On πg^{*} b - Continuous Functions

K. Geethapadmini ${ }^{1}$, C.Janaki ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, L.R.G.Government Arts College for Women, Tirupur, Tamil Nadu, India

Abstract

The aim of this paper is to characterize $\pi g^{*} b$-closure and $\pi g^{*} b$-interior, $\pi g^{*} b$-continuous functions. Further the concept of almost $\pi g^{*} b$-continuous and their properties are discussed.

Key words: $\pi g^{*} b-c l(A), \pi g * b-i n t(A), \pi g^{*} b$-continuous and almost $\pi g * b$-continuous.

I. Introduction

Levine [8] introduced the concept of generalized closed sets in topological spaces. Andrijevic[1] introduced the concept of generalized open sets called b-open sets. Since then many authors have contributed to the study of generalized b-closed sets. In 1968 Zaitsev [19] defined π-closed sets. Dontchev and Noiri [4] introduced the notion of $\pi \mathrm{g}$-closed sets. Veerakumar[17] introduced the notion of g^{*}-closed sets. Sreeja and C.Janaki[13] introduced the concept of $\pi \mathrm{gb}$-closed sets and $\pi \mathrm{gb}$-continuity in topological spaces.

Hussain(1966) [6], M.K.Singal and A.R. Singal(1968) introduced the concept of almost continuity in topological spaces. Recently K.Geethapadmini and C.Janaki [5] introduced and studied the properties of $\pi \mathrm{g}^{*} \mathrm{~b}$ closed sets in topological spaces. The purpose of this paper is to study $\pi \mathrm{g}^{*} \mathrm{~b}$-closure, $\pi \mathrm{g} * \mathrm{~b}$-interior, $\pi \mathrm{g} * \mathrm{~b}$ continuous functions and almost $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous functions and some of its basic properties.

II. Preliminaries

Throughout this paper (X, τ) and (Y, σ) represents topological spaces on which no separation axioms are discussed. (X, τ) will be replaced by X if there is no chance of confusion.

Definition 2.1 : A subset A of a topological space X is said to be

1) a α - closed set $[10]$ if $\operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))) \subset \mathrm{A}$
2) a pre-closed set $[9]$ if $\operatorname{cl}(\operatorname{int}(\mathrm{A})) \subset \mathrm{A}$
3) a regular closed set[11] if $\mathrm{A}=\mathrm{cl}(\operatorname{int}(\mathrm{A}))$
4) b-closed set[1] if $\operatorname{int}(\operatorname{cl}(\mathrm{A})) \cap \operatorname{cl}(\operatorname{int}(\mathrm{A})) \subset \mathrm{A}$
5) π-open [19] set if A is a finite union of regular open sets.

Definition 2.2 : A subset A of a space (X, τ) is called

1) a generalized closed (briefly g-closed) [8] if $\operatorname{cl}(A) \subset U$ whenever $A \subset U$ and U is open.
2) a generalized * closed (briefly g^{*}-closed) $[17]$ if $\operatorname{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is g - open.
3) a generalized *b-closed (briefly $\mathrm{g} * \mathrm{~b}$-closed)[18] if bcl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is g-open.
4) πg - closed $[4]$ if $\operatorname{cl}(A) \subset U$ whenever $A \subset U$ and $U \pi$ - open.
5) π gp- closed[12] if $\operatorname{pcl}(A) \subset U$ whenever $A \subset U$ and $U \pi$ - open.
6) $\pi \mathrm{g} \alpha-\operatorname{closed}[14]$ if $\alpha \mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and $\mathrm{U} \pi$ - open.
7) $\pi g s-\operatorname{closed}[2]$ if $\operatorname{scl}(A) \subset U$ whenever $A \subset U$ and $U \pi$ - open.
8) $\pi g b$ - closed [13] if $\operatorname{bcl}(A) \subset U$ whenever $A \subset U$ and $U \pi$ - open.
9) $\pi g^{*} \mathrm{p}$ - closed[15] if $\operatorname{pcl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and $\mathrm{U} \pi \mathrm{g}$ - open.
10) $\pi g^{*} \mathrm{~s}$ - closed $[16]$ if $\operatorname{scl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and $\mathrm{U} \pi \mathrm{g}$ - open.
11) $\pi g^{*} \mathrm{~b}-\operatorname{closed}[5]$ if $\operatorname{bcl}(A) \subset U$ whenever $A \subset U$ and $U \pi g$ - open.

