢  )−1 ⊡′ (∅ 𝑦𝑣 )−1) ⊡′  (∅ 𝑦𝑣 ⊡′ ∅ 𝑧𝑢   ) ⊞′ (((∅ 𝑦𝑢  )−1 ⊡′ (∅ 𝑦𝑣 )−1) ⊡′ ( ∅ 𝑦𝑢  ⊡′ ∅ 𝑧𝑣  ) 

=   ∅ 𝑦𝑢  
−1

⊡′ ∅ 𝑧𝑢   ⊞′ ((∅ 𝑦𝑣 )−1 ⊡′ ∅ 𝑧𝑣 ) 

= 𝜓(𝑢) ⊞′ 𝜓(𝑣). 

Similarly, we can show that 𝜓(𝑢 ⊡ 𝑣)  = 𝜓(𝑢) ⊡′ 𝜓(𝑣). 

Again, for any 𝑢, 𝑣 ∈ 𝑚 𝑄 , 𝑢 > 𝑣 ⇒ (𝑦𝑢)−1 ⊡ 𝑧𝑢 > (𝑦𝑣)−1 ⊡ 𝑧𝑣 ⇒ 𝑦𝑣 ⊡ 𝑧𝑢 > 𝑦𝑢 ⊡ 𝑧𝑣  

⇒ ∅ 𝑦𝑣 ⊡ 𝑧𝑢  >′ ∅ 𝑦𝑢 ⊡𝑧𝑣 ⇒ ∅ 𝑦𝑣) ⊡′ ∅(𝑧𝑢  >′ ∅ 𝑦𝑢  ⊡′ ∅ 𝑧𝑣  

⇒  ∅ 𝑦𝑢   
−1

⊡′ ∅(𝑧𝑢 ) >′  ∅ 𝑦𝑣  
−1

⊡′ ∅ 𝑧𝑣 ⇒ 𝜓((𝑦𝑢 )−1 ⊡ 𝑧𝑢 ) >′ 𝜓((𝑦𝑣)−1 ⊡ 𝑧𝑣) ⇒ 𝜓(𝑢) >′ 𝜓(𝑣). 

Hence, (𝑚 𝑄 ,⊞,⊡,≥) ≅ (𝑚 𝑄′  ,⊞′ ,⊡′ ,≥′). 
Hence, the uniqueness of multi-rational number system. 

 

Remark 3.54. Therefore, (𝑚 𝑄  ,⊞ ,⊡ , ≥ ) is a multi-rational number system. Also, multi-rational number system is 

unique. So, from now on we shall abandon our multi-fractional system and consider instead the multi-rational 

number system (𝑚 𝑄  ,⊞ ,⊡ , ≥ ). Any multi-rational number system is afterwards denoted by (𝑚 𝑄 ,⊞,⊡,≥) 

where 𝑚 𝑄  is the general mset drawn from 𝑄 characterized by the universal relation 𝑄 × 𝑄+i.e., 𝑄𝑝
𝑞
∈ 𝑚(𝑄) if and 

only if 𝑝 ∈ 𝑄 and 𝑞 ∈ 𝑄+. Binary operations ⊞ and ⊡ are defined on 𝑚(𝑄) as follows: for 𝑄𝑝
𝑞

, 𝑄𝑟
𝑠 ∈ 𝑚(𝑄), 

𝑄𝑝
𝑞
⊞ 𝑄𝑟

𝑠 = 𝑄𝑃+𝑟
𝑞𝑠

 and 𝑄𝑝
𝑞
⊡ 𝑄𝑟

𝑠 = 𝑄𝑝𝑟
𝑞𝑠

. > is defined on 𝑚 𝑄  as follows: for 𝑄𝑝
𝑞

, 𝑄𝑟
𝑠 ∈ 𝑚(𝑄), 𝑄𝑝

𝑞
> 𝑄𝑟

𝑠  if and only 

if there exists 𝑄𝑎
𝑏 ∈ 𝑚(𝑄) with 𝑎 > 0, 𝑏 ∈ 𝑁 such that 𝑄𝑝

𝑞
= 𝑄𝑟

𝑠 ⊞ 𝑄𝑎
𝑏 . Also, for 𝑄𝑝

𝑞
, 𝑄𝑟

𝑠 ∈ 𝑚(𝑄), 𝑄𝑝
𝑞
≥ 𝑄𝑟

𝑠  if and 

only if 𝑄𝑝
𝑞

> 𝑄𝑟
𝑠  or 𝑄𝑝

𝑞
= 𝑄𝑟

𝑠 . The copy of the multi-integers embedded in 𝑚(𝑄) will still denoted by 𝑚(𝑍) and it 

has all the properties that we have proven in paper [9] if we consider it in isolation. 

Remark 3.55. Consider three multi-rational numbers 𝑄2

3

3,𝑄3

1

2 

Then, 𝑄2

3

3 ⊞ 𝑄3

1

2 = 𝑄2

3
+3

3∙
1

2 = 𝑄
3

2

3

3

2  and 𝑄2

3

3 ⊡ 𝑄3

1

2 = 𝑄2

3
∙3

3∙
1

2 = 𝑄2

3

2. 

 

IV. CONCLUSION 

In this paper, we have defined and studied multi-rational number system as an extension of multi-integer system. 
There is a huge scope of future research words in the field of multiset. Especially further study can be carried out in 

the following directions.  

To study extension of multi-rational number system towards multi-real number system.  

To study thoroughly the properties of algebraic operations and order relations defined on it. 

Also, to study the properties of general mset and multi-field. 
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