A study on multi-rational numbers forming a multi-field

Debjyoti Chatterjee ${ }^{\# 1}$, S. K. Samanta ${ }^{* 2}$
\# Assistant Professor, Department of Mathematics, Jalpaiguri Government Engineering College, Jalpaiguri-735101, W.B., India.
*Professor, Department of Mathematics, Visva-Bharati, Santiniketan - 731235, W.B., India

Abstract

In an attempt to develop multi number system, in this paper, we introduce a concept of multi-rational number system which forms a multi-field. It is also shown that the multi-rational number system is an extension of multi-integer system.

Keywords: Multiset, Multi-natural number, Multi-integer, Multi-rational number, Multi-ring, Multi-integral domain, Multi-field.

I. INTRODUCTION

In classical set theory, a set is a well-defined collection of distinct objects. If the repeated occurrences of any object are allowed in a collection, then that mathematical structure is called a multiset (mset in short). In many situations, it is more convenient to consider a collection like multiset. e.g., repeated roots of an equation, repeated eigen values of a matrix, prime factors of a positive integer, repeated observations in a statistical sample, data structure, information retrieval on the web, multi-criteria decision making, knowledge presentation in data based system, biological systems and membrane computing [20,22,24,25]. More studies on multisets can be found in [2,4,5,9,12,14,16,17]. The term multiset as Knuth notes [17], was first suggested by N. G. de Bruijn [10] in a private correspondence to him. N. G. de Bruijn's interests in multisets grew out of his investigations into the combinatorial properties of the set of divisors of a number. A number or any of its divisors is expressible as a multiset of prime factors [2,17]. But it have now become an area of special interest in various subjects like mathematics, statistics, computer science, physics and philosophy [2,8,10,12,22,24,25]. Many authors like Yagar [25], Miyamoto [20], Hickman [15], Blizard [4], Girish and John [12,13,23], D. Singh [24], A. M. Ibrahim [24] etc. have studied the properties of multisets. Some authors have also generalized the notion of multisets to form fuzzy multisets [18], Intuitionistic fuzzy multisets [3,23], soft multisets [1,13,19] etc. Various research work on the multiset ordering [4,11,24], relations and functions in multiset context [20], multiset topology [12,13], multi group theory [21] etc. have been done recently by some researchers.

In order to develop various structures on multisets we have started from the beginning. Our motif is to develop a multi number system which a generalization of the ordinary number system and also compatible with the multiset setting as number system plays an important role in mathematics. In a previous papers [6], we have introduced a concept of multi-natural number system from the axiomatic point of view and study its properties related to compositions and order relations. After that in another paper [7], we introduce concept of multi-integer system. In this paper, we extend it to develop multi-rational number system and to study their properties. The organization of the paper is as follows:

Section 2 is the preliminary part where some definitions and results regarding multisets, multi-natural numbers and multi-integers have been introduced. In section 3, the notion of multi-fractional system together with binary operations and order relation defined on it has been introduced. Several properties regarding multi-fractional system have been studied and notions like multi-distributive property, multi-rational number, multi-field etc. have been also defined in this section. Finally, Multi-rational number system has been introduced; its isomorphism with multi-fractional system and its existence and uniqueness have been established. The straightforward proofs of the propositions have been omitted.

II. PRELIMINARIES

Definition 2.1 [12] A multiset (or mset, in short) M drawn from a set X is represented by a function Count $_{M}$ or C_{M} defined as $C_{M}: X \rightarrow N \cup\{0\}$ where N represents the set of all natural numbers. Let M be an mset drawn from the set $X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ with x_{i} appearing k_{i} times in M. It is denoted by $x_{i} \in^{k_{i}} M$. The mset M drawn from the
set X is then denoted by $\left\{k_{1} / x_{1}, k_{2} / x_{2}, \ldots, k_{n} / x_{n}\right\}$. Also $C_{M}(x)$ is the number of occurrences of the element x in the mset M. However, those elements which are not included in the mset M have zero count.

Example 2.2 Let $X=\{a, b, c, d, e\}$ be any set. Then $M=\{3 / a, 2 / b, 1 / e\}$ is an mset drawn from X.
Definition 2.3 [12] Let A, B and M be three msets drawn from a set X. Then the followings are defined:
(i) $\quad A=B$ if $C_{A}(x)=C_{B}(x)$ for all $x \in X$.
(ii) $\quad A \subseteq B$ if $C_{A}(x) \leq C_{B}(x)$ for all $x \in X$, thn we call A to be a submset of B.
(iii) $\quad M=A \cup B$ if $\left.C_{M}(x)=\max \mathbb{C}_{A}(x), C_{\mathrm{B}}(x)\right\}$ for all $x \in X$.
(iv) $\quad M=A \cap B$ if $C_{M}(x)=\min \left(C_{A}(x), C_{\mathrm{B}}(x)\right\}$ for all $x \in X$.
(v) $\quad M=A \oplus B$ if $C_{M}(x)=C_{A}(x)+C_{\mathrm{B}}(x)$ for all $x \in X$.
(vi) $\quad M=A \ominus B$ if $\left.C_{M}(x)=\max C_{A}(x)-C_{B}(x), 0\right\}$ for all $x \in X$.

Where \oplus and \ominus represents mset addition and mset subtraction resoectively. Let M be an mset drawn from a set X, then the support set of M denoted by M^{*} is a subset of X and $M^{*}=\left\{x \in X: C_{M}(x)>0\right\}$. i.e., M^{*} is an ordinary set and it is also called root set. The cardinality of an mset M drawn from a set X is denoted by $\operatorname{card}(M)$ or $|M|$ and is given by $|M|=\sum_{x \in X} C_{M}(x)$.

Remark $2.4[12,16]$ A domain X is defined as a set of elements from which msets are constructed. The mset space $[X]^{m}$ is the set of all msets whose elements are in X such that no element in the mset occurs more than m times. The mset space $[X]^{\infty}$ is the set of all msets over a domain X such that there is no limit on the number of occurrences of an element in an mset. If $X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\}$, then $[X]^{m}=\left\{\left\{m_{1} / x_{1}, m_{2} / x_{2}, \ldots, m_{k} / x_{k}\right\}\right.$: for $i=1,2, \ldots, k ; m_{i} \in$ $\{0,1,2, \ldots, m\}$.

Definition $2.5[12,16]$ Let X be a crisp set and $[X]^{m}$ be the mset space defined over X, then the complement M^{c} of M in $[X]^{m}$ is an element of $[X]^{m}$ such that $C_{M^{c}}(x)=m-C_{M}(x)$ for all $x \in X$.

Definition 2.6 (Different types of msets)
(i) [14] Whole submset: A submset P of an mset M (i.e., $P \subseteq M$) is a whole submset of M if each element in P has full multiplicity as in M. i.e., $C_{P}(x)=C_{M}(x)$ for all $x \in P^{*}$.
(ii) [14] Partial whole submset: A submset P of an mset M (i.e., $P \subseteq M$) is a partial whole submset of M if at least one element in P has the full multiplicity as in M. i.e., $C_{P}(x)=C_{M}(x)$ for some $x \in P^{*}$.
(iii) [14] Full submset: A submset P of an mset M (i.e., $P \subseteq M$) is a full submset of M if $P^{*}=M^{*}$ and $C_{P}(x) \leq C_{M}(x)$ for all $x \in P^{*}$.
(iv) [6] Single whole submset and single submset: A submset P of an mset M drawn from a set X is a single whole submset if $C_{P}(x)$ is either C_{M} or 0 for all $x \in P^{*}$ and $\left\{x \in P^{*}: C_{P}(x)=C_{M}(x)\right\}$ is a singleton set, say $\{a\}$, then let us denote it as $M_{\{a\}}(=P)$, i.e., a single whole submset is such a submset of an mset for which exactly one element of the support set belongs to it with the same count as in the mset.
An mset is called a single mset if it has a singleton support set and a submset P of an mset M drawn from a set X is a single submset if P is a single mset.
So, immediately, each mset can be expressed as a union of all its single whole submsets. Therefore, $M=\bigcup_{a \in M^{*}} M_{\{a\}}$.
In this connection, we note that single whole submsets are pair wise disjoint.
Definition 2.7 [6] (Axiomatic definition of multi-natural numbers)
Let $(N, 1, \sigma)$ be the unique ordinary natural number system defined by Peano. Then,
Axiom 1: For all $p, q \in N$, there exist a multi-natural number denoted by $\mathrm{N}_{\mathrm{p}}^{\mathrm{q}}$.
Axiom 2: Two multi-natural numbers N_{p}^{q} and N_{r}^{s} are equal if and only if $p=r$ and $q=s$.
Axiom 3: For any multi-natural number $N_{p}^{q}, p, q \in N$, there exist a multi-natural number $N_{\sigma(p)}^{q}$ (defined to be the support successor of N_{p}^{q}) and another there exist a multi-natural number $\mathrm{N}_{\mathrm{p}}^{\sigma(\mathrm{q})}$ (defined to be multiplicity successor of N_{p}^{q}).
Axiom 4: N_{1}^{q} for all $q \in N$ is not a support successor of any multi-natural number. Also, N_{p}^{1} for all $p \in N$ is not a multiplicity successor of any multi-natural number.

Axiom 5: Let $P\left(N_{p}^{q}\right)$ be any proposition involving N_{p}^{q}. Suppose that $P\left(N_{1}^{1}\right)$ is true. Also suppose that whenever $P\left(N_{p}^{q}\right)$ is true, then $P\left(N_{\sigma(p)}^{q}\right)$ and $P\left(N_{p}^{\sigma(q)}\right)$ both are also true. Then $P\left(N_{p}^{q}\right)$ is true for every multi-natural number N_{p}^{q}.
The set of all multi-natural numbers is denoted by $m(N) . p \in N$ and $q \in N$ are respectively the support and the multiplicity of a multi-natural number N_{p}^{q}.

Definition 2.8 [6] (Successor Functions) $S: m(N) \rightarrow m(N)$ defined by $S\left(N_{p}^{q}\right)=N_{\sigma(p)}^{q}$ is called the support successor function. $M: m(N) \rightarrow m(N)$ defined by $M\left(N_{p}^{q}\right)=N_{p}^{\sigma(q)}$ is called the multiplicity successor function. S and M both are one to one since σ is one to one.

Definition 2.9 [6] (Definition of addition) There exists a unique function $A: m(N) \times m(N) \rightarrow m(N)$ with the following properties:
Axiom 1: $A\left(N_{p}^{q}, N_{1}^{1}\right)=S\left(N_{p}^{q}\right), N_{p}^{q} \in m(N)$,
Axiom 2: $A\left(N_{p}^{q}, S\left(N_{n}^{m}\right)\right)=S\left(A\left(N_{p}^{q}, N_{n}^{m}\right)\right), N_{p}^{q}, N_{n}^{m} \in m(N)$,
Axiom 3: $\mathrm{A}\left(N_{p}^{q}, M\left(N_{n}^{m}\right)\right)=M^{(q)}\left(A\left(N_{p}^{q}, N_{n}^{m}\right)\right), N_{p}^{q}, N_{n}^{m} \in m(N)$ which is called addition of two multi-natural numbers and it is given by $A\left(N_{p}^{q}, N_{n}^{m}\right)=N_{p+n}^{q m}, N_{p}^{q}, N_{n}^{m} \in m(N) . A\left(N_{p}^{q}, N_{n}^{m}\right)$ is also denoted by $N_{p}^{q}+N_{n}^{m}$.
Proposition 2.10 [6] (Properties of addition)
$S\left(N_{p}^{q}\right)=N_{p}^{q}+N_{1}^{1}$, for all $N_{p}^{q} \in m(N)$,
(ii) $\quad N_{p}^{q}+\left(N_{k}^{t}+N_{1}^{1}\right)=\left(N_{p}^{q}+N_{k}^{t}\right)+N_{1}^{1}$ for all $N_{p}^{q}, N_{k}^{t} \in m(N)$,
(iii) $\quad N_{1}^{1}+N_{p}^{q}=N_{p}^{q}+N_{1}^{1}$ for all $N_{p}^{q} \in m(N)$,
(iv) $\left.\quad\left(N_{p}^{q}+N_{1}^{1}\right)+N_{k}^{t}=\left(N_{p}^{q}+N_{k}^{t}\right)+N_{1}^{1}\right)$ for all $N_{p}^{q}, N_{k}^{t} \in m(N)$,
(v) The commutative law of addition: $N_{p}^{q}+N_{k}^{t}=N_{k}^{t}+N_{p}^{q}$ for all $N_{p}^{q}, N_{k}^{t} \in m(N)$,
(vi) The associative law of addition: $\left(N_{p}^{q}+N_{k}^{t}\right)+N_{n}^{m}=N_{k}^{t}+\left(N_{p}^{q}+N_{n}^{m}\right)$ for all $N_{p}^{q}, N_{k}^{t}, N_{n}^{m} \in m(N)$,
(vii) The cancellation law for addition: $N_{p}^{q}+N_{k}^{t}=N_{p}^{q}+N_{n}^{m} \Rightarrow N_{k}^{t}=N_{n}^{m}$ for all $N_{p}^{q}, N_{k}^{t}, N_{n}^{m} \in m(N)$.

Example 2.11 For two multi-natural numbers N_{5}^{6} and $N_{3}^{4}, N_{5}^{6}+N_{3}^{4}=N_{5+3}^{6.4}=N_{8}^{24}$.
Definition 2.12 [6] (Definition of multiplication)
There exists a unique function $P: m(N) \times m(N) \rightarrow m(N)$ with the following properties:
(i) $\quad P\left(N_{p}^{q}, N_{1}^{1}\right)=N_{p}^{q}, N_{p}^{q} \in m(N)$,
$P\left(N_{p}^{q}, S\left(N_{n}^{m}\right)\right)=S^{(p)}\left(P\left(N_{p}^{q}, N_{n}^{m}\right)\right), N_{p}^{q}, N_{n}^{m} \in m(N)$,
(iii) $\quad P\left(N_{p}^{q}, M\left(N_{n}^{m}\right)\right)=M^{(p)}\left(P\left(N_{p}^{q}, N_{n}^{m}\right)\right), N_{p}^{q}, N_{n}^{m} \in m(N)$ which is called multiplication of two multinatural numbers and it is given by $P\left(N_{p}^{q}, N_{n}^{m}\right)=N_{p}^{q} \cdot N_{n}^{m}, N_{p}^{q}, N_{n}^{m} \in m(N) . P\left(N_{p}^{q}, N_{n}^{m}\right)$ is also denoted by $N_{p}^{q} . N_{n}^{m}$.
Properties 2.13. [6] (Properties of multiplication) $N_{p}^{q} \cdot N_{1}^{1}=N_{p}^{q}=N_{1}^{1} . N_{p}^{q}$, for all $N_{p}^{q} \in m(N)$,
(ii) The commutative law of multiplication: $N_{p}^{q} \cdot N_{k}^{t}=N_{k}^{t} \cdot N_{p}^{q}$ for all $N_{p}^{q}, N_{k}^{t} \in m(N)$,
(iii) The associative law of multiplication:: $\left(N_{p}^{q} \cdot N_{k}^{t}\right) \cdot N_{n}^{m}=N_{k}^{t} .\left(N_{p}^{q} \cdot N_{n}^{m}\right)$ for all $N_{p}^{q}, N_{k}^{t}, N_{n}^{m} \in m(N)$,
(iv) $\quad P$ does not obey distributive property over A. i.e., $N_{p}^{q} \cdot\left(N_{k}^{t}+N_{n}^{m}\right) \neq N_{p}^{q} \cdot N_{k}^{t}+N_{p}^{q} \cdot N_{n}^{m}, N_{p}^{q}, N_{k}^{t}, N_{n}^{m} \in$ $m(N)$.
Example 2.14. For two multi-natural numbers N_{5}^{6} and $N_{3}^{4}, N_{5}^{6} \cdot N_{3}^{4}=N_{5.3}^{6.4}=N_{15}^{24}$.
Definition 2.15. [6] (Order on $m(N)$) For $N_{p}^{q}, N_{n}^{m} \in m(N), N_{p}^{q}=N_{n}^{m}$ if and only if ($p=m$ as well as $q=n$). Also, for $N_{p}^{q}, N_{n}^{m} \in m(N), N_{p}^{q}$ is greater than N_{n}^{m}, i.e., $N_{p}^{q}>N_{n}^{m}$ if there exists $N_{r}^{s} \in m(N)$ such that $N_{p}^{q}=N_{n}^{m}+$ $N_{r}^{s}\left(=N_{n+r}^{m s}\right)$, i.e., if $(p>n$ as well as $m \mid q)$. Again, N_{p}^{q} is greater than or equal to N_{n}^{m} and we write $N_{p}^{q} \geq N_{n}^{m}$ if $N_{p}^{q}>N_{n}^{m}$ or $N_{p}^{q}=N_{n}^{m}$, i.e., if $(p>n$ as well as $m \mid q)$ or $(p=n$ as well as $q=m)$. The relation \geq defined on $m(N)$ is a partial order relation which is not total.