Definition 2.3 : A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called continuous (resp. α - continuous, pre- continuous, bcontinuous, $\mathrm{g} * \mathrm{~b}$ - continuous, $\pi \mathrm{gb}$ - continuous, $\pi \mathrm{g} * \mathrm{p}$ - continuous, $\pi \mathrm{g}^{*} \mathrm{~s}$ - continuous, $\pi \mathrm{g} * \mathrm{~b}$ - continuous) if $\mathrm{f}^{1}(\mathrm{~V})$ is closed (resp. α-closed, pre-closed, b-closed, $\mathrm{g} * \mathrm{~b}$-closed, $\pi \mathrm{gb}$-closed, $\pi \mathrm{g} * \mathrm{p}$-closed, $\pi \mathrm{g}^{*} \mathrm{~s}$ - closed, $\pi \mathrm{g} * \mathrm{~b}$ closed) in (X, τ) for every closed set V in (Y, σ).

Theorem 2.4:[5] Every closed, α-closed, pre-closed, b-closed, $\pi \mathrm{g}^{*} \mathrm{p}$ - closed, $\pi \mathrm{g} * \mathrm{~s}$ - closed sets are πg^{*} b- closed and the converse need not be true.

Theorem 2.5 :[5] Every πg^{*} b- closed set is $\pi g b$ - closed and $g * b$-closed and the converse need not be true.
Definition 2.6: [5] A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called $\pi g^{*} b$-irresolute if $f^{1}(V)$ is $\pi g^{*} b$-closed in X for every $\pi \mathrm{g}^{*} \mathrm{~b}$-closed set V of Y .

III. $\pi \mathrm{g} * \mathrm{~b}$-Closure and Interior

Definition 3.1: For any set $A \square X$, the $\pi g^{*} b$-closure of A is defined as the intersection of all $\pi g^{*} b$-closed sets containing A and is denoted by $\pi \mathrm{g}^{*} \mathrm{~b}-\mathrm{cl}(\mathrm{A})$.

We write $\pi \mathrm{g} * \mathrm{~b}-\mathrm{cl}(\mathrm{A})=\cap\{\mathrm{F}: \mathrm{A} \square \mathrm{F}$ is $\pi \mathrm{g} * \mathrm{~b}$-closed in X$\}$
Theorem 3.2: For any $x \in X, x \in \pi g^{*} b-c l(A)$ iff $V \cap A \neq \phi$ for every $\pi g * b$-open set V containing x.
Proof : Let us assume that there exists a $\pi g^{*} b$-open set V containing x such that $V \cap A=\phi$. Since $A \square X-V$, $\pi \mathrm{g}^{*} \mathrm{~b}-\mathrm{cl}(\mathrm{A}) \square \mathrm{X}-\mathrm{V}$. This implies $\mathrm{x} \notin \pi \mathrm{g}^{*} \mathrm{~b}-\mathrm{cl}(\mathrm{A})$, which is a contradiction to the fact that $\mathrm{x} \in \pi \mathrm{g}^{*} \mathrm{~b}-\mathrm{cl}(\mathrm{A})$. Hence, $\mathrm{V} \cap \mathrm{A} \neq \phi$ for every $\pi \mathrm{g} * \mathrm{~b}$-open set V containing x .

On the other hand, let $x \notin \pi g^{*} b$-cl(A). Then there exists a $x \notin \pi g^{*} b$-closed subset F containing A such that $x \notin F$. Then $x \in X-F$ and $x-F$ is $\pi g^{*} b$-open. Also ($\left.X-F\right) \cap A \neq \phi$ which is a contradiction. Hence the lemma.