Definition 2.16. [6] (Multi number of elements in a multiset) Let N be a single mset. Also, let x is the only element of N with $C_{N}(x)=n$. Then, we define N_{1}^{n} as the multi number of elements in N.Next, we consider an mset M whose support $N^{*}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a finite set and multiplicity of each of its elements is finite and is given by the count function as $C_{N}\left(x_{i}\right)=t_{i}, i=1,2, \ldots, n$. Then we define the multi number of elements in M as the sum of the multi numbers of the elements in all its single whole submsets, i.e., $N_{1}^{t_{1}}+N_{1}^{t_{2}}+\cdots N_{1}^{t_{n}}=N_{n}^{t_{1} t_{2} \ldots t_{n}}$.
Example 2.17.
(i) The multi number of elements in the multiset $\{a, a, a\}$ is N_{1}^{3}.
(ii) The multi number of elements in the multiset $\{b, b\}$ is N_{1}^{2}.
(iii) The multi number of elements in the multiset $\{a, a, a, b, b, c, c\}$ is $N_{1}^{3}+N_{1}^{2}+N_{1}^{2}=N_{2}^{6}+N_{1}^{2}=N_{3}^{12}$.
(iv) The multi number of elements in the multiset $\{a, a, b, c\}$ is $N_{1}^{12}+N_{1}^{1}+N_{1}^{1}=$ $N_{2}^{12}+N_{1}^{1}=N_{3}^{12}$.
(v) The multi number of roots of the equation $(x-1)^{2}(x-2)^{3}=0$ is $N_{1}^{2}+N_{1}^{3}=N_{2}^{6}$.

Remark 2.18. Now we shall represent multi-integer system in terms of multi-natural numbers that we have already constructed in a previous paper [8]. First of all, we shall introduce the concept of multi-difference system together with some binary operations and order relation. Let us now introduce the following binary relation on $m(N) \times$ $m(N)$:

Definition 2.19. [7] For $\left(N_{a}^{b}, N_{c}^{d}\right),\left(N_{p}^{q}, N_{r}^{s}\right) \in m(N) \times m(N)$, we say $\left(N_{a}^{b}, N_{c}^{d}\right)$ is equivalent to $\left(N_{p}^{q}, N_{r}^{s}\right)$ and we write $\left(N_{a}^{b}, N_{c}^{d}\right) \sim\left(N_{p}^{q}, N_{r}^{s}\right)$ if and only if $N_{a}^{b}+N_{r}^{s}=N_{c}^{d}+N_{p}^{q}$.

Theorem 2.20. [7] The relation \sim is an equivalence relation defined on $m(N) \times m(N)$.
Remark 2.21. [7] The set of all equivalence classes of $m(N) \times m(N)$ is denoted by $m_{d}(Z)$ and is called multidifference system. An element $\left[\left(N_{a}^{b}, N_{c}^{d}\right)\right]$ of $m_{d}(Z)$ is simply denoted by $\left[N_{a}^{b}, N_{c}^{d}\right]$ and $\left[N_{a}^{b}, N_{c}^{d}\right]=\left[N_{p}^{q}, N_{r}^{s}\right]$ if and only if $N_{a}^{b}+N_{r}^{s}=N_{c}^{d}+N_{p}^{q}$.

Remark 2.22. [7] For $\left[N_{a}^{b}, N_{c}^{d}\right],\left[N_{p}^{q}, N_{r}^{s}\right] \in m_{d}(Z),\left[N_{a}^{b}, N_{c}^{d}\right]=\left[N_{p}^{q}, N_{r}^{s}\right] \Leftrightarrow a-c=p-r$ and $\frac{b}{d}=\frac{q}{s}$.
Lemma 2.23. [7] $\left[N_{a}^{b}, N_{c}^{d}\right]=\left[N_{a}^{b}+N_{k}^{t}, N_{c}^{d}+N_{k}^{t}\right]=\left[N_{k}^{t}+N_{a}^{b}, N_{k}^{t}+N_{c}^{d}\right]$ for all $\left[N_{a}^{b}, N_{c}^{d}\right],\left[N_{p}^{q}, N_{r}^{s}\right] \in m_{d}(Z)$.
Definition 2.24. [7] (Addition on $m_{d}(Z)$) There exist a well-defined binary operation \oplus on $m_{d}(Z)$ defined by $\left[N_{a}^{b}, N_{c}^{d}\right] \oplus\left[N_{p}^{q}, N_{r}^{s}\right]=\left[N_{a}^{b}+N_{p}^{q}, N_{c}^{d}+N_{r}^{s}\right],\left[N_{a}^{b}, N_{c}^{d}\right],\left[N_{p}^{q}, N_{r}^{s}\right] \in m_{d}(Z)$.

Proposition 2.25. [7] (Properties of $m_{d}(Z)$)
(i) $\quad \oplus$ is commutative on $m_{d}(Z)$.
(ii) $\quad \oplus$ is associative on $m_{d}(Z)$.
(iii) $\left[N_{1}^{1}, N_{1}^{1}\right]$ is the identity element in $m_{d}(Z)$ for \oplus.
(iv) For each $\left[N_{a}^{b}, N_{c}^{d}\right] \in m_{d}(Z)$, its \oplus - inverse exists and is given by $\left[N_{c}^{d}, N_{a}^{b}\right] \in m_{d}(Z)$ such that $\left[N_{a}^{b}, N_{c}^{d}\right] \oplus\left[N_{c}^{d}, N_{a}^{b}\right]=\left[N_{1}^{1}, N_{1}^{1}\right]$.

Remark 2.26. [7] $\left(m_{d}(Z), \oplus\right)$ is a commutative group.
Remark 2.27. [7] $\left[N_{a}^{b}, N_{c}^{d}\right] \oplus\left[N_{p}^{q}, N_{r}^{s}\right]=\left[N_{a+p}^{b q}, N_{c+r}^{d s}\right],\left[N_{a}^{b}, N_{c}^{d}\right],\left[N_{p}^{q}, N_{r}^{s}\right] \in m_{d}(Z)$.
Definition 2.28. [9] (Multiplication on $m_{d}(Z)$) There exists a well-defined binary operation \odot on $m_{d}(Z)$ defined by $\left[N_{a}^{b}, N_{c}^{d}\right] \odot\left[N_{p}^{q}, N_{r}^{s}\right]=\left[N_{a p+c r}^{b q}, N_{a r+c p}^{d s}\right],\left[N_{a}^{b}, N_{c}^{d}\right],\left[N_{p}^{q}, N_{r}^{s}\right] \in m_{d}(Z)$.

Proposition 2.29. [7] (Properties of multiplication on $m_{d}(Z)$)
(i) \odot is commutative on $m_{d}(Z)$.
(ii) \odot is associative on $m_{d}(Z)$.
(iii) The identity element exists for \odot in $m_{d}(Z)$ and is $\left[N_{2}^{1}, N_{1}^{1}\right]$.
(iv) $\quad\left[N_{a}^{1}, N_{b}^{1}\right] \odot\left(\left[N_{p}^{q}, N_{r}^{s}\right] \oplus\left[N_{x}^{y}, N_{z}^{t}\right]\right)=\left(\left[N_{a}^{1}, N_{b}^{1}\right] \odot\left[N_{p}^{q}, N_{r}^{s}\right]\right) \oplus\left(\left[N_{a}^{1}, N_{b}^{1}\right] \odot\left[N_{x}^{y}, N_{z}^{t}\right]\right)$.
(v) (Remark on distributive property) $\left[N_{a}^{b}, N_{c}^{d}\right] \odot\left(\left[N_{p}^{q}, N_{r}^{s}\right] \oplus\left[N_{x}^{y}, N_{z}^{t}\right]\right) \neq\left(\left[N_{a}^{b}, N_{c}^{d}\right] \odot\left[N_{p}^{q}, N_{r}^{s}\right]\right) \oplus$ ($\left[N_{a}^{b}, N_{c}^{d}\right] \odot\left[N_{x}^{y}, N_{z}^{t}\right]$) in general.
Actually, $\left[N_{a}^{b}, N_{c}^{d}\right] \odot\left(\left[N_{p}^{q}, N_{r}^{s}\right] \oplus\left[N_{x}^{y}, N_{z}^{t}\right]\right)=\left[N_{a}^{b}, N_{c}^{d}\right] \odot\left[N_{p+x}^{q y}, N_{r+z}^{s t}\right]=$ $\left[N_{a p+a x+c r+c z}^{b a y}, N_{a r+a z+c p+c x}^{d s t}\right]$.
But, $\left(\left[N_{a}^{b}, N_{c}^{d}\right] \odot\left[N_{p}^{q}, N_{r}^{s}\right]\right) \oplus\left(\left[N_{a}^{b}, N_{c}^{d}\right] \odot\left[N_{x}^{y}, N_{z}^{t}\right]\right)=\left[N_{a p+c r}^{b q}, N_{a r+c p}^{d s}\right] \oplus\left[N_{a x+c z}^{b y}, N_{a z+c x}^{d t}\right]=$ $\left[N_{a p+c r+a x+c z}^{b^{2} q y}, N_{a r+c p+a z+c x}^{d^{2} s t}\right]=\left[N_{2}^{b}, N_{1}^{d}\right] \odot\left[N_{a p+c r+a x+c z}^{b q y}, N_{a r+c p+a z+c x}^{d s t}\right]$.
(vi) (Multi-distributive property) For all $\left[N_{a}^{b}, N_{c}^{d}\right],\left[N_{p}^{q}, N_{r}^{s}\right],\left[N_{x}^{y}, N_{z}^{t}\right] \in m_{d}(Z),\left[N_{2}^{b}, N_{1}^{d}\right] \odot\left(\left[N_{a}^{b}, N_{c}^{d}\right] \odot\right.$ $\left.\left(\left[N_{p}^{q}, N_{r}^{s}\right] \oplus\left[N_{x}^{y}, N_{z}^{t}\right]\right)\right)=\left(\left[N_{a}^{b}, N_{c}^{d}\right] \odot\left[N_{p}^{q}, N_{r}^{s}\right]\right) \oplus\left(\left[N_{a}^{b}, N_{c}^{d}\right] \odot\left[N_{x}^{y}, N_{z}^{t}\right]\right)$. Let us define the above property to be the multi-distributive property of \odot over \oplus on $m_{d}(Z)$.

Definition 2.30. [7] The subset $m_{d}\left(N_{Z}\right)$ of $m_{d}(Z)$ is defined by $m_{d}\left(N_{Z}\right)=\left\{\left[N_{n}^{m}+N_{1}^{1}, N_{1}^{1}\right] \in m_{d}(Z): N_{n}^{m} \in\right.$ $m(N)\}$.

Proposition 2.31. [7] $\left[N_{u}^{v}, N_{w}^{x}\right] \in m_{d}\left(N_{Z}\right) \Leftrightarrow u-w \in N$ and $x \mid v$.
Theorem 2.32. [7] For the set $m_{d}\left(N_{Z}\right)$ the following hold:
(i) $\quad\left(m_{d}\left(N_{Z}\right), \oplus\right)$ is a sub semi group of $\left(m_{d}(Z), \oplus\right)$.
(ii) $\quad\left(m_{d}\left(N_{Z}\right), \odot\right)$ is a sub semi group of $\left(m_{d}(Z), \odot\right)$.
(iii) $\quad\left(m_{d}\left(N_{Z}\right), \oplus\right)$ is isomorphic to $(m(N),+)$ and $\left(m_{d}\left(N_{Z}\right), \odot\right)$ is isomorphic to $(m(N), \cdot)$ as semigroup under the same isomorphism.
(iv) For every $x \in m_{d}(Z)$, there exist $y, z \in m_{d}\left(N_{Z}\right)$ such that $x=y \oplus(-z)$.

Definition 2.33. [7] Each member of $m_{d}(Z)$ is called a multi-integer. Each member of $m_{d}\left(N_{Z}\right)$ is called a positive multi-integer.

Remark 2.34. [7] $\left(m_{d}\left(N_{Z}\right), \oplus\right)$ is isomorphic to $(m(N),+)$ and $\left(m_{d}\left(N_{Z}\right), \odot\right)$ is isomorphic to $(m(N), \cdot)$ as semigroup under the same isomorphism. So, each member of $m(N)$ is also called a positive multi-integer.

Definition 2.35. [7] The subset $\left(-m_{d}\left(N_{Z}\right)\right)$ of $m_{d}(Z)$ is defined by $\left(-m_{d}\left(N_{Z}\right)\right)=\left\{\left[N_{c}^{d}, N_{a}^{b}\right]:\left[N_{a}^{b}, N_{c}^{d}\right] \in\right.$ $\left.m_{d}\left(N_{Z}\right)\right\}$. Every member of $\left(-m_{d}\left(N_{Z}\right)\right)$ is called a negative multi-integer.

Definition 2.36. [7] (Positive multi-integer, negative multi-integer, zero, special multi-integer, multi-zero) $m_{d}\left(Z_{S}\right)=m_{d}(Z)-\left(m_{d}\left(N_{Z}\right) \cup\left(-\left(m_{d}\left(N_{Z}\right)\right) \cup\left\{\left[N_{1}^{1}, N_{1}^{1}\right]\right\}\right) .\left[N_{1}^{1}, N_{1}^{1}\right]\right.$ is called zero and every member of $m_{d}\left(Z_{S}\right)$ is called a special multi-integer. Any multi-integer of the form $\left[N_{a}^{p}, N_{a}^{q}\right]$ is called a multi-zero which is obviously a special multi-integer or zero.

Theorem 2.37. [7] If product of two multi-integer be zero, then at least one of them must be a multi-zero.
Definition 2.38. [7] (Order on $m_{d}(Z)$) Let $\left[N_{a}^{b}, N_{c}^{d}\right],\left[N_{p}^{q}, N_{r}^{s}\right] \in m_{d}(Z)$. Then $\left[N_{a}^{b}, N_{c}^{d}\right]>\left[N_{p}^{q}, N_{r}^{s}\right]$ if and only if $\left[N_{a}^{b}, N_{c}^{d}\right] \oplus\left(-\left[N_{p}^{q}, N_{r}^{s}\right]\right) \in m_{d}\left(N_{Z}\right)$. i.e., there exist $\left[N_{n}^{m}+N_{1}^{1}, N_{1}^{1}\right] \in m_{d}\left(N_{Z}\right)$ such that $\left[N_{a}^{b}, N_{c}^{d}\right] \oplus$ $\left(-\left[N_{p}^{q}, N_{r}^{s}\right]\right)=\left[N_{n}^{m}+N_{1}^{1}, N_{1}^{1}\right]$ or, $\left[N_{a}^{b}, N_{c}^{d}\right]=\left[N_{p}^{q}, N_{r}^{s}\right] \oplus\left[N_{n}^{m}+N_{1}^{1}, N_{1}^{1}\right]$. Also, $\left[N_{a}^{b}, N_{c}^{d}\right] \geq\left[N_{p}^{q}, N_{r}^{s}\right]$ if and only if $\left[N_{a}^{b}, N_{c}^{d}\right]>\left[N_{p}^{q}, N_{r}^{s}\right]$ or $\left[N_{a}^{b}, N_{c}^{d}\right]=\left[N_{p}^{q}, N_{r}^{s}\right]$.

Remark 2.39. [7] \geq defined on $m_{d}(Z)$ is a partial order relation. So, $\left(m_{d}(Z), \geq\right)$ is a poset but not a chain. Immediately, $\left(m_{d}(Z), \geq\right)$ do not obey law of trichotomy. e.g., $\left[N_{2}^{3}+N_{1}^{1}, N_{1}^{1}\right]$ and $\left[N_{2}^{2}+N_{1}^{1}, N_{1}^{1}\right]$ are two incomparable elements of ($\left.m_{d}(Z), \geq\right)$.