Lemma 3.3: Let A and B be subsets of (X, τ) Then
(i) $\pi g^{*} \operatorname{b-cl}(\phi)=\phi, \quad \pi \mathrm{g} * \mathrm{~b}-\mathrm{cl}(\mathrm{X})=\mathrm{X}$
(ii) if $\mathrm{A} \square \mathrm{B}, \pi \mathrm{g}^{*} \mathrm{~b}-\mathrm{cl}(\mathrm{A}) \square \pi \mathrm{g}^{*} \mathrm{~b}-\mathrm{cl}(\mathrm{B})$
(iii) $\quad \mathrm{A} \square \pi \mathrm{g}^{*} \mathrm{~b}-\mathrm{cl}(\mathrm{A})$
(iv) $\pi \mathrm{g}^{*} \mathrm{~b}-\mathrm{cl}(\mathrm{A}) \square \pi \mathrm{g} * \mathrm{~b}-\mathrm{cl}(\pi \mathrm{g} * \mathrm{~b}-\mathrm{cl}(\mathrm{A}))$

Proof: Straight forward
Theorem 3.4: If $A \square X$, is $\pi g^{*} b-c l o s e d$, then $\pi g^{*} b-c l(A)=A$.
Proof : Follows from the definition.
Remark 3.5 : The converse of the above theorem need not be true as seen by the following example.
Example 3.6: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} . \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$. Here $\mathrm{A}=\{\mathrm{c}\} . \pi \mathrm{g}^{*} \mathrm{~b}-\mathrm{cl}(\mathrm{A})=\mathrm{A}$ but A is not $\pi \mathrm{g}^{*} \mathrm{~b}$-closed.

Definition 3.7: For any set $A \square X$, the $\pi g^{*} b$-interior of A is defined as the union of all $\pi g^{*} b$-open sets contained in A and is denoted by $\pi g^{*} \mathrm{~b}-\operatorname{int}(\mathrm{A})$.

We write $\pi \mathrm{g}^{*} \mathrm{~b}-\operatorname{int}(\mathrm{A})=\cup\left\{\mathrm{G}: \mathrm{G}\right.$ is $\pi \mathrm{g}^{*} \mathrm{~b}$-open and $\left.\mathrm{G} \square \mathrm{A}\right\}$.
Theorem 3.8 : Let A and B be subsets of X. Then
(i) $\pi g^{*} b-\operatorname{int}(\phi)=\phi, \quad \pi g^{*} b-\operatorname{int}(X)=X$
(ii) $\pi \mathrm{g}^{*} \mathrm{~b}-\operatorname{int}(\mathrm{A}) \square \mathrm{A}$
(iii) If B is any $\pi g^{*} b$-open set contained in A, then $B \square \pi g^{*} b-\operatorname{int}(A)$
(iv) If $\mathrm{A} \square \mathrm{B}, \pi \mathrm{g}^{*} \mathrm{~b}-\operatorname{int}(\mathrm{A}) \square \pi \mathrm{g}^{*} \mathrm{~b}-\operatorname{int}(\mathrm{B})$
(v) $\pi \mathrm{g}^{*} \mathrm{~b}-\operatorname{int}(\pi \mathrm{g} * \mathrm{~b}-\operatorname{int}(\mathrm{A}))=\pi \mathrm{g}^{*} \mathrm{~b}-\operatorname{int}(\mathrm{A})$.

Proof: Straight forward
Theorem 3.9: If $\mathrm{A} \square \mathrm{X}$ is $\pi \mathrm{g}^{*} \mathrm{~b}$-open, then $\pi g^{*} \mathrm{~b}-\operatorname{int}(\mathrm{A})=\mathrm{A}$.
Proof : Straight forward
Remark 3.10 : The converse of the above theorem need not be true as seen by the following example.
Example 3.11: Let $X=\{a, b, c, d\} . \tau=\{\phi,\{a\},\{c\},\{a, c\},\{c, d\},\{a, c, d\}, X\}$. Here $A=\{a, b, d\} . \pi g^{*} b-$ $\operatorname{int}(A)=A$ but A is not πg^{*} b-open.

IV. $\boldsymbol{\pi g}$ *b- Continuous Functions

Theorem 4.1 : Every continuous function is $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous.
Proof : Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a continuous function. Let V be a closed set in Y. Since f is a continuous function, $f^{-1}(V)$ is closed in X. As every closed set is $\pi g^{*} b-c l o s e d, f^{-1}(V)$ is $\pi g^{*} b-c l o s e d$. Hence, f is $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous.

Theorem 4.2 :

(i) Every α-continuous function is $\pi g^{*} b$-continuous.
(ii) Every b-continuous function is $\pi g^{*} b$-continuous.
(iii) Every pre-continuous function is $\pi g^{*} \mathrm{~b}$-continuous.
(iv) Every is $\pi g^{*} \mathrm{p}$-continuous function is $\pi g^{*} b$-continuous.
(iii) Every is $\pi g^{*} \mathrm{~s}$-continuous function is $\pi g^{*} \mathrm{~b}$-continuous.
(iv) Every is $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous function is $\pi \mathrm{gb}$-continuous.
(vii) Every is $\pi g^{*} \mathrm{~b}$-continuous function is $\mathrm{g}^{*} \mathrm{~b}$-continuous.

Proof : Straight forward
Remark 4.3 : The converse of the above theorem need not be true as seen by the following examples.
Example 4.4: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} . \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}$, $\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$. Define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{d}, \mathrm{f}(\mathrm{c})=\mathrm{a}, \mathrm{f}(\mathrm{d})=\mathrm{b}$. Here f is $\pi \mathrm{g}^{*} \mathrm{~b}-$ continuous but not continuous, α-continuous, pre-continuous and $\pi \mathrm{g} * \mathrm{p}$-continuous.

Example 4.5: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} . \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$. Define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Here f is $\pi \mathrm{g}^{*} \mathrm{~b}-$ continuous but not $\pi \mathrm{g}^{*} \mathrm{~s}$-continuous.

Example 4.6: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$. Define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{b}$. Here f is $\pi \mathrm{gb}$-continuous but not $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous.

Example 4.7: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} . \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{ac}, \mathrm{d}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}$, $b\}, X\}$. Define $f:(X, \tau) \rightarrow(Y, \sigma)$ by $f(a)=b, f(b)=c, f(c)=d, f(d)=a . f$ is $\pi g^{*} b$-continuous but not $b-$ continuous.

Remark 4.8 : Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a function. Then
(i) $\pi g * b$-continuous and $\pi g \alpha$-continuous
(ii) $\pi \mathrm{g} * \mathrm{~b}$-continuous and $\pi \mathrm{gp}$-continuous
(iii) $\pi \mathrm{g} * \mathrm{~b}$-continuous and $\pi \mathrm{gs}$-continuous
(iv) $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous and g-continuous
(v) $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous and $\mathrm{g} *$-continuous are independent concepts.

Example 4.9: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}, \sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$. The function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$ is $\pi \mathrm{g} \alpha$-continuous, $\pi \mathrm{gp}$-continuous, $\pi \mathrm{gs}-$ continuous but not $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous.

Example 4.10 : Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}, \sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$. The function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$ is $\pi \mathrm{g} * \mathrm{~b}$-continuous but not $\pi \mathrm{g} \alpha$ continuous, $\pi \mathrm{gp}$-continuous, $\pi \mathrm{gs}$-continuous, g -continuous, and g^{*}-continuous.

Example 4.11: Let $X=Y=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}, \sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}$, $c, d\}, X\}$. The function $f:(X, \tau) \rightarrow(Y, \sigma)$ defined by $f(a)=c, f(b)=d, f(c)=a, f(d)=b$ is g-continuous but not $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous.

Example 4.12: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$,
$\sigma=\{\phi,\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$. The identity function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is g^{*}-continuous but not $\pi \mathrm{g} * \mathrm{~b}$-continuous.

Example 4.13: Let $X=Y=\{a, b, c, d, e\}, \tau=\{\phi,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\},\{a, c, d\},\{a$, $\mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}, \sigma=\{\phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}\}, \mathrm{X}\}$. The function defined by $\mathrm{f}(\mathrm{a})=\mathrm{a}$, $\mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{d}, \mathrm{f}(\mathrm{d})=\mathrm{c}, \mathrm{f}(\mathrm{e})=\mathrm{e}$ is $\mathrm{g}^{*} \mathrm{~b}$ continuous but not $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous.