Proposition 2.40. [7] (Properties of order)
(i) \quad For $\left[N_{a}^{b}, N_{c}^{d}\right],\left[N_{p}^{q}, N_{r}^{s}\right] \in m_{d}(Z),\left[N_{a}^{b}, N_{c}^{d}\right]>\left[N_{p}^{q}, N_{r}^{s}\right] \Rightarrow a-c>p-r$ and $d q \mid b s$ and conversely.
(ii) \quad For all $\left[N_{a}^{b}, N_{c}^{d}\right] \in m_{d}(Z),\left[N_{a}^{b}, N_{c}^{d}\right] \ngtr\left[N_{a}^{b}, N_{c}^{d}\right]$.
(iii) \quad For $\left[N_{a}^{b}, N_{c}^{d}\right],\left[N_{e}^{f}, N_{g}^{h}\right] \in m_{d}(Z),\left[N_{a}^{b}, N_{c}^{d}\right]>\left[N_{e}^{f}, N_{g}^{h}\right] \Leftrightarrow\left[N_{a}^{b}, N_{c}^{d}\right] \oplus\left[N_{u}^{v}, N_{w}^{x}\right]>\left[N_{e}^{f}, N_{g}^{h}\right]$ for all $\left[N_{u}^{v}, N_{w}^{x}\right] \in m_{d}\left(N_{Z}\right)$.
(iv) \quad For $\left[N_{a}^{b}, N_{c}^{d}\right],\left[N_{e}^{f}, N_{g}^{h}\right],\left[N_{u}^{v}, N_{w}^{x}\right],\left[N_{p}^{q}, N_{r}^{s}\right] \in m_{d}(Z),\left[N_{a}^{b}, N_{c}^{d}\right]>\left[N_{e}^{f}, N_{g}^{h}\right]$ and $\left[N_{u}^{v}, N_{w}^{x}\right]>$ $\left[N_{p}^{q}, N_{r}^{s}\right] \Rightarrow\left[N_{a}^{b}, N_{c}^{d}\right] \oplus\left[N_{u}^{v}, N_{w}^{x}\right]>\left[N_{e}^{f}, N_{g}^{h}\right] \oplus\left[N_{p}^{q}, N_{r}^{s}\right]$.
(v) \quad For $\left[N_{a}^{b}, N_{c}^{d}\right],\left[N_{e}^{f}, N_{g}^{h}\right] \in m_{d}(Z),\left[N_{a}^{b}, N_{c}^{d}\right] \geq\left[N_{e}^{f}, N_{g}^{h}\right] \Rightarrow\left[N_{a}^{b}, N_{c}^{d}\right] \oplus\left[N_{2}^{1}, N_{1}^{1}\right]>\left[N_{e}^{f}, N_{g}^{h}\right]$.
(vi) \quad For all $\left[N_{a}^{b}, N_{c}^{d}\right] \in m_{d}(Z),\left[N_{a}^{b}, N_{c}^{d}\right] \oplus\left[N_{e}^{f}, N_{g}^{h}\right]>\left[N_{a}^{b}, N_{c}^{d}\right]$ for all $\left[N_{e}^{f}, N_{g}^{h}\right] \in m_{d}\left(N_{Z}\right)$.
(vii) \quad For $\left[N_{a}^{b}, N_{c}^{d}\right],\left[N_{e}^{f}, N_{g}^{h}\right] \in m_{d}(Z),\left[N_{a}^{b}, N_{c}^{d}\right]>\left[N_{e}^{f}, N_{g}^{h}\right] \Leftrightarrow\left[N_{a}^{b}, N_{c}^{d}\right] \odot\left[N_{p}^{q}, N_{r}^{s}\right]>\left[N_{e}^{f}, N_{g}^{h}\right] \odot$ $\left[N_{p}^{q}, N_{r}^{s}\right]$ for all $\left[N_{p}^{q}, N_{r}^{s}\right] \in m_{d}\left(N_{Z}\right)$.

Definition 2.41. [7] (General multiset, Real multiset and Natural multiset)
Let X be a non-empty set. A general multiset (General mset in short) M drawn from X is characterized by a relation ρ_{M} between X and R (R being the set of all real numbers).

If $(x, r) \in \rho_{M}$ for some $x \in X$ and $r \in R-\{0\}$, then we represent it by writing $X_{x}^{r} \in M$.
(ii) Let X be a non-empty set. A real multiset (Real mset in short) M drawn from X is characterized by a function Count $_{M}$ or $C_{M}: X \rightarrow R$.
If $C_{M}(x)=r$ for some $x \in X$ and $r \in R-\{0\}$, then we represent it by writing $X_{x}^{r} \in M$. Also, we shall denote a real mset M drawn from X as $\left\{X_{x_{1}}^{k_{1}}, X_{x_{2}}^{k_{2}}, \ldots, X_{x_{n}}^{k_{n}}, \ldots\right\}$ where $C_{M}\left(x_{i}\right)=k_{i}, x_{i} \in X$ and $r \in R-$ $\{0\}$.
(iii) Let X be a non-empty set. A natural multiset (Natural mset in short) M drawn from X is characterized by a function Count_{M} or $C_{M}: X \rightarrow N \cup\{0\}$.
If $C_{M}(x)=r$ for some $x \in X$ and $r \in N-\{0\}$, then we represent it by writing $X_{x}^{r} \in M$. Also, we shall denote a natural mset M drawn from X as $\left\{X_{x_{1}}^{k_{1}}, X_{x_{2}}^{k_{2}}, \ldots, X_{x_{n}}^{k_{n}}, \ldots\right\}$ where $C_{M}\left(x_{i}\right)=k_{i}, x_{i} \in X$ and $r \in N-\{0\} . k_{i} \in N-\{0\}$ is called the multiplicity of the element $x_{i} \in X$ in M.

Example 2.42. Consider the set $X=\{a, b, c\}$. Consider the relation ρ_{M} between X and R where
$\rho_{M}=\left\{\left(a, \frac{1}{4}\right),(b, 3),(b, \sqrt{2})\right\}$. Then ρ_{M} represents a general mset M drawn from X which is given by $\left\{X_{a}^{\frac{1}{4}}, X_{b}^{3}, X_{b}^{\sqrt{2}}\right\}$. Next consider the function $C_{M}: X \rightarrow R$ defined by $C_{M}(a)=\frac{1}{4}, C_{M}(b)=3, C_{M}(c)=0$. Then C_{M} represents a real mset M drawn from X which is given by $M=\left\{X_{a}^{\frac{1}{4}}, X_{b}^{3}\right\}$. Finally, consider the function $C_{M}: X \rightarrow N \cup\{0\}$ defined by $C_{M}(a)=1, C_{M}(b)=3, C_{M}(c)=0$. Then C_{M} represents a natural mset M drawn from X which is given by $M=$ $\left\{X_{a}^{1}, X_{b}^{3}\right\}$. It is worth noting that $m(N)$ is a general mset drawn from N.

Remark 2.43. [7]

(i) Clearly, general mset is a generalization of real mset. Also, real mset is a generalization of natural mset.
(ii) Let A^{\prime} and B^{\prime} be two general msets drawn from the sets A and B respectively. If for $a \in A \cap B$ and $r \in R-\{0\}, A_{a}^{r} \in A^{\prime}$ and $B_{a}^{r} \in B^{\prime}$, then we shall consider $A_{a}^{r}=B_{a}^{r}$.
(iii) We note that for all $i, j \in N, Z_{j}^{i}$ and N_{j}^{i} both are immediately identical. i.e., $Z_{j}^{i}=N_{j}^{i}$ for all $i, j \in N$.
(iv) Let X be a non-empty set. Let us denote the general mset drawn from X and characterized by the universal relation between X and R as $\pi(X)$ and accordingly denote the relation $X \times R$ between X and R as $\rho_{\pi}(X)$ as the most general mset drawn from X.

Theorem 2.44. [7] (Isomorphism theorem) Let us consider the general mset $m(\hat{Z})$ drawn from Z characterized by universal relation $\rho_{m(\hat{Z})}=Z \times Q^{+}\left(Q^{+}\right.$is the set of all positive rational numbers). i.e., $Z_{p}^{q} \in m(\hat{Z})$ if and only if $p \in Z$ and $q \in Q^{+}$. Consider two binary operations $\widehat{\oplus}$ and $\widehat{\odot}$ on $m(\hat{Z})$ as follows: for $Z_{p}^{q}, Z_{r}^{s} \in m(\hat{Z}), Z_{p}^{q} \widehat{\oplus} Z_{r}^{s}=$ $Z_{p+r}^{q s}$ and $Z_{p}^{q} \widehat{\bigodot} Z_{r}^{s}=Z_{p r}^{q s}$. Also define $\widehat{\Sigma}$ on $m(\hat{Z})$ as follows: for $Z_{p}^{q}, Z_{r}^{s} \in m(\hat{Z}), Z_{p}^{q} \widehat{>} Z_{r}^{s}$ if and only if there exists $Z_{a}^{b} \in m(\hat{Z})$ with $a, b \in N$ such that $Z_{p}^{q}=Z_{r}^{s} \widehat{\oplus} Z_{a}^{b}$. For $Z_{p}^{q}, Z_{r}^{s} \in m(\hat{Z})$ define $Z_{p}^{q}=Z_{r}^{s}$ if and only if $p=r$ and $q=s$. Also, for $Z_{p}^{q}, Z_{r}^{s} \in m(\hat{Z})$ define $Z_{p}^{q} \geqq Z_{r}^{s}$ if and only if $Z_{p}^{q} \widehat{S} Z_{r}^{s}$ or $Z_{p}^{q}=Z_{r}^{s}$. Then $\left(m_{d}(Z), \oplus, \odot, \geq\right)$ $(m(\hat{Z}), \widehat{\oplus}, \widehat{\odot}, \widehat{\geq})$ are isomorphic as the mapping $\tau: m_{d}(Z) \rightarrow m(\hat{Z})$ defined by $\tau\left(\left[N_{a}^{b}, N_{c}^{d}\right]\right)=Z_{a-c}^{\frac{b}{d}},\left[N_{a}^{b}, N_{c}^{d}\right] \in$ $m_{d}(Z)$ is an isomorphism.

Remark 2.45. [7] (Properties of $(m(\hat{Z}), \widehat{\oplus}, \widehat{\odot}, \widehat{\Omega})$)

Since $\left(m_{d}(Z), \oplus, \odot, \geq\right)$ and $(m(\hat{Z}), \widehat{\oplus}, \widehat{\odot}, \widehat{\Omega})$ are isomorphic, so $(m(\hat{Z}), \widehat{\oplus})$ is a commutative group, $(m(\hat{Z}), \widehat{\bigodot})$ is a commutative monoid and $\widehat{\bigodot}$ obeys multi-distributive property over $\widehat{\oplus}$. Also, $(m(\hat{Z}), \Sigma)$ is a poset. Moreover, $\mathbb{\Sigma}$ defined on $m(\hat{Z})$ is an extension of \geq defined on $m(N)$.

Remark 2.46. [7] ($m(\hat{Z}), \widehat{\oplus}$) is a commutative group and $(m(\hat{Z}), \widehat{\odot})$ is a commutative monoid but $(m(\hat{Z}), \widehat{\oplus}, \widehat{\bigodot})$ is not a ring, since $\widehat{\odot}$ can not be distributed over $\widehat{\oplus}$. But $\widehat{\bigodot}$ obeys multi-distributive property over $\widehat{\oplus}$.

Definition 2.47. [7] (General mset drawn from a ring) Let ($X,+, ;$) be a ring. Let M be a general mset drawn from X. Consider two functions $\oplus: M \times M \rightarrow \pi(X)$ and $\odot: M \times M \rightarrow \pi(X)$ defined as follows: for $X_{a}^{r}, X_{b}^{s} \in M, X_{a}^{r} \oplus$ $X_{b}^{s}=X_{a+b}^{r s}$ and $X_{a}^{r} \odot X_{b}^{s}=X_{a b}^{r s} . \oplus$ and \odot respectively called m -addition and m-multiplication defined on M induced by the ring ($X,+, \cdot$). Also, let M be closed under \oplus and \odot. Then immediately, \oplus obeys commutative and associative property on M. So, (M, \oplus) is a commutative semi group. Also, immediately, \odot obeys associative property on M. So, (M, \odot) is a semi group. M is defined to be a general mset drawn from the ring $(X,+, \cdot)$.

Theorem 2.48. [7] Let M be a general mset drawn from a ring $(X,+$,$) . Then, \odot$ obey multi-distributive property over \oplus.

Definition 2.49. [7] (Multi-ring) Let M be a general mset drawn from a ring ($X,+;)$. Let \oplus and \odot are called maddition and m -multiplication respectively defined on M induced by the ring ($X,+, \cdot)$. If the structure (M, \oplus, \odot) satisfies the followings:
(1) (M, \oplus) is an abelian group
(2) (M, \odot) is a semigroup and
(3) \odot is distributive over \oplus, then (M, \oplus, \odot) is called a multi-ring induced by the ring $(X,+, \cdot)$.

Theorem 2.50. [7]) Let M be a general mset drawn from a ring ($X,+, \cdot$). Let \oplus and \odot are called m-addition and mmultiplication respectively defined on M induced by the ring $(X,+, \cdot)$. Then (M, \oplus, \odot) will be a multi-ring induced by the ring $(X,+, \cdot)$ if and only if the following conditions are satisfied:
(1) There exists $X_{\theta}^{1} \in M(\theta$ being the zero element in the ring $(X,+, \cdot))$.
(2) For $a \in X$ and $r \in R-\{0\}, X_{a}^{r} \in M \Rightarrow X_{(-a)}^{\frac{1}{r}} \in M$.

Example 2.51. [7]

(i) Let us consider the ring $(X,+, \cdot)$ where $X=Z_{4}$, the set of all residue classes modulo 4, also, + and \cdot are respectively addition and multiplication modulo 4 . Consider the general mset M characterized by the relation $\rho_{M}=X \times G$ where $G=\left\{2^{n}: n \in Z\right\}$ between X and G. Then, for all $a \in X$ and for all $r \in G$, $X_{a}^{r} \in M$. Let \oplus and \odot are m-addition and m-multiplication respectively defined on M induced by the ring $(X,+, \cdot)$. Then (M, \oplus, \odot) forms a multi-ring induced by the ring $(X,+, \cdot)$.
(ii) $\quad(m(\hat{Z}), \widehat{\oplus}, \widehat{\odot})$ is a a multi-ring induced by the ring $(Z,+, \cdot)$.

Remark 2.52. [7] Let (M, \oplus, \odot) be a multi-ring induced by the ring $(X,+, ;)$ where M is a general mset drawn from the ring $(X,+, \cdot) . \theta$ be the zero element in the ring $(X,+$,$) . Then X_{\theta}^{1}$ must be the zero element in (M, \oplus, \odot). Let us also define any element in M of the form X_{θ}^{r} for some $r \in R-\{0\}$ to be the multi-zero elements of M such that the product of any element of the multi-ring with a multi-zero element of the same is again a multi zero of the multiring. Clearly, the zero element in a multi-ring is a multi-zero element.

Remark 2.53. [7] In the multi-ring $(m(\hat{Z}), \widehat{\oplus}, \widehat{\odot})$ induced by the ring $(Z,+, \cdot)$, the non-zero multi-zeros are only divisors of zero.

Theorem .2.54. [7] In the multi-ring, the non-zero multi-zero elements are divisors of zero.
Definition 2.55. [7] A multi-ring is said to have no non-multi-zero divisors of zero if its non-zero multi-zero elements are the only divisors of zero.

Example 2.56. [7] The multi-ring $(m(\hat{Z}), \widehat{\oplus}, \widehat{\odot})$ induced by the ring $(Z,+$,$) has no non-multi-zero divisors of zero.$

Remark.2.57. [7] Let (M, \oplus, \odot) be a multi-ring induced by the ring $(X,+, \cdot)$ with divisors of zero. Let θ be the zero element of the ring $(X,+, \cdot)$. As $(X,+, \cdot)$ is a ring with divisors of zero, so, there exists two non zero elements a and b in the ring $(X,+, \cdot)$ such that $a \cdot b=\theta$. Now, for some $r, s \in R-\{0\}$, let $X_{a}^{r}, X_{b}^{s} \in M$. Then, $X_{a}^{r} \odot X_{b}^{s}=X_{a b}^{r s}=$ $X_{\theta}^{r s} \in M$ (since M is closed under \odot). Again, X_{a}^{r} and X_{b}^{s} both are non-zero non-multi-zero elements of (M, \oplus, \odot). So, X_{a}^{r} and X_{b}^{s} are non-multi-zero divisors of the multi-ring (M, \oplus, \odot).