Fig. 1

V. Almost $\boldsymbol{\pi} \mathbf{g} * \mathbf{b}$ - Continuous Functions

Definition 5.1 : A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called almost $\pi g^{*} b$-continuous if $f^{1}(V)$ is $\pi g^{*} b$-closed in X for every regular closed set V of Y .

Theorem 5.2 : For a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$, the following statements are equivalent.
(i) f is almost $\pi \mathrm{g} * \mathrm{~b}$-continuous
(ii) $f^{-1}(V)$ is $\pi g^{*} b$-open in X for every regular open set V of Y
(iii) $\mathrm{f}^{1}\left(\operatorname{int}(\operatorname{cl}(\mathrm{~V}))\right.$ is $\pi g^{*} \mathrm{~b}$-open in X for every open set V of Y .
(iv) $\mathrm{f}^{-1}\left(\operatorname{cl}(\operatorname{int}(\mathrm{~V}))\right.$ is $\pi \mathrm{g}^{*} \mathrm{~b}$-closed in X for every closed set V of Y .

Proof : (i) \Rightarrow (ii)

Suppose f is almost $\pi g^{*} b$-continuous. Let V be a regular open subset of Y. Since $Y-V$ is regular closed and f is almost $\pi g^{*} b$-continuous, $f^{1}(Y-V)=X-f^{1}(V)$ is $\pi g^{*} b$-closed in X. Hence $f^{1}(V) \pi g * b$-open in X.
(ii) \Rightarrow (i)

Let V be a regular closed subset of Y. Then $Y-V$ is regular open. By hypothesis, $f^{-1}(Y-V)=X-f^{-1}(V)$ is $\pi g^{*} b$-open in X. Therefore $f^{1}(V)$ is $\pi g^{*} b$-closed. Hence f is almost $\pi g^{*} b$-continuous.
(ii) \Rightarrow (iii)

Let V be an open subset of Y . Then int $(\mathrm{cl}(\mathrm{V}))$ is regular open in Y . By hypothesis, $\mathrm{f}^{1}(\operatorname{int}(\mathrm{cl}(\mathrm{V}))$ is $\pi \mathrm{g} * \mathrm{~b}$-open in X .
(iii) \Rightarrow (ii)

Let V be a regular open subset of Y. Since $V=\operatorname{int}(\operatorname{cl}(V))$ and every regular open set is open then $f^{-1}(V) \pi g^{*} b$ open in X .
(iii) \Rightarrow (iv)

Let V be a closed subset of Y . Then $\mathrm{Y}-\mathrm{V}$ is open in Y .
By hypothesis, $\mathrm{f}^{1}\left(\operatorname{int}(\mathrm{cl}((\mathrm{Y}-\mathrm{V})))=\mathrm{f}^{1}(\mathrm{Y}-\operatorname{cl}(\operatorname{int}(\mathrm{V})))=\mathrm{X}-\mathrm{f}^{1}(\mathrm{cl}(\operatorname{int}(\mathrm{V})))\right.$ is $\pi \mathrm{g}^{*} \mathrm{~b}$-open in X . Hence, f ${ }^{1}(\operatorname{cl}(\operatorname{int}(\mathrm{~V})))$ is $\pi \mathrm{g}^{*} \mathrm{~b}$-closed in X .
(iv) \Rightarrow (iii)

Let V be an open subset of Y . Then $\mathrm{Y}-\mathrm{V}$ is closed in Y.
By hypothesis, $\mathrm{f}^{1}(\mathrm{cl}(\operatorname{int}(\mathrm{Y}-\mathrm{V})))=\mathrm{f}^{1}(\mathrm{Y}-\operatorname{int}(\mathrm{cl}(\mathrm{V})))=\mathrm{X}-\mathrm{f}-1(\operatorname{int}(\mathrm{cl}(\mathrm{V})))$ is $\pi \mathrm{g}^{*} \mathrm{~b}-\operatorname{closed}$ in X .
Hence $f^{1}\left(\operatorname{int}(\operatorname{cl}(V))\right.$ is $\pi g^{*} b$-open in X.
Theorem 5.3: Every $\pi g^{*} b$-continuous function is almost $\pi g^{*} b-c o n t i n u o u s$.
Proof : Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous. Let V be a regular closed set in Y . Then V is closed in Y . since f is $\pi g * b$-continuous $f-1(V)$ is $\pi g^{*} b$-closed in X. Hence f is almost $\pi g * b$-continuous.