Example 2.58. [7] Consider the multi-ring (M, \oplus, \odot) induced by the ring $(X,+, \cdot)$ as mentioned in (i) of Example 2.51. where $X=Z_{4}$. Then, for $X_{[2]}^{2}, X_{[2]}^{\frac{1}{2}} \in M, X_{[2]}^{2} \odot X_{[2]}^{\frac{1}{2}}=X_{[0]}^{1}$ which is the zero element of the multi-ring (M, \oplus, \odot). Also, $X_{[2]}^{2}$ and $X_{[2]}^{\frac{1}{2}}$ are the non-zero non-multi-zero elements of the multi-ring (M, \oplus, \odot). So, the multiring (M, \oplus, \odot) contains multi-divisors of zero.

Definition 2.59. [7] (Multi-integral domain) Let M be a general mset drawn from a ring ($X,+$,) (or, an integral domain $(X,+, \cdot))$. Let \oplus and \odot are m-addition and m-multiplication respectively defined on M induced by the ring $(X,+, \cdot)$ (or, an integral domain $(X,+, \cdot)$). If the structure (M, \oplus, \odot) satisfies the followings:
(1) (M, \oplus) is a commutative group
(2) (M, \odot) is a commutative monoid
(3) \odot is distributive over \bigoplus and
(4) M has no non-multi-zero divisors of zero, then (M, \oplus, \odot) is called a multi-integral domain induced by the ring $(X,+, \cdot)$ (or, the integral domain $(X,+, \cdot)$).
It is worth noting that if M be a general mset drawn from an integral domain $(X,+, \cdot)$ which is closed under \oplus and \odot, then immediately (M, \oplus, \odot) has no non-multi-zero divisors of zero.
Example 2.60. [7] $(m(\hat{Z}), \widehat{\oplus}, \widehat{\odot})$ is a multi-integral domain induced by the integral domain $(Z,+, \cdot)$.
Example 2.61. [7] The multi-ring (M, \oplus, \odot) induced by the ring $(X,+, \cdot)$ as mentioned in Example 2.51. and Example 2.58. where $X=Z_{4}$ is not a multi-integral domain.
Remark 2.62. [7] $(m(\hat{Z}), \widehat{\oplus}, \widehat{\bigodot}, \widehat{\Omega})$ is a partially ordered multi-integral domain induced by the integral domain ($Z,+, \cdot$) .

Definition 2.63. [7] (Definition of Multi-integer system) A partially ordered multi-integral domain (M, \oplus, \odot, \geq) is called a multi-integer system if there exists a subset N_{M} of M such that
(1) Both $\left(N_{M}, \oplus\right)$ and $\left(N_{M}, \odot\right)$ are semigroups and under the same isomorphism $\emptyset: N_{M} \rightarrow N$ we have $\left(N_{M}, \oplus\right) \cong(\mathrm{m}(\mathrm{N}),+)$ and $\left(N_{M}, \odot\right) \cong(\mathrm{m}(\mathrm{N}), \cdot)$ as semi group. Furthermore, for every $x, y \in N_{M}$, we have $x>y \Rightarrow \emptyset(x)>\emptyset(y)$.
(2) For every $x \in M$, there exists $y, z \in N_{M}$ such that $x=y \oplus(-z)$.

Theorem 2.64. [7] (Existence and uniqueness of multi-integer system) Multi-integer system exists and any two multi-integer systems are isomorphic.
Remark 2.65. [7] $(m(\hat{Z}), \widehat{\oplus}, \widehat{\odot}, \widehat{\Sigma})$ multi-integer system. Also, multi-integer system is unique.
So, $(m(\hat{Z}), \widehat{\oplus}, \widehat{\odot}, \widehat{\Sigma})$ can be considered as the multi-integer system. Any multi-integer system is afterwards denoted by $(m(Z), \oplus, \odot)$ where $m(Z)$ is the general mset drawn from Z characterized by the universal relation $Z \times Q^{+}$, i.e., $Z_{p}^{q} \in m(Z)$ if and only if $p \in Z$ and $q \in Q^{+}$. Binary operations \bigoplus and \odot are defined on $m(Z)$ as follows: for $Z_{p}^{q}, Z_{r}^{s} \in m(Z), Z_{p}^{q} \oplus Z_{r}^{s}=Z_{p+r}^{q s}$ and $Z_{p}^{q} \odot Z_{r}^{s}=Z_{p r}^{q s} .>$ is defined on $m(Z)$ as follows: for $Z_{p}^{q}, Z_{r}^{s} \in m(Z)$, $Z_{p}^{q}>Z_{r}^{s}$ if and only if there exists $Z_{a}^{b} \in m(Z)$ with $a, b \in N$ such that $Z_{p}^{q}=Z_{r}^{s} \oplus Z_{a}^{b}$. Also, for $Z_{p}^{q}, Z_{r}^{s} \in m(Z)$, $Z_{p}^{q} \geq Z_{r}^{s}$ if and only if $Z_{p}^{q}>Z_{r}^{s}$ or $Z_{p}^{q}=Z_{r}^{s}$. The copy of the multi-natural numbers embedded in $m(Z)$ is still denoted by $m(N)$ and it has all the properties that we have proven in paper [6] if we consider it in isolation. Example 2.66. Consider three multi-integers $Z_{5}^{3}, Z_{3}^{4}, Z_{-3}^{\frac{3}{5}}$. Then $Z_{5}^{3} \oplus Z_{3}^{4}=Z_{5+3}^{3 \cdot 4}=Z_{8}^{12}$ and $Z_{3}^{4} \odot Z_{-3}^{\frac{3}{5}}=Z_{3 \cdot(-3)}^{4 \cdot \frac{3}{5}}$ $=Z_{-9}^{\frac{12}{5}}$.

III. The Multi-Fractional System

Here we shall represent multi-rational number system in terms of multi-integers that we have already constructed in a previous paper [7]. First of all, we shall introduce the concept of Multi-Fractional System together with some binary operations and order relations. Let us now introduce the following binary operation on $\mathrm{m}(\mathrm{Z}) \times(m(Z)-$
$\left.\left\{Z_{0}^{q}: q \in Q^{+}\right\}\right)$．Let us rename the set $\left(m(Z)-\left\{Z_{0}^{q}: q \in Q^{+}\right\}\right)$as $m\left(Z_{0}\right)$ and it is the set of all non－multi－zero multi－ integers．

Definition 3．1．For $\left(Z_{a}^{b}, Z_{c}^{d}\right),\left(Z_{p}^{q}, Z_{r}^{s}\right) \in m(Z) \times m\left(Z_{0}\right)$ ，we say $\left(Z_{a}^{b}, Z_{c}^{d}\right)$ is equivalent to $\left(Z_{p}^{q}, Z_{r}^{s}\right)$ and we write $\left(Z_{a}^{b}, Z_{c}^{d}\right) \sim\left(Z_{p}^{q}, Z_{r}^{s}\right)$ if and only if $Z_{a}^{b} \odot Z_{r}^{s}=Z_{c}^{d} \odot Z_{p}^{q}$ ．
Theorem 3．2．For $Z_{a}^{b} \in m\left(Z_{0}\right)$ and $Z_{p}^{q}, Z_{r}^{s} \in m(Z), Z_{a}^{b} \odot Z_{p}^{q}=Z_{a}^{b} \odot Z_{r}^{s} \Rightarrow Z_{p}^{q}=Z_{r}^{s}, m\left(Z_{0}\right)$ being the set of all non－multi－zero multi－integers．
Proof：$Z_{a}^{b} \odot Z_{p}^{q}=Z_{a}^{b} \odot Z_{r}^{s} \Rightarrow Z_{a p}^{b q}=Z_{a r}^{b s} \Rightarrow a p=a r$ and $b q=b s \Rightarrow p=r$ and $q=s$（Since，$Z_{a}^{b} \in m\left(Z_{0}\right)$ ，so， $a \neq 0$ and $b \neq 0) \Rightarrow Z_{p}^{q}=Z_{r}^{s}$ ．We can prove the second part in a similar argument．

Theorem 3．3．The relation \sim is an equivalence relation defined on $m(Z) \times m\left(Z_{0}\right)$ ．
Proof：Since for all $\left(Z_{a}^{b}, Z_{c}^{d}\right) \in m(Z) \times m\left(Z_{0}\right)$ ，we have $Z_{a}^{b} \odot Z_{c}^{d}=Z_{c}^{d} \odot Z_{a}^{b}$ ．So，for all $\left(Z_{a}^{b}, Z_{c}^{d}\right) \in m(Z) \times$ $m\left(Z_{0}\right),\left(Z_{a}^{b}, Z_{c}^{d}\right) \sim\left(Z_{a}^{b}, Z_{c}^{d}\right)$ ．Therefore，\sim is a reflexive relation on $m(Z) \times m\left(Z_{0}\right)$ ．
Next，for $\left(Z_{a}^{b}, Z_{c}^{d}\right),\left(Z_{p}^{q}, Z_{r}^{s}\right) \in m(Z) \times m\left(Z_{0}\right)$ ，let $\left(Z_{a}^{b}, Z_{c}^{d}\right) \sim\left(Z_{p}^{q}, Z_{r}^{s}\right)$ ．Then，$Z_{a}^{b} \odot Z_{r}^{s}=Z_{c}^{d} \odot Z_{p}^{q} \Rightarrow Z_{r}^{s} \odot Z_{a}^{b}=$ $Z_{p}^{q} \odot Z_{c}^{d} \Rightarrow\left(Z_{p}^{q}, Z_{r}^{s}\right) \sim\left(Z_{a}^{b}, Z_{c}^{d}\right)$ ．Therefore，\sim is a symmetric relation on $m(Z) \times m\left(Z_{0}\right)$ ．
Finally，for $\left(Z_{a}^{b}, Z_{c}^{d}\right),\left(Z_{p}^{q}, Z_{r}^{s}\right),\left(Z_{u}^{v}, Z_{w}^{x}\right) \in m(Z) \times m\left(Z_{0}\right)$ ，let $\left(Z_{a}^{b}, Z_{c}^{d}\right) \sim\left(Z_{p}^{q}, Z_{r}^{s}\right)$ also $\left(Z_{p}^{q}, Z_{r}^{s}\right) \sim\left(Z_{u}^{v}, Z_{w}^{x}\right)$ ．Then $Z_{a}^{b} \odot Z_{r}^{s}=Z_{c}^{d} \odot Z_{p}^{q}$ as well as $Z_{p}^{q} \odot Z_{w}^{x}=Z_{r}^{s} \odot Z_{u}^{v}$ ．Therefore，$\left(Z_{a}^{b} \odot Z_{r}^{s}\right) \odot Z_{w}^{x}=\left(Z_{c}^{d} \odot Z_{p}^{q}\right) \odot Z_{w}^{x}$ and $\left(Z_{p}^{q} \odot Z_{w}^{x}\right) \odot Z_{c}^{d}=\left(Z_{r}^{s} \odot Z_{u}^{v}\right) \odot Z_{c}^{d} \quad$ so \quad that $\quad\left(Z_{a}^{b} \odot Z_{r}^{s}\right) \odot Z_{w}^{x}=\left(Z_{c}^{d} \odot Z_{p}^{q}\right) \odot Z_{w}^{x}=Z_{c}^{d} \odot\left(Z_{p}^{q} \odot Z_{w}^{x}\right)=$ $\left(Z_{p}^{q} \odot Z_{w}^{x}\right) \odot Z_{c}^{d}=\left(Z_{r}^{s} \odot Z_{u}^{v}\right) \odot Z_{c}^{d} \quad \Rightarrow\left(Z_{r}^{s} \odot Z_{a}^{b}\right) \odot Z_{w}^{x}=\left(Z_{r}^{s} \odot Z_{u}^{v}\right) \odot Z_{c}^{d} \quad \Rightarrow Z_{r}^{s} \odot\left(Z_{a}^{b} \odot Z_{w}^{x}\right)=Z_{r}^{s} \odot$ $\left(Z_{u}^{v} \odot Z_{c}^{d}\right) \Rightarrow Z_{a}^{b} \odot Z_{w}^{x}=Z_{u}^{v} \odot Z_{c}^{d}$（By theorem 3．2．，since $\left.Z_{r}^{s} \in m\left(Z_{0}\right)\right) \Rightarrow Z_{a}^{b} \odot Z_{w}^{x}=Z_{c}^{d} \odot Z_{u}^{v}$ ．
Thus，$\left(Z_{a}^{b}, Z_{c}^{d}\right) \sim\left(Z_{u}^{v}, Z_{w}^{x}\right)$ ．Therefore，\sim is a transitive relation on $m(Z) \times m\left(Z_{0}\right)$ ．
Therefore，\sim is a equivalence relation on $m(Z) \times m\left(Z_{0}\right)$ ．
Remark 3．4．Let us denote the set of all equivalence classes of $m(Z) \times m\left(Z_{0}\right)$ by $m_{f}(Q)$ and we call it as multi－ fractional system．An element $\left[\left(Z_{a}^{b}, Z_{c}^{d}\right)\right]$ on $m_{f}(Q)$ will now be simply be denoted by $\left[Z_{a}^{b}, Z_{c}^{d}\right]$ and accordingly $\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{p}^{q}, Z_{r}^{s}\right]$ if and only if $Z_{a}^{b} \odot Z_{r}^{s}=Z_{c}^{d} \odot Z_{p}^{q}$ ．Now we have only produced the elements of $m_{f}(Q)$ ．A bunch of elements can hardly be a system．We still need to define appropriate binary operations and order relations on it just as we did for $m_{d}(Z)$［9］．Before we do so，let us note the following elementary properties of $m_{f}(Q)$ ．
Remark 3．5．For $\left(Z_{a}^{b}, Z_{c}^{d}\right),\left(Z_{p}^{q}, Z_{r}^{s}\right) \in m_{f}(Q),\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{p}^{q}, Z_{r}^{s}\right] \Leftrightarrow Z_{a}^{b} \odot Z_{r}^{s}=Z_{c}^{d} \odot Z_{p}^{q} \Leftrightarrow Z_{a r}^{b s}=Z_{c p}^{d q} \Leftrightarrow a r=$ $c p$ and $b s=d q \Leftrightarrow \frac{a}{c}=\frac{p}{r}$ and $\frac{b}{d}=\frac{q}{s}$ ．
Lemma 3．6．For $\left[Z_{a}^{b}, Z_{c}^{d}\right] \in m_{f}(Q)$ ，and for all $Z_{q}^{p} \in m\left(Z_{0}\right),\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{p}^{q} \odot Z_{a}^{b}, Z_{p}^{q} \odot Z_{c}^{d}\right]=\left[Z_{a}^{b} \odot Z_{p}^{q}, Z_{c}^{d} \odot\right.$ $\left.Z_{p}^{q}\right]$ ．
Proof：$\quad\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{p}^{q} \odot Z_{a}^{b}, Z_{p}^{q} \odot Z_{c}^{d}\right] \Leftrightarrow Z_{a}^{b} \odot\left(Z_{p}^{q} \odot Z_{c}^{d}\right)=Z_{c}^{d} \odot\left(Z_{p}^{q} \odot Z_{a}^{b}\right) \Leftrightarrow Z_{a}^{b} \odot\left(Z_{c}^{d} \odot Z_{p}^{q}\right)=Z_{c}^{d} \odot$ $\left(Z_{a}^{b} \odot Z_{p}^{q}\right) \Leftrightarrow\left(Z_{a}^{b} \odot Z_{c}^{d}\right) \odot Z_{p}^{q}=\left(Z_{c}^{d} \odot Z_{a}^{b}\right) \odot Z_{p}^{q} \quad \Leftrightarrow\left(Z_{a}^{b} \odot Z_{c}^{d}\right) \odot Z_{p}^{q}=\left(Z_{a}^{b} \odot Z_{c}^{d}\right) \odot Z_{p}^{q} \quad$ which \quad is \quad a tautology．Also，a similar tautology can be established for the second part．Hence the result．
Lemma 3．7．$\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{0}^{1}, Z_{1}^{1}\right]$ if and only if $a=0$ and $b=d$ ．
Lemma 3．8．$\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{1}^{1}, Z_{1}^{1}\right]$ if and only if $a=c$ and $b=d$ ．
 $\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxplus\left[Z_{p}^{q}, Z_{r}^{s}\right]=\left[\left(Z_{a}^{b} \odot Z_{r}^{1}\right) \oplus\left(Z_{c}^{1} \odot Z_{p}^{q}\right), Z_{c}^{d} \odot Z_{r}^{s}\right]=\left[Z_{a r+c p}^{b q}, Z_{c r}^{d s}\right],\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{p}^{q}, Z_{r}^{s}\right] \in m_{f}(Q)$ ．
Proof：To show that $⿴ 囗 十$ is well－defined，we need to show that for any $\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{p}^{q}, Z_{r}^{s}\right] \in m_{f}(Q)$ ，there is one and only one image under $⿴ 囗 十$ 。
Hence let，$\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{a^{\prime}}^{b^{\prime}}, Z_{c}^{d^{\prime}}\right]$ and $\left[Z_{p}^{q}, Z_{r}^{s}\right]=\left[Z_{p^{\prime}}^{q}, Z_{r^{\prime}}^{s^{\prime}}\right]$ ．
Now，$\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{a}^{b^{\prime}}, Z_{c}^{d^{\prime}}\right] \Rightarrow a c^{\prime}=c a^{\prime}$ and $b d^{\prime}=d b^{\prime}$ ，also，$\left[Z_{p}^{q}, Z_{r}^{s}\right]=\left[Z_{p^{\prime}}^{q^{\prime}}, Z_{r}^{s^{\prime}}\right] \Rightarrow p r^{\prime}=r p^{\prime}$ and $q s^{\prime}=s q^{\prime}$ ．
Then $\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxplus\left[Z_{p}^{q}, Z_{r}^{s}\right]=\left[Z_{a r+c p}^{b q}, Z_{c r}^{d s}\right]$ and $\left[Z_{a}^{b^{\prime}}, Z_{c}^{d^{\prime}}\right] \boxplus\left[Z_{p^{\prime}}^{q^{\prime}}, Z_{r^{\prime}}^{s^{\prime}}\right]=\left[Z_{a^{\prime} r^{\prime}+c^{\prime} p^{\prime}}^{b}, Z_{c^{\prime} r^{\prime}}^{d^{\prime} s^{\prime}}\right]$ ．
Also，$(a r+c p) c^{\prime} r^{\prime}=c r\left(a^{\prime} r^{\prime}+c^{\prime} p^{\prime}\right)$ and $b q d^{\prime} s^{\prime}=d s b^{\prime} q^{\prime}$ ．
Therefore，$\left[Z_{a r+c p}^{b q}, Z_{c r}^{d s}\right]=\left[Z_{a^{\prime} r^{\prime}+c^{\prime} p^{\prime}}^{b^{\prime}, Z_{c^{\prime} r^{\prime}}^{d^{\prime}} s^{\prime}}\right] \Rightarrow\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxplus\left[Z_{p}^{q}, Z_{r}^{s}\right]=\left[Z_{p}^{q}, Z_{r}^{s}\right]=\left[Z_{p^{\prime}}^{q^{\prime}}, Z_{r^{\prime}}^{s^{\prime}}\right]$ ．
Therefore，\boxplus is well－defined．

Proposition 3.10. (Properties of addition on $m_{f}(Q)$) Following properties of addition can be deduced:
(i) $\quad \boxplus$ is commutative on $m_{f}(Q)$.
(ii) $\quad \boxplus$ is associative on $m_{f}(Q)$.
(iii) $\left[Z_{0}^{1}, Z_{1}^{1}\right]$ is the identity element in $m_{f}(Q)$ for $⿴ 囗$.
(iv) For each $\left[Z_{a}^{b}, Z_{c}^{d}\right] \in m_{f}(Q)$, its \boxplus - inverse exists and is given by $\left[Z_{-a}^{\frac{1}{b}}, Z_{c}^{\frac{1}{d}}\right] \in m_{f}(Q)$ denoted by ([$\left.\left.Z_{a}^{b}, Z_{c}^{d}\right]\right)$.
(v) $\quad\left(m_{f}(Q), \boxplus\right)$ is a commutative group.

Proof: The proof is immediate.
Definition 3.11. (Multiplication on $\left.m_{f}(Q)\right)$ There exists a well-defined binary operation \square on $m_{f}(Q)$ defined by $\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left[Z_{p}^{q}, Z_{r}^{s}\right]=\left[Z_{a}^{b} \odot Z_{p}^{q}, Z_{c}^{d} \odot Z_{r}^{s}\right]=\left[Z_{a p}^{b q}, Z_{c r}^{d s}\right],\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{p}^{q}, Z_{r}^{s}\right] \in m_{f}(Q)$.
To show that \square is well defined, we need to show that for any $\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{p}^{q}, Z_{r}^{s}\right] \in m_{f}(Q)$, there is one and only one image under \square.
Hence let, $\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{a}^{b^{\prime}}, Z_{c}^{d^{\prime}}\right]$ and $\left[Z_{p}^{q}, Z_{r}^{s}\right]=\left[Z_{p}^{q^{\prime}}, Z_{r}^{s^{\prime}}\right]$.
Now, $\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{a}^{b_{1}^{\prime}}, Z_{c^{\prime}}^{d^{\prime}}\right] \Rightarrow a c^{\prime}=c a^{\prime}$ and $b d^{\prime}=d b^{\prime}$, also, $\left[Z_{p}^{q}, Z_{r}^{s}\right]=\left[Z_{p^{\prime}}^{q^{\prime}}, Z_{r^{\prime}}^{s^{\prime}}\right] \Rightarrow p r^{\prime}=r p^{\prime}$ and $q s^{\prime}=s q^{\prime}$.
Then $\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left[Z_{p}^{q}, Z_{r}^{s}\right]=\left[Z_{a p}^{b q}, Z_{c r}^{d s}\right]$ and $\left[Z_{a}^{b^{\prime},}, Z_{c^{\prime}}^{d^{\prime}}\right] \boxtimes\left[Z_{p}^{q^{\prime}}, Z_{r^{\prime}}^{s^{\prime}}\right]=\left[Z_{a}^{b^{\prime}, q^{\prime},}, Z_{c^{\prime} r^{\prime}}^{d^{\prime} s^{\prime}}\right]$.
Also, $a c^{\prime} p r^{\prime}=c a^{\prime} r p^{\prime}$ and $b q d^{\prime} s^{\prime}=d s b^{\prime} q^{\prime}$.
Therefore, $Z_{a c^{\prime} p r^{\prime}}^{b q d^{\prime} s^{\prime}}=Z_{c a^{\prime} r p^{\prime}}^{d s b^{\prime} q^{\prime}} \Rightarrow Z_{a p}^{b q} \odot Z_{c^{\prime} r^{\prime}}^{d^{\prime} s^{\prime}}=Z_{c r}^{d s} \odot Z_{a^{\prime} p^{\prime}}^{b^{\prime} q^{\prime}}$
$\Rightarrow\left[Z_{a p}^{b q}, Z_{c r}^{d s}\right]=\left[Z_{a}^{b} a^{\prime}{ }_{p}^{\prime}{ }^{\prime}, Z_{c^{\prime} r^{\prime}}^{d^{\prime} s^{\prime}}\right] \Rightarrow\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left[Z_{p}^{q}, Z_{r}^{s}\right]=\left[Z_{a^{\prime}}^{b^{\prime}}, Z_{c^{\prime}}^{d^{\prime}}\right] \boxtimes\left[Z_{p^{\prime}}^{q}, Z_{r^{\prime}}^{s^{\prime}}\right]$
Therefore, \square is well-defined.
Proposition 3.12. (Properties of multiplication on $m_{f}(Q)$)
(i) \square is commutative on $m_{f}(Q)$.
(ii) \square is associative on $m_{f}(Q)$.
(iii) $\left[Z_{1}^{1}, Z_{1}^{1}\right]$ is the identity element in $m_{f}(Q)$ for \square.

Proof: For all $\left[Z_{a}^{b}, Z_{c}^{d}\right] \in m_{f}(Q),\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left[Z_{1}^{1}, Z_{1}^{1}\right]=\left[Z_{a}^{b} \odot Z_{1}^{1}, Z_{c}^{d} \odot Z_{1}^{1}\right]=\left[Z_{a}^{b}, Z_{c}^{d}\right]$.
(iv) For any element $\left[Z_{a}^{b}, Z_{c}^{d}\right] \in m\left(Z_{0}\right) \times m\left(Z_{0}\right)$, its \square-inverse exists and is given by $\left[Z_{c}^{d}, Z_{a}^{b}\right]$ denoted by $\left[Z_{a}^{b}, Z_{c}^{d}\right]^{-1}$.
(v) Let us denote $m\left(Z_{0}\right) \times m\left(Z_{0}\right)$ as $m_{f}\left(Q_{0}\right)$, in fact ($\left.m_{f}\left(Q_{0}\right), \square\right)$ is a commutative group.
(vi) (Remark on distributive property) $\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left(\left[Z_{p}^{q}, Z_{r}^{s}\right] \boxplus\left[Z_{u}^{v}, Z_{x}^{y}\right]\right) \neq\left(\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left[Z_{p}^{q}, Z_{r}^{s}\right]\right) \boxplus$ ($\left.\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left[Z_{u}^{v}, Z_{x}^{y}\right]\right)$ in general.
Actually, $\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left(\left[Z_{p}^{q}, Z_{r}^{s}\right] \boxplus\left[Z_{u}^{v}, Z_{x}^{y}\right]\right)=\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left[Z_{p x+r u}^{q v}, Z_{r x}^{s y}\right]=\left[Z_{a(p x+r u)}^{b q v}, Z_{c r x}^{d s y}\right]$.
But, $\left(\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left[Z_{p}^{q}, Z_{r}^{s}\right]\right) \boxplus\left(\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left[Z_{u}^{v}, Z_{x}^{y}\right]\right)=\left[Z_{a p}^{b q}, Z_{c r}^{d s}\right] \boxplus\left[Z_{a u}^{b v}, Z_{c x}^{d y}\right]=\left[Z_{a p c x+c r a u}^{b^{2} q v}, Z_{c^{2} r x}^{d^{2} s y}\right]$ $=\left[Z_{a c(p x+r u)}^{b^{2} q v}, Z_{c^{2} r x}^{d^{2} s y}\right]$.
(vii) (Multi-distributive property) For all $\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{p}^{q}, Z_{r}^{s}\right],\left[Z_{u}^{v}, Z_{x}^{y}\right] \in m_{f}(Q), \quad\left[Z_{1}^{b}, Z_{1}^{d}\right] \boxtimes\left(\left[Z_{a}^{b}, Z_{c}^{d}\right] \cdot\right.$ $\left.\left(\left[Z_{p}^{q}, Z_{r}^{s}\right] \boxplus\left[Z_{u}^{v}, Z_{x}^{y}\right]\right)\right)=\left(\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left[Z_{p}^{q}, Z_{r}^{s}\right]\right) \boxplus\left(\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left[Z_{u}^{v}, Z_{x}^{y}\right]\right)$. Let us define the above property to be the multi-distributive property of \square over \boxplus on $m_{f}(Q)$.

Remark 3.13. (Order on $m_{f}(Q)$) After defining two binary operations on $m_{f}(Q)$, the next natural thing is to order the elements of $m_{f}(Q)$. Our aim is to define an order that will make $m_{f}(Q)$ a partially ordered multi-field. In this connection, we shall first define subsets of $m_{f}(Q)$ that serves as the set of multi-natural numbers and multi-integers. Intuitively, these sets should turn out eventually to resemble $m(N)$ and $m(Z)$. Also, to define an appropriate order, the main job is to identify the subsets of $m_{f}(Q)$ that will serve as the set of positive elements. So, we are representing the following notation:

Proposition 3.14. The subset $m_{f}^{+}(Q)$ of $m_{f}\left(Q_{0}\right)$ defined by $m_{f}^{+}(Q)=\left\{\left[Z_{a}^{b}, Z_{c}^{d}\right] \in m_{f}(Q): \frac{a}{c}>0\right.$ and $\left.\frac{b}{d} \in N\right\}$ is well defined.

Proof: To show that $m_{f}^{+}(Q)$ is well-defined, we need to show that any $\left[Z_{a}^{b}, Z_{c}^{d}\right]$ cannot be both in and out of the set.
Hence let, $\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{p}^{q}, Z_{r}^{s}\right]$ and suppose that $\left[Z_{a}^{b}, Z_{c}^{d}\right] \in m_{f}^{+}(Q)$.
Then, $Z_{a}^{b} \odot Z_{r}^{s}=Z_{c}^{d} \odot Z_{p}^{q} \Rightarrow a r=c p$ and $b s=d q$.
Also, $\frac{a}{c}>0$ and $\frac{b}{d} \in N$.
So, $\frac{p}{r}>0$ and $\frac{q}{s} \in N$.
Therefore, $\left[Z_{p}^{q}, Z_{r}^{s}\right] \in m_{f}^{+}(Q)$.
Hence, $m_{f}^{+}(Q)$ is well-defined subset of $m_{f}(Q)$.
Proposition 3.15. The subset $m_{f}^{-}(Q)$ of $m_{f}(Q)$ defined by $m_{f}^{-}(Q)=\left\{-\left[Z_{a}^{b}, Z_{c}^{d}\right] \in m_{f}(Q):\left[Z_{a}^{b}, Z_{c}^{d}\right] \in m_{f}^{+}(Q)\right\}$ is well-defined.
Proof: The proof is immediate.
Definition 3.16. We define the subset $m_{f}\left(Z_{Q}\right)=\left\{\left[Z_{a}^{b}, Z_{1}^{1}\right] \in m_{f}(Q): Z_{a}^{b} \in m(Z)\right\}$. The following theorem tells us that $m_{f}\left(Z_{Q}\right)$ appears to be indeed a very good model of $m(Z)$.
Proposition3.17. $\left[\mathrm{Z}_{\mathrm{u}}^{\mathrm{v}}, \mathrm{Z}_{\mathrm{w}}^{\mathrm{x}}\right] \in m_{f}\left(Z_{Q}\right) \Leftrightarrow w \mid u$ and $x \mid v$.
Proof: $\left[\mathrm{Z}_{\mathrm{u}}^{\mathrm{v}}, \mathrm{Z}_{\mathrm{w}}^{\mathrm{x}}\right] \in m_{f}\left(Z_{Q}\right) \Leftrightarrow$ there exists $Z_{a}^{b} \in m(Z)$ such that $\left[\mathrm{Z}_{\mathrm{u}}^{\mathrm{v}}, \mathrm{Z}_{\mathrm{w}}^{\mathrm{x}}\right]=\left[Z_{a}^{b}, Z_{1}^{1}\right] \Leftrightarrow \mathrm{Z}_{\mathrm{u}}^{\mathrm{v}} \odot Z_{1}^{1}=\mathrm{Z}_{\mathrm{w}}^{\mathrm{x}} \odot Z_{a}^{b} \Leftrightarrow$ $\mathrm{Z}_{\mathrm{u}}^{\mathrm{v}}=\mathrm{Z}_{\mathrm{wa}}^{\mathrm{xb}} \Leftrightarrow u=w a$ and $v=x b \Leftrightarrow w \mid u$ and $x \mid v$ as $u, v, w, a, b \in Z$.

Theorem 3.18. For the set $\in m_{f}\left(Z_{Q}\right)$ the following hold:
(i) $\quad\left(m_{f}\left(Z_{Q}\right), \boxplus\right)$ is a subgroup of $\left(m_{f}(Q), \boxplus\right)$.
(ii) $\quad\left(m_{f}\left(Z_{Q}\right), \square\right)$ is a subgroup of $\left(m_{f}(Q), \square\right)$.
(iii) $\quad\left(m_{f}\left(Z_{Q}\right), \boxplus\right)$ is isomorphic to $(m(Z), \oplus)$ as group and $\left(m_{f}\left(Z_{Q}\right), \square\right)$ is isomorphic to $(m(Z), \odot)$ as semi group under the same isomorphism.
(iv) For every $x \in m_{f}(Q)$, there exists $y, z \in\left(m_{f}\left(Z_{Q}\right)\right.$ such that $x=y^{-1} \boxtimes z$.

Proof: Clearly, $\left(m_{f}\left(Z_{Q}\right)\right)$ is a non-empty subset of $m_{f}(Q)$.
(i) Let $\left[Z_{a}^{b}, Z_{1}^{1}\right],\left[Z_{c}^{d}, Z_{1}^{1}\right] \in m_{f}\left(Z_{Q}\right)$.

Then $\left[Z_{a}^{b}, Z_{1}^{1}\right] \boxplus\left(-\left[Z_{c}^{d}, Z_{1}^{1}\right]\right)=\left[Z_{a}^{b}, Z_{1}^{1}\right] \boxplus\left[Z_{-c}^{\frac{1}{d}}, Z_{1}^{1}\right]=\left[Z_{a-c}^{\frac{b}{d}}, Z_{1}^{1}\right] \in m_{f}\left(Z_{Q}\right)$.
Therefore, $\left(m_{f}\left(Z_{Q}\right), \boxplus\right)$ is a subgroup of $\left(m_{f}(Q), \boxplus\right)$.
(ii) $\quad\left[Z_{a}^{b}, Z_{1}^{1}\right] \boxplus\left[Z_{c}^{d}, Z_{1}^{1}\right]=\left[Z_{a c}^{b d}, Z_{1}^{1}\right] \in m_{f}\left(Z_{Q}\right)$.

Therefore, $m_{f}\left(Z_{Q}\right)$ is closed under \square.
$\left(m_{f}\left(Z_{Q}\right), \square\right)$ is a subgroup of $\left(m_{f}(Q), \square\right)$.
(iii) Define $\psi: m_{f}\left(Z_{Q}\right) \rightarrow m(Z)$ by $\psi\left(\left[Z_{a}^{b}, Z_{1}^{1}\right]\right)=Z_{a}^{b}, Z_{a}^{b} \in m(Z)$.

We shall first show that ψ is a well-defined function.
So let, $\left[Z_{p}^{q}, Z_{1}^{1}\right]=\left[Z_{r}^{s}, Z_{1}^{1}\right]$.
$\left[Z_{p}^{q}, Z_{1}^{1}\right]=\left[Z_{r}^{s}, Z_{1}^{1}\right] \Leftrightarrow Z_{p}^{q} \odot Z_{1}^{1}=Z_{1}^{1} \odot Z_{r}^{s} \Leftrightarrow Z_{p}^{q}=Z_{r}^{s} \Leftrightarrow \psi\left(\left[Z_{p}^{q}, Z_{1}^{1}\right]\right)=\psi\left(\left[Z_{r}^{s}, Z_{1}^{1}\right]\right)$.
So, ψ is well-defined.
Immediately, ψ is a bijection.
Now for any $\left[Z_{p}^{q}, Z_{1}^{1}\right],\left[Z_{r}^{s}, Z_{1}^{1}\right] \in m_{f}\left(Z_{Q}\right)$,
$\psi\left(\left[Z_{p}^{q}, Z_{1}^{1}\right] \boxplus\left[Z_{r}^{s}, Z_{1}^{1}\right]\right)=\psi\left(\left[Z_{p+r}^{q s}, Z_{1}^{1}\right]\right)=Z_{p+r}^{q s}=Z_{p}^{q} \odot Z_{r}^{s}=\psi\left(\left[Z_{p}^{q}, Z_{1}^{1}\right]\right) \oplus \psi\left(\left[Z_{r}^{s}, Z_{1}^{1}\right]\right)$.
Hence, $\left(m_{f}\left(Z_{Q}\right), \boxplus\right)$ is isomorphic to $(m(Z), \oplus)$.
Similarly, we can show that $\left(m_{f}\left(Z_{Q}\right), \square\right)$ is isomorphic to $(m(Z), \odot)$.
(iv) Let $x=\left[Z_{a}^{b}, Z_{c}^{d}\right] \in m_{f}(Q)$, then there exists $y=\left[Z_{c}^{d}, Z_{1}^{1}\right], z=\left[Z_{a}^{b}, Z_{1}^{1}\right] \in m_{f}\left(Z_{Q}\right)$ such that $y^{-1} \square \mathrm{z}=$ $\left[Z_{c}^{d}, Z_{1}^{1}\right]^{-1} \backsim\left[Z_{a}^{b}, Z_{1}^{1}\right]=\left[Z_{1}^{1}, Z_{c}^{d}\right] \boxtimes\left[Z_{a}^{b}, Z_{1}^{1}\right]=\left[Z_{a}^{b}, Z_{c}^{d}\right]=x$
Hence the theorem.
Definition 3.19. Let us define each member of $m_{f}(Q)$ as a multi-rational number. Let us also define each member of $m_{f}^{+}(Q)$ as positive multi-rational number and each member of $m_{f}^{-}(Q)$ as negative multi-rational number.

Definition 3.20. (Positive multi-rational number, Negative multi-rational number, Zero, Special multi-rational number and Multi-zero)
Define $m_{f}\left(Q_{S}\right)=m_{f}(Q)-\left(m_{f}^{+}(Q) \cup m_{f}^{-}(Q) \cup\left\{\left[Z_{0}^{1}, Z_{1}^{1}\right]\right\}\right)$.
We have defined every member of $m_{f}^{+}(Q)$ as a positive multi-rational number, every member of $m_{f}^{-}(Q)$ as a negative multi-rational number, $\left[Z_{0}^{1}, Z_{1}^{1}\right]$ is the zero and every member of $m_{f}\left(Q_{S}\right)$ as special multi-rational number. Also any multi-rational number of the form $\left[Z_{0}^{a}, Z_{c}^{d}\right]$ is a multi-zero which is obviously either a special multirational number or zero.

Theorem 3.21. If the product of two multi-rational numbers be zero, then at least one of them must be a multi-zero. Proof: For $\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{p}^{q}, Z_{r}^{s}\right] \in m_{f}(Q)$, let, $\left[Z_{a}^{b}, Z_{c}^{d}\right] \odot\left[Z_{p}^{q}, Z_{r}^{s}\right]=\left[Z_{0}^{1}, Z_{1}^{1}\right]$, then $\left[Z_{a}^{b} \odot Z_{p}^{q}, Z_{c}^{d} \odot Z_{r}^{s}\right]=\left[Z_{0}^{1}, Z_{1}^{1}\right] \Rightarrow$ $\left[Z_{a p}^{b q}, Z_{c r}^{d s}\right]=\left[Z_{0}^{1}, Z_{1}^{1}\right] \Rightarrow Z_{a p}^{b q} \odot Z_{1}^{1}=Z_{c r}^{d s} \odot Z_{0}^{1} \Rightarrow Z_{a p}^{b q}=Z_{0}^{d s} \Rightarrow a p=0$ and $b q=d s \Rightarrow$ (either $a=0$ or $\left.p=0\right) \Rightarrow$ $\left[Z_{a}^{b}, Z_{c}^{d}\right]$ or $\left[Z_{p}^{q}, Z_{r}^{s}\right]$ must be a multi-zero.

Definition 3.22. (Order on $m_{f}(Q)$) Let $\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{p}^{q}, Z_{r}^{s}\right] \in m_{f}(Q)$. We define $\left[Z_{a}^{b}, Z_{c}^{d}\right]>\left[Z_{p}^{q}, Z_{r}^{s}\right]$ if $\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxplus$ $\left(-\left[Z_{p}^{q}, Z_{r}^{s}\right]\right) \in m_{f}^{+}(Q)$ i.e., if $\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxplus\left(\left[Z_{-p}^{\frac{1}{q}}, Z_{r}^{\frac{1}{s}}\right]\right) \in m_{f}^{+}(Q)$, i.e., if $\left.\left[Z_{a r-c p}^{\frac{b}{q}}, Z_{c r}^{\frac{d}{s}}\right]\right) \in m_{f}^{+}(Q)$, i.e., if $\frac{a r-c p}{c r}>0$ and $\frac{\frac{b}{q}}{\frac{d}{s}} \in N$ i.e., $\frac{a}{c}>\frac{p}{r}$ and $\frac{b s}{d q} \in N$. Also, we define $\left[Z_{a}^{b}, Z_{c}^{d}\right] \geq\left[Z_{p}^{q}, Z_{r}^{s}\right]$ if $\left[Z_{a}^{b}, Z_{c}^{d}\right]>\left[Z_{p}^{q}, Z_{r}^{s}\right]$ or $\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{p}^{q}, Z_{r}^{s}\right]$.
Remark 3.23. Let us denote $\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxplus\left(-\left[Z_{p}^{q}, Z_{r}^{s}\right]\right)$ as $\left[Z_{a}^{b}, Z_{c}^{d}\right]-\left[Z_{p}^{q}, Z_{r}^{s}\right]$.
Theorem 3.24. (Partial order relation) \geq defined on $m_{f}(Q)$ is a partial order relation.
Proof: Proof is immediate.
Remark 3.25. $\left(m_{f}(Q), \geq\right)$ is a poset but not a chain. e.g., $\left[Z_{2}^{3}, Z_{5}^{7}\right]$ and $\left[Z_{3}^{4}, Z_{6}^{2}\right]$ are two incomparable elements of $m_{f}(Q)$.
Since, $\left[Z_{2}^{3}, Z_{5}^{7}\right] \boxplus\left(-\left[Z_{3}^{4}, Z_{6}^{2}\right]\right)=\left[Z_{2}^{3}, Z_{5}^{7}\right] \boxplus\left[Z_{-3}^{\frac{1}{4}}, Z_{6}^{2}\right]=\left[Z_{-3}^{\frac{3}{4}}, Z_{30}^{14}\right] \notin m_{f}^{+}(Q)\left(\right.$ because $\left.-\frac{3}{30}=-\frac{1}{10}<0\right)$ and
$\left[Z_{3}^{4}, Z_{6}^{2}\right] \boxplus\left(-\left[Z_{2}^{3}, Z_{5}^{7}\right]\right)=\left[Z_{3}^{4}, Z_{6}^{2}\right] \boxplus\left[Z_{-2}^{\frac{1}{3}}, Z_{5}^{7}\right]=\left[Z_{3}^{\frac{4}{3}}, Z_{30}^{14}\right] \notin m_{f}^{+}(Q)$ (because $\frac{\frac{4}{3}}{14}=\frac{2}{21} \notin N$).
Proposition 3.26. For all $\left[Z_{a}^{b}, Z_{c}^{d}\right] \in m_{f}(Q),\left[Z_{a}^{b}, Z_{c}^{d}\right] \ngtr\left[Z_{a}^{b}, Z_{c}^{d}\right]$.
Proof: $a-c \ngtr a-c$ for all $a, c \in N$ with $a \neq c$, so from Proposition 3.24., the above proposition immediately follows.
Proposition 3.27. For all $\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{e}^{f}, Z_{g}^{h}\right] \in m_{f}(Q),\left[Z_{a}^{b}, Z_{c}^{d}\right]>\left[Z_{e}^{f}, Z_{g}^{h}\right] \Leftrightarrow\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxplus\left[Z_{u}^{v}, Z_{w}^{x}\right]>\left[Z_{e}^{f}, Z_{g}^{h}\right] \boxplus$ $\left[Z_{u}^{v}, Z_{w}^{x}\right]$ for all $\left[Z_{u}^{v}, Z_{w}^{x}\right] \in m_{f}(Q)$.
Proof: Proof is immediate.
Proposition 3.28. For all $\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{e}^{f}, Z_{g}^{h}\right],\left[Z_{u}^{v}, Z_{w}^{x}\right],\left[Z_{p}^{q}, Z_{r}^{s}\right] \in m_{f}(Q),\left[Z_{a}^{b}, Z_{c}^{d}\right]>\left[Z_{e}^{f}, Z_{g}^{h}\right]$ and $\left[Z_{u}^{v}, Z_{w}^{x}\right]>$ $\left[Z_{p}^{q}, Z_{r}^{s}\right] \Rightarrow\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxplus\left[Z_{u}^{v}, Z_{w}^{x}\right]>\left[Z_{e}^{f}, Z_{g}^{h}\right] \boxplus\left[Z_{p}^{q}, Z_{r}^{s}\right]$.
Proof: Proof is immediate.
Proposition 3.29. For $\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{e}^{f}, Z_{g}^{h}\right] \in m_{f}(Q),\left[Z_{a}^{b}, Z_{c}^{d}\right] \geq\left[Z_{e}^{f}, Z_{g}^{h}\right] \Rightarrow\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxplus\left[Z_{1}^{1}, Z_{1}^{1}\right]>\left[Z_{e}^{f}, Z_{g}^{h}\right]$.
Proposition 3.30. For all $\left[Z_{a}^{b}, Z_{c}^{d}\right] \in m_{f}(Q),\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxplus\left[Z_{e}^{f}, Z_{g}^{h}\right]>\left[Z_{a}^{b}, Z_{c}^{d}\right]$ for all $\left[Z_{e}^{f}, Z_{g}^{h}\right] \in m_{f}\left(Z_{Q}\right)$.
Proposition 3.31. For $\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{e}^{f}, Z_{g}^{h}\right],\left[Z_{u}^{v}, Z_{w}^{x}\right] \in m_{f}(Q), \quad\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxplus\left[Z_{u}^{v}, Z_{w}^{x}\right]=\left[Z_{e}^{f}, Z_{g}^{h}\right] \boxplus\left[Z_{u}^{v}, Z_{w}^{x}\right] \quad \Rightarrow$ $\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{e}^{f}, Z_{g}^{h}\right]$.
Proposition 3.32. For $\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{e}^{f}, Z_{g}^{h}\right] \in m_{f}(Q),\left[Z_{a}^{b}, Z_{c}^{d}\right]>\left[Z_{e}^{f}, Z_{g}^{h}\right] \Leftrightarrow \quad\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left[Z_{u}^{v}, Z_{w}^{x}\right]>\left[Z_{e}^{f}, Z_{g}^{h}\right] \boxtimes$ $\left[Z_{u}^{v}, Z_{w}^{x}\right]$ for all $\left[Z_{u}^{v}, Z_{w}^{x}\right] \in m_{f}^{+}(Q)$.
Proof: Proof is immediate.
Theorem 3.33. (Isomorphism theorem) Let us consider the general mset $m(\hat{Q})$ drawn from Q characterized by the universal relation $\rho_{m(\hat{Q})}=Q \times Q^{+}\left(Q^{+}\right.$being the set of all positive rational numbers) i.e., $Q_{p}^{q} \in m(\hat{Q})$ if and only if $p \in Q$ and $q \in Q^{+}$. Let us define two binary operations $\widehat{\boxplus}$ and $\widehat{\square}$ as follows:
For $Q_{p}^{q}, Q_{r}^{s} \in m(\widehat{Q}), Q_{p}^{q} \widehat{\boxplus} Q_{r}^{s}=Q_{p+r}^{q s}$ and $Q_{p}^{q} \widehat{\square} Q_{r}^{s}=Q_{p r}^{q s}$.

Also, define $\hat{>}$ on $m(\hat{Q})$ as follows: $Q_{p}^{q}, Q_{r}^{s} \in m(\hat{Q}), Q_{p}^{q} \widehat{S} Q_{r}^{s}$ if and only if there exists $Q_{a}^{b} \in m(\hat{Q})$ with $a \in Q^{+}$ and $b \in N$ such that $Q_{p}^{q}=Q_{r}^{s} \widehat{\oplus} Q_{a}^{b}$.
For $Q_{p}^{q}, Q_{r}^{s} \in m(\hat{Q})$, we define $Q_{p}^{q}=Q_{r}^{s}$ if and only if $p=r$ and $q=s$.
Also, for $Q_{p}^{q}, Q_{r}^{s} \in m(\hat{Q})$, we define $Q_{p}^{q} \geq Q_{r}^{s}$ if and only if $Q_{p}^{q} \widehat{S} Q_{r}^{s}$ or $Q_{p}^{q}=Q_{r}^{s}$.
Then $\left(m_{f}(Q), \boxplus, \square, \geq\right)$ and $(m(\widehat{Q}), \widehat{\boxplus}, \widehat{\square}, \Sigma)$ are isomorphic.
Proof: Let us now define a function $\tau: m_{f}(Q) \rightarrow m(\hat{Q})$ as follows:
$\tau\left(\left[Z_{a}^{b}, Z_{c}^{d}\right]\right)=Q_{\frac{a}{d}}^{\frac{b}{d}},\left[Z_{a}^{b}, Z_{c}^{d}\right] \in m_{f}(Q)$.
$\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{a}^{b^{\prime}}, Z_{c^{\prime}}^{d^{\prime}}\right] \in m_{f}(Q), \quad\left[Z_{a}^{b}, Z_{c}^{d}\right]=\left[Z_{a^{\prime}}^{b^{\prime}}, Z_{c}^{d^{\prime}}\right] \Leftrightarrow \frac{a}{c}=\frac{a^{\prime}}{c^{\prime}} \quad$ and $\quad \frac{b}{d}=\frac{b^{\prime}}{d^{\prime}} \Leftrightarrow\left[\begin{array}{cc}\frac{b}{d} & \frac{b^{\prime}}{c} \\ \frac{a}{c} & Z_{\frac{a^{\prime}}{d}}^{c}\end{array}\right] \Leftrightarrow \tau\left(\left[Z_{a}^{b}, Z_{c}^{d}\right]\right)=$ $\tau\left(\left[Z_{a}^{b^{\prime}}, Z_{c}^{d^{\prime}}\right]\right)$.
So, τ is well-defined and one to one.
Next, let $Q_{p}^{q} \in m(\hat{Q})$, then $p \in Q$ and $q \in Q^{+}$.
Therefore, there exists $a, b, c, d \in Z$ with $a>0, d>0$ such that $p=\frac{a}{c}$ and $q=\frac{b}{d}$. So, $b>0$ and consequently, $\left[Z_{a}^{b}, Z_{c}^{d}\right] \in m_{f}(Q)$.
Also, $\tau\left(\left[Z_{a}^{b}, Z_{c}^{d}\right]\right)=Z_{\frac{a}{c}}^{\frac{b}{d}}=Q_{p}^{q}$.
Therefore, τ is onto.
Therefore, τ is a bijection.
Now let $\quad\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{a^{\prime}}^{b^{\prime}}, Z_{c^{\prime}}^{d^{\prime}}\right] \in m_{f}(Q)$, then $\quad \tau\left(\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxplus\left[Z_{a^{\prime}}^{b^{\prime}}, Z_{c^{\prime}}^{d^{\prime}}\right]\right)=\tau\left(\left[Z_{a c^{\prime}+c a^{\prime}}^{b b^{\prime}}, Z_{c c^{\prime}}^{d d^{\prime}}\right]\right)=Q_{\frac{b c^{\prime}}{\frac{b c^{\prime}}{d c^{\prime}}}+c a^{\prime}}^{c c}=$ $Q_{\frac{a}{c}}^{\frac{b}{d}} \mathbb{\boxplus} Q_{\frac{a^{\prime}}{c}}^{\frac{b^{\prime}}{d}}$
$=\tau\left(\left[Z_{a}^{b}, Z_{c}^{d}\right]\right) \widehat{\boxplus} \tau\left(\left[Z_{a}^{b^{\prime}}, Z_{c_{c}^{\prime}}^{d^{\prime}}\right]\right)$.
Also, $\tau\left(\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxtimes\left[Z_{a}^{b^{\prime}}, Z_{c}^{d^{\prime}}\right]\right)=\tau\left(\left[Z_{a a^{\prime}}^{b b^{\prime}}, Z_{c c^{\prime}}^{d d^{\prime}}\right]\right)=Q_{\frac{a a^{\prime}}{d c^{\prime}}}^{\frac{b b^{\prime}}{c d^{\prime}}}=Q_{\frac{a}{c}}^{\frac{b}{d}} \widehat{\frac{\partial}{\frac{b^{\prime}}{d^{\prime}}}} \frac{\frac{b^{\prime}}{c}}{d^{\prime}}$
$=\tau\left(\left[Z_{a}^{b}, Z_{c}^{d}\right]\right) \widehat{\bullet} \tau\left(\left[Z_{a}^{b^{\prime}}, Z_{c}^{d^{\prime}}\right]\right)$.
Next for, $\left[Z_{a}^{b}, Z_{c}^{d}\right],\left[Z_{p}^{q}, Z_{r}^{s}\right] \in m_{f}(Q)$, let $\left[Z_{a}^{b}, Z_{c}^{d}\right]>\left[Z_{p}^{q}, Z_{r}^{s}\right]$.
Then, $\left[Z_{a}^{b}, Z_{c}^{d}\right] \boxplus\left(-\left[Z_{p}^{q}, Z_{r}^{s}\right]\right) \in m_{f}^{+}(Q) \Rightarrow \frac{a r-c p}{c r}>0$ and $\frac{b s}{q d} \in N \Rightarrow$ there exist $s \in Q^{+}$and $t \in N$ such that $\frac{a r-c p}{c r}=s$ and $\frac{b s}{q d}=t \Rightarrow \frac{a}{c}=\frac{p}{r}+s$ and $\frac{b}{d}=\frac{q}{s} t \Rightarrow Q_{\frac{a}{c}}^{\frac{b}{d}}=Q_{\frac{p}{r}+s}^{\frac{q}{s} t} \Rightarrow Q_{\frac{a}{c}}^{\frac{b}{d}}=Q_{\frac{p}{r}}^{\frac{q}{s}} \widehat{\boxplus} Q_{s}^{t} \Rightarrow$ there exist $Q_{s}^{t} \in m(\hat{Q})$ with
$s \in Q^{+}$and $t \in N$ such that $Q_{\frac{a}{c}}^{\frac{b}{d}}=Q_{\frac{p}{s}}^{\frac{q}{s}} \widehat{\boxplus} Q_{s}^{t} \Rightarrow Q_{\frac{a}{c}}^{\frac{b}{d}} \geq Q_{\frac{p}{r}}^{\frac{q}{s}} \Rightarrow \tau\left(\left[Z_{a}^{b}, Z_{c}^{d}\right]\right) \geq \tau\left(\left[Z_{p}^{q}, Z_{r}^{s}\right]\right)$.
Therefore, $\left(m_{f}(Q), \boxplus, \square, \geq\right)$ and $(m(\hat{Q}), \widehat{\boxplus}, \widehat{\square}, \underline{\Sigma})$ are isomorphic.
Remark 3.34. (Properties of $(m(\hat{Q}), \widehat{\boxplus}, \widehat{(1)}, \Sigma)$)
Since $\left(m_{f}(Q), \boxplus, \mathbb{Q}, \geq\right)$ and $(m(\widehat{Q}), \widehat{\boxplus}, \widehat{\square}, \widehat{\Sigma})$ are isomorphic, so $(m(\hat{Q}), \widehat{\boxplus})$ is a commutative group, $(m(\hat{Q}), \widehat{(})$ is a commutative monoid and $\widehat{\square}$ obey multi-distributive property over $\widehat{\boxplus} .\left(m\left(\widehat{Q_{0}}\right)\right.$, $\left.\widehat{\square}\right)$ is a commutative group where $m\left(\widehat{Q_{0}}\right)=[Q-\{0\}] \times Q^{+}$. Also, $(m(\widehat{Q}), \underline{\Sigma})$ is a poset. Moreover, $\widehat{\Sigma}$ defined on $m(\hat{Q})$ is an extension of \geq defined on $m(Z)$.

Remark 3.35. $(m(\hat{Q}), \widehat{\boxplus})$ is a commutative group and $(m(\hat{Q}), \widehat{(})$ is a commutative monoid but $(m(\hat{Q}), \widehat{\boxplus}, \widehat{(})$ is not a ring, since $\widehat{\square}$ cannot be distributed over $\widehat{\boxplus}$. But obeys multi-distributive property over $\widehat{\boxplus}$. Let us now introduce a new concept of multi-field and $(m(\widehat{Q}), \widehat{\boxplus}, \widehat{\square})$ to be such a multi-field.

Definition 3.36. (General mset drawn from a ring) Let $(X,+, \cdot)$ be a ring. Let M be a general mset drawn from X. Cosider two functions $\oplus: M \times M \rightarrow \pi(X)$ and $\odot: M \times M \rightarrow \pi(X)$ defined as follows:
For $X_{a}^{r}, X_{b}^{s} \in M, X_{a}^{r} \oplus X_{b}^{s}=X_{a+b}^{r s}$ and $X_{a}^{r} \odot X_{b}^{s}=X_{a b}^{r s}$.
Let us call \oplus and \odot respectively as m-addition and m-multiplication defined on M induced by the ring ($X,+, \cdot$). Also let M be closed under \oplus and \odot. Then immediately \oplus obey commutative property and associative property on M. So, (M, \oplus) is then a commutative semi group. Also, immediately \odot obey associative property on M. So, (M, \odot) is a semi group. We define M to be a general mset drawn from the ring $(X,+, \cdot)$.

Definition 3.37. Let M be a general mset drawn from a ring $(X,+, \cdot)$.Then \odot obey multi-distributive property over \oplus.

Definition 3.38. (Multi-ring) Let M be a general mset drawn from a ring ($X,+, \cdot$). Let \oplus and \odot are m-addition and m-multiplication respectively defined on M induced by the ring $(X,+, \cdot)$. If the structure (M, \oplus, \odot) satisfies the followings:
(1) (M, \oplus) is an abelian group
(2) (M, \odot) is a semi group and
(3) \odot obey multi-distributive property over \oplus then we define (M, \oplus, \odot) to be a multi-ring induced by the ring $(X,+, \cdot)$.

Theorem 3.39. Let M be a general mset drawn from a ring $(X,+, \cdot)$. Let \oplus and \odot are m -addition and mmultiplication respectively defined on M induced by the ring $(X,+, \cdot)$. Then (M, \oplus, \odot) will be multi-ring induced by the ring $(X,+, \cdot)$ if and only if the following conditions are satisfied:
(1) There exists $X_{\theta}^{1} \in M$ (θ being the zero element in the ring $(X,+, \cdot)$.
(2) For $a \in X$ and $r \in[R=\{0\}], X_{a}^{r} \in M \Rightarrow X_{(-a)}^{\frac{1}{r}} \in M$.

Remark 3.40. (i) Let us consider the ring $(X,+, \cdot)$ where $X=Z_{4}$, the set of all residue classes modulo 4, also, + and \cdot are respectively addition and multiplication modulo 4 . Consider the general mset M characterized by the relation $\rho_{M}=X \times G$ where $G=\left\{2^{n}: n \in Z\right\}$ between X and G. Then for all $a \in X$ and for all $r \in G, X_{a}^{r} \in M$. Let \oplus and \odot are m -addition and m-multiplication respectively defined on M induced by the ring $(X,+, \cdot)$. Then (M, \oplus, \odot) forms a multi-ring induced by the ring $(X,+, \cdot)$.
(iii) $\quad(m(\hat{Z}), \widehat{\oplus}, \widehat{\odot})$ is a multi-ring induced by the ring $(Z,+\cdot)$.

Remark 3.41. Let (M, \oplus, \odot) to be a multi-ring induced by the ring $(X,+, \cdot)$ where M is a general mset drawn from the ring $(X,+, \cdot)$. Let θ be the zero element in $(X,+, \cdot)$. Let X_{θ}^{1} must be the zero element in (M, \oplus, \odot). Let us also define any element in M of the form X_{θ}^{r} for some $r \in R-\{0\}$ to be the multi-zero elements of M such that the product of any element of the multi-ring with a multi-zero element of the same is again a multi-zero of the multiring. Clearly, the zero element in a multi-ring is a multi-zero element.

Remark 3.42. In a multi-ring $(m(\hat{Z}), \widehat{\oplus}, \widehat{\odot})$ induced by the ring $(Z,+, \cdot)$, the non-zero multi-zeros are only divisors of zero.

Theorem 3.43. In a multi-ring, non-zero multi-zero elements are divisors of zero.
Definition 3.44. A multi-ring is said to have no non-multi-zero divisors of zero if its non-zero multi-zero elements are the only divisors of zero.

Example 3.45. The multi-ring $(m(\hat{Z}), \widehat{\oplus}, \widehat{\odot})$ induced by the ring $(Z,+, \cdot)$, has no non-multi-zeros divisors of zero.
Remark 3.46. Let (M, \oplus, \odot) be a multi-ring induced by the ring $(X,+, \cdot)$ with divisors of zero. Let θ be the zero element in ($X,+, \cdot)$. As $(X,+, \cdot)$ is a ring with divisors of zero, so, there exists two non zero elements a and b in the ring $(X,+, \cdot)$ such that $a \cdot b=\theta$.
Now, for some $r, s \in R-\{0\}$, let $X_{a}^{r}, X_{b}^{s} \in M$.
Then $X_{a}^{r} \odot X_{b}^{s}=X_{a b}^{r s}=X_{\theta}^{r s} \in M$ (since M is closed under \odot).
Again, X_{a}^{r} and X_{b}^{s} are divisors of zero in the multi-ring (M, \oplus, \odot). So, X_{a}^{r} and X_{b}^{s} are non-multi-zero divisors of zero in the multi-ring (M, \oplus, \odot).

Example 3．47．Consider the multi－ring (M, \oplus, \odot) induced by the ring $(X,+, \cdot)$ as mentioned in（i）of Example 3．40． where $X=Z_{4}$ ．
Then，for $X_{[2]}^{2}, X_{[2]}^{\frac{1}{2}} \in M, X_{[2]}^{2} \odot X_{[2]}^{\frac{1}{2}}=X_{[0]}^{1}$ which is the zero element of the multi－ring (M, \oplus, \odot) induced by the ring $(X,+, \cdot)$ ．Also，$X_{[2]}^{2}$ and $X_{[2]}^{\frac{1}{2}}$ are the non－zero non－multi－zero elements of the multi－ring (M, \oplus, \odot) induced by the ring $(X,+, \cdot)$ ．So，the multi－ring (M, \oplus, \odot) induced by the ring $(X,+, \cdot)$ contains multi－divisors of zero．

Definition 3．48．（Multi－field）Let M be a general mset drawn from a ring（ $X,+, \cdot$ ）（or，a field Let $⿴ 囗 十 \square$ and \square are addition and m－multiplication respectively induced by the ring $(X,+, \cdot)$（or，a field $(X,+, \cdot)$ ）．The structure（ M, \boxplus, \square ） satisfies the followings：
（1）(M, \boxplus) is an commutative group
（2）(M, \square) is a commutative monoid
（3）Every non－zero non－multi－zero element of M has god its inverse in M with respect to \square ．
（4）\square obeys multi－distributive over \boxplus
Then we define (M, \boxplus, \square) to be a multi－field induced by the ring（or，a field）$(X,+, \cdot)$ ．
Example 3．49．$(m(\widehat{Q}), \widehat{\boxplus}, \widehat{\square})$ is a multi－field induced by the field $(Q,+$,$) ．$
Example 3．50．Consider the field（ $X,+, \cdot$ ）where $X=Z_{4}$ ，the set of all residue classes modulo 3，also，+ and ． respectively addition and multiplication modulo 3．Consider the general mset M characterized by the relation $\rho_{M}=X \times G$ where $G=\left\{2^{n}: n \in Z\right\}$ between X and G ．Then for all $a \in X$ and for all $r \in G, X_{a}^{r} \in M$ ．Let $⿴ 囗 十 \rightarrow$ and \square are m －addition and m－multiplication respectively defined on M induced by the ring $(X,+, \cdot)$ ．Let (M, \boxplus, \square) forms a multi－field induced by the field $(X,+, \cdot)$ ．

Remark 3．51．$(m(\widehat{Q}), \widehat{\boxplus}, \widehat{\square}, \widehat{\Sigma})$ is a partially ordered multi－field induced by the field $(Q,+$,$) ．$
Definition 3．52．（ Definition of multi－rational number system）A partially ordered multi－field（ $F, \boxplus, \square, \geq$ ）is called a multi－rational number system if there exists a partially ordered sub domain $\left(Z_{F}, \boxplus, \boxtimes, \geq\right)$ such that
（1）$\left(Z_{F}, \boxplus, \odot, \geq\right) \cong(m(Z), \oplus, \odot, \geq)$
（2）For every $x \in F$ ，there exists $y, z \in Z_{F}$ such that $x=y^{-1} \square z$ ．
Theorem 3．53．（Existence and uniqueness of multi－rational number system）Multi－rational number system exists and any two multi－rational number systems are isomorphic．
Proof：We have previously shown that the system $(m(\widehat{Q}), \widehat{\boxplus}, \widehat{\square}, \widehat{\geq})$ is a partially ordered multi－field drawn from the field（ $Q,+, \cdot$ ）．
Now consider the submset $m\left(Z_{\hat{Q}}\right)=\left\{Q_{a}^{b}: a \in Z, b \in Q^{+}\right\}$of $m(\hat{Q})$ ．
Again，$a \in Z, b \in Q^{+}$implies $Q_{a}^{b}=Z_{a}^{b}$ ．
So，$m\left(Z_{\hat{Q}}\right)=m(Z)$ ．
Also consider the restrictions of $\widehat{\boxplus}$ and $\widehat{\square}$ defined on $m\left(Z_{\widehat{Q}}\right)$ ．Immediately they are \oplus and \odot defined on $m(Z)$ ．
So，$\left(m\left(Z_{\widehat{Q}}\right), \widehat{\boxplus}, \widehat{\square}, \widehat{\Sigma}\right)$ is an ordered sub domain of $(m(\widehat{Q}), \widehat{\boxplus}, \widehat{\square}, \widehat{\Sigma})$ and they are isomorphic under the isomorphism $\emptyset: m\left(Z_{\hat{Q}}\right) \rightarrow m(Z)$ defined by $\emptyset\left(Q_{p}^{q}\right)=Z_{p}^{q}, Q_{p}^{q} \in m\left(Z_{\hat{Q}}\right)$ ．
Now let $Q_{p}^{q}, Q_{m}^{n} \in m\left(Z_{\hat{Q}}\right)$ such that $Q_{p}^{q} \widehat{S} Q_{m}^{n}$ ．
As，$p . m \in Z$ and $q, n \in Q^{+}$so that $Q_{p}^{q}=Z_{p}^{q}$ and $Q_{m}^{n}=Z_{m}^{n}$ ．
Now $Q_{p}^{q} \widehat{>} Q_{m}^{n} \Rightarrow$ there exists $Q_{a}^{b} \in m(\widehat{Q})$ with $a>0$ and $b \in N$ such that $Q_{p}^{q}=Q_{m}^{n} \widehat{\boxplus} Q_{a}^{b}$ ．
i．e．，$Q_{p}^{q}=Q_{m+a}^{n b} \Rightarrow p=m+a \Rightarrow a=p-m \in Z \Rightarrow Q_{a}^{b}=Z_{a}^{b}$ ．
So，$Z_{p}^{q}=Z_{m}^{n} \widehat{\boxplus} Z_{a}^{b}$ and accordingly，$Z_{p}^{q}=Z_{m}^{n} \widehat{\oplus} Z_{a}^{b}$ ．
i．e．，$\emptyset\left(Q_{p}^{q}\right)>\emptyset\left(Q_{m}^{n}\right)$ ．
Therefore，for all $Q_{p}^{q}, Q_{m}^{n} \in m\left(Z_{\hat{Q}}\right), Q_{p}^{q} \widehat{S} Q_{m}^{n} \Rightarrow \varnothing\left(Q_{p}^{q}\right)>\varnothing\left(Q_{m}^{n}\right)$ ．
Finally let，$x=Q_{a}^{b} \in m(\hat{Q})$ ，then $a \in Q$ and $b \in Q^{+}$．
So，there exists $m . n \in Z, n>0, p, q \in N$ such that $a=\frac{m}{n}$ and $b=\frac{p}{r}$ ．
Then，$x=Q_{a}^{b}=Q_{\frac{m}{n}}^{\frac{p}{q}}=Q_{\frac{1}{n}}^{\frac{1}{q}} \widehat{\bullet} Q_{m}^{p}=\left(Z_{n}^{q}\right)^{-1} \widehat{\bullet} Z_{m}^{p}=y^{-1} \widehat{\bullet} z$ ，say，where $y=Z_{n}^{q}, z=Z_{m}^{p} \in m\left(Z_{\widehat{Q}}\right)$ since $m, n \in$ $Z ; p, q \in N$ ．

Hence, $(m(\widehat{Q}), \widehat{\boxplus}, \widehat{\square}, \widehat{\Sigma})$ is a multi-rational number system and so multi-rational number system exists.
Next, let, $(m(Q), \boxplus, \square, \geq)$ and $\left(m\left(Q^{\prime}\right), \boxplus^{\prime}, \square^{\prime}, \geq \geq^{\prime}\right)$ be any two multi-rational number systems ($m(Q)$ and $m\left(Q^{\prime}\right)$ being two general msets).
Then by transitivity of isomorphism there exists an isomorphism $\emptyset: m\left(Z_{Q}\right) \rightarrow m\left(Z_{Q^{\prime}}\right)$ such that
For all $y, z \in m\left(Z_{Q}\right), \emptyset(y \boxplus z)=\emptyset(y) \boxplus^{\prime} \emptyset(z), \emptyset(y \boxtimes z)=\emptyset(y) \square^{\prime} \emptyset(z)$ and $y>z \Rightarrow \emptyset(y) \geq^{\prime} \emptyset(z)$.
Also, for any $x \in m(Q)$, there exists $y_{x}, z_{x} \in m\left(Z_{Q}\right)$ such that $x=\left(y_{x}\right)^{-1} \boxplus z_{x}$.
Define $\psi: m(Q) \rightarrow m\left(Q^{\prime}\right)$ by $\psi(x)=\left(\emptyset\left(y_{x}\right)\right)^{-1} \square^{\prime} \emptyset\left(z_{x}\right)$.
Then we can show that ψ is well defined.
Also we can show that ψ is bijective.
Again, for any $u, v \in m(Q), \psi(u \boxplus v)$
$=\psi\left[\left(\left(y_{u}\right)^{-1} \square\left(z_{u}\right)\right) \boxplus\left(\left(y_{v}\right)^{-1} \square\left(z_{v}\right)\right)\right]$
$=\psi\left[\left(\left(y_{u}\right)^{-1} \boxtimes\left(y_{v}\right)^{-1}\right) \square\left(\left(y_{v} \boxtimes z_{u}\right) \boxplus\left(y_{u} \boxtimes z_{v}\right)\right)\right]$
$=\psi\left[\left(y_{v} \boxtimes y_{u}\right)^{-1} \square\left(\left(y_{v} \square z_{u}\right) \boxplus\left(y_{u} \square z_{v}\right)\right)\right]$
$=\left(\phi\left(y_{v}\right) \boxtimes^{\prime} \phi\left(y_{u}\right)\right)^{-1} \boxtimes^{\prime}\left(\left(\varnothing\left(y_{v} \boxtimes z_{u}\right) \boxplus^{\prime} \phi\left(y_{u} \boxtimes z_{v}\right)\right)\right.$
$=\left(\left(\phi\left(y_{u}\right)\right)^{-1} \square^{\prime}\left(\phi\left(y_{v}\right)\right)^{-1}\right) \square^{\prime}\left(\left(\left(\phi\left(y_{v}\right) \boxtimes^{\prime} \phi\left(z_{u}\right)\right) \boxplus^{\prime}\left(\left(\phi\left(y_{u}\right) \square^{\prime} \emptyset\left(z_{v}\right)\right)\right)\right.\right.$
$=\left(\left(\left(\phi\left(y_{u}\right)\right)^{-1} \square^{\prime}\left(\varnothing\left(y_{v}\right)\right)^{-1}\right) \square^{\prime}\left(\left(\varnothing\left(y_{v}\right) \square^{\prime} \phi\left(z_{u}\right)\right)\right) \boxplus^{\prime}\left(\left(\left(\varnothing\left(y_{u}\right)\right)^{-1} \boxtimes^{\prime}\left(\varnothing\left(y_{v}\right)\right)^{-1}\right) \boxtimes^{\prime}\left(\left(\varnothing\left(y_{u}\right) \boxtimes^{\prime} \emptyset\left(z_{v}\right)\right)\right)\right.\right.$
$=\left(\left(\varnothing\left(y_{u}\right)\right)^{-1} \boxtimes^{\prime} \emptyset\left(z_{u}\right)\right) \boxplus^{\prime}\left(\left(\phi\left(y_{v}\right)\right)^{-1} \square^{\prime} \emptyset\left(z_{v}\right)\right)$
$=\psi(u) \boxplus^{\prime} \psi(v)$.
Similarly, we can show that $\psi(u \boxtimes v)=\psi(u) \square^{\prime} \psi(v)$.
Again, for any u,v $\in m(Q), u>v \Rightarrow\left(y_{u}\right)^{-1} \boxtimes z_{u}>\left(y_{v}\right)^{-1} \boxtimes z_{v} \Rightarrow y_{v} \boxtimes z_{u}>y_{u} \boxtimes z_{v}$ $\Rightarrow \emptyset\left(y_{v} \boxtimes z_{u}\right)>^{\prime} \phi\left(y_{u} \boxtimes z_{v}\right) \Rightarrow \emptyset\left(y_{v}\right) \square^{\prime} \phi\left(z_{u}\right)>^{\prime} \phi\left(y_{u}\right) \square^{\prime} \phi\left(z_{v}\right)$
$\Rightarrow\left(\phi\left(y_{u}\right)\right)^{-1} \square^{\prime} \emptyset\left(z_{u}\right)>^{\prime}\left(\emptyset\left(y_{v}\right)\right)^{-1} \square^{\prime} \phi\left(z_{v}\right) \Rightarrow \psi\left(\left(y_{u}\right)^{-1} \boxtimes z_{u}\right)>^{\prime} \psi\left(\left(y_{v}\right)^{-1} \boxtimes z_{v}\right) \Rightarrow \psi(u)>^{\prime} \psi(v)$.
Hence, $(m(Q), \boxplus, \square, \geq) \cong\left(m\left(Q^{\prime}\right), \boxplus^{\prime}, \square^{\prime}, \geq^{\prime}\right)$.
Hence, the uniqueness of multi-rational number system.
Remark 3.54. Therefore, $(m(\widehat{Q}), \widehat{\boxplus}, \widehat{\square}, \widehat{\Sigma})$ is a multi-rational number system. Also, multi-rational number system is unique. So, from now on we shall abandon our multi-fractional system and consider instead the multi-rational number system $(m(\widehat{Q}), \widehat{\boxplus}, \widehat{\square}, \Omega)$. Any multi-rational number system is afterwards denoted by $(m(Q), \boxplus, \square, \geq)$ where $m(Q)$ is the general mset drawn from Q characterized by the universal relation $Q \times Q^{+}$i.e., $Q_{p}^{q} \in m(Q)$ if and only if $p \in Q$ and $q \in Q^{+}$. Binary operations \boxplus and \square are defined on $m(Q)$ as follows: for $Q_{p}^{q}, Q_{r}^{s} \in m(Q)$, $Q_{p}^{q} ⿴ Q_{r}^{s}=Q_{P+r}^{q s}$ and $Q_{p}^{q} \boxtimes Q_{r}^{s}=Q_{p r}^{q s} .>$ is defined on $m(Q)$ as follows: for $Q_{p}^{q}, Q_{r}^{s} \in m(Q), Q_{p}^{q}>Q_{r}^{s}$ if and only if there exists $Q_{a}^{b} \in m(Q)$ with $a>0, b \in N$ such that $Q_{p}^{q}=Q_{r}^{s} \boxplus Q_{a}^{b}$. Also, for $Q_{p}^{q}, Q_{r}^{s} \in m(Q), Q_{p}^{q} \geq Q_{r}^{s}$ if and only if $Q_{p}^{q}>Q_{r}^{s}$ or $Q_{p}^{q}=Q_{r}^{s}$. The copy of the multi-integers embedded in $m(Q)$ will still denoted by $m(Z)$ and it has all the properties that we have proven in paper [9] if we consider it in isolation.
Remark 3.55. Consider three multi-rational numbers $Q_{\frac{2}{3}}^{3}, Q_{3}^{\frac{1}{2}}$
Then, $Q_{\frac{2}{3}}^{3} \boxplus Q_{3}^{\frac{1}{2}}=Q_{\frac{2}{3}+3}^{3 \cdot \frac{1}{2}}=Q_{3 \frac{2}{3}}^{\frac{3}{2}}$ and $Q_{\frac{2}{3}}^{3} \boxtimes Q_{3}^{\frac{1}{2}}=Q_{\frac{2}{3} \cdot 3}^{3 \cdot \frac{1}{2}}=Q_{2}^{\frac{3}{2}}$.

IV. CONCLUSION

In this paper, we have defined and studied multi-rational number system as an extension of multi-integer system. There is a huge scope of future research words in the field of multiset. Especially further study can be carried out in the following directions.
To study extension of multi-rational number system towards multi-real number system.
To study thoroughly the properties of algebraic operations and order relations defined on it.
Also, to study the properties of general mset and multi-field.

REFERENCES

[1] S. Alkhazdah, A. R. Salleh and N. Hassan, Soft multiset theory, Appl. Math. Sci., 5 (72) (2011).
[2] L. Anderson, Combinatorics of finite sets, Clarendon Press, Oxford, 1987.
[3] K. T. Atanassov, Intuionistic fuzzy sets, Fuzzy sets and Systems, 20(1986) 87-96.
[4] Wayne D. Blizart, Multiset theory, Notre Dame Journal of formal logic, 30 (1) (1989) 36-66.
[5] K. Chakraborty, R. Biswas and S. Nanda, on Yager's theory of bags and fuzzy bags, Compt. Artificial Intelligence, 18 (1) (1999) 1-17.
[6] Debjyoti Chatterjee and S.K. Samanta, An axiomatic development of multi-natural numbers, International Journal of Mathematics Trends and Technology (IJMTT), 48 (2) (2017) 136-146.
[7] Debjyoti Chatterjee and S.K. Samanta, A study on multi-integers forming a multi-integral domain, Annals of Fuzzy Mathematics and Informatics, Volume 15, No. 2. (April 2018) pp. 149-167.
[8] G. F. Clements, On multiset k-families, Discrete Mathematics, 69 (2) (1988) 153-164.
[9] A. Bronselaer, D. V. Birtosm and G. D. Tre, A framework for multiset merging, Fuzzy Sets and Systems, 191 (2012) 1-20.
[10] N. G. De Bruijin, Denumerations of rooted trees and multisets, Discrete Appl. Math., 6 (1) (1983) 25-33.
[11] N. Dershowith and Z. Manna, Proving termination with multiset orderings, Comm. ACM, 22 (1979) 465-476.
[12] K. P. Girish and S. J. John, Multiset topologies induced by multiset relations, Information Sciences, 188 (0) (2012) 298-313.
[13] K. P. Girish and S. J. John, On multiset topologies, Theory and Applications of Mathematics and Computer Science, 2 (1) (2012) 37-52.
[14] A. Hallez, A. Bronselaer and G. D. Tre, Comparison of sets and multisets, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 17 (Suppl. 1) (2009) 153-172.
[15] J. L. Hickman, A note on the concept of multiset, Bull. Austral. Math. Soc., 22 (2) (1980) 211-217.
[16] S. P. Jena, S. K. Ghosh and B. K. Tripathy, On the theory of Bags and lists, Information Sciences, 132 (14) (2001) 241-254.
$[17]$ D. E. Knuth, The art of computer programming, Volume 2 p. 636 - Seminumerical Algorithms, Second Edition - Wesley, Reading, Mass., 1981.
$[18]$ B. Li, W. Peizhang and L. Xihui, Fuzzy bags with set-valued statistics, Comput. Math. Appl., 15 (1988) 3-39.
[19] P. Majumdar and S. K. Samanta, Soft multisets, J. Math. Comput. Sci, 2 (6) (2012) 1700-1711.
[20] S. Miyamoto, Operations for real-valued bags and bag relations, in ISEA-EUSFLAT, (2009) 612-617.
[21] Sk. Nazmul, P. Majumdar and S. K. Samanta, On multisets and multigroups, Ann. Fuzzy Math. Inform., 6 (3) (2013) 643-656.
[22] G. Paun and M. J. Perez-Jimenez, Membrane computing: brief introduction, recent results and applications, Bio Systems, 85 (2006) 1122.
[23] T. K. Shinoj and Sunil Jacob John, Intuitionistic fuzzy multisets and its application in medical diagnosis, World Academy of Science, Engineering and Technology, 6 (2012) 01-28.
$[24]$ D. Sing, A. M. Ibrahim, T. Yohanna and J. N. Singh, An overview of the applications of multisets, NOVI SAD J. MATH., 37 (3) (2007) 73-92.
[25] R. R. Yagar, On the theory of bags, Int. General Syst., 13 (1986) 23-37.