Remark 5.4: The converse of the above theorem need not be true as seen in the following example.
Example 5.5 : Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}, \mathrm{X}$,$\} and \sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}, \mathrm{X}\}$. Define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{b}$. Here f is almost $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous but not $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous.

Theorem 5.6 : An R-map is almost $\pi g^{*} \mathrm{~b}$-continuous.
Proof : Let $f: X \rightarrow Y$ is an R-map and V be a regular closed subset in Y. Therefore $f^{-1}(V)$ is a regular closed set in X. Since every regular closed set closed, $\quad f^{1}(V)$ is closed in X. Thus, $f^{1}(V)$ is $\pi g^{*} b$-closed in X. Hence f is almost $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous.

Remark 5.7 : The converse of the above theorem need not be true as seen in the following example.
Example: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\phi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{d}\}$, $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$. The function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ defined by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{d}, \mathrm{f}(\mathrm{c})=\mathrm{a}, \mathrm{f}(\mathrm{d})=\mathrm{c}$ is almost $\pi \mathrm{g} * \mathrm{~b}-$ continuous but not an R-map.

Theorem5.8: If $f: X \rightarrow Y$ is almost b-continuous then f is $f: X \rightarrow Y$ is almost $\pi g^{*} b$-continuous.
Proof : Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an almost b-continuous. Let V be a closed set in Y . Then $\mathrm{f}^{-1}(\mathrm{~V})$ is b-closed in X . since every b-closed set is $\pi g^{*} b$-closed, $f^{1}(V)$ is $\pi g^{*} b$-closed. Hence f is almost πg^{*} b-continuous.

Remark 5.9: The converse of the above theorem need not be true as seen in the following example
Example 5.10 : Let $X=Y=\{a, b . c\}, \tau=\{\phi,\{a\},\{b, c\}, X\}$ and $\sigma=\{\phi,\{a\},\{b\},\{a, b\},\{b, c\}, X\}$. The identity function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is almost $\pi \mathrm{g}^{*} \mathrm{~b}$-continuous but not b -continuous.

Theorem 5.11: Let X be a $\pi g^{*} b-T_{1 / 2}$ space. Then $f: X \rightarrow Y$ is almost $\pi g^{*} b$-continuous iff f is almost bcontinuous.

Proof : Suppose $f: X \rightarrow Y$ is almost $\pi g^{*} b$-continuous. Let V be a regular closed subset in Y. Then $f^{-1}(V)$ is $\pi g^{*} b$-closed in X . since X is $\pi \mathrm{g}^{*} \mathrm{~b}-\mathrm{T}_{1 / 2}$ space, $\mathrm{f}^{-1}(\mathrm{~V})$ is b-closed in X .

Therefore f is almost b-continuous.
Conversely, suppose that $f: X \rightarrow Y$ is almost b-continuous. Let V be a regular closed subset in Y. Then $f^{1}(V)$ is b-closed in X. Since every b-closed set is $\pi g^{*} b$-closed, $f^{1}(V)$ is $\pi g^{*} b$-closed. Therefore f is almost $\pi g^{*} b$ continuous.

Theorem 5.12 : Every πg^{*} b-irresolute function is almost $\pi g^{*} \mathrm{~b}$-continuous.
Proof : Straight forward.
Remark 5.13 : The converse of the above theorem need not be true as seen in the following example
Example: 5.14 Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}, \sigma=\{\phi,\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$. Define $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow$ (X, σ) by $f(a)=a, f(b)=c, f(c)=b$. Then f is almost $\pi g^{*} b-$ continuous but not $\pi \mathrm{g}^{*} \mathrm{~b}$ irresolute.

REFERENCES

[1] D.Andrijevic, On b-open sets, Mat.Vesnik 48 (1996), 59-64
[2] G.Aslim, A.Caksu Guler and T.Noiri, On πg s closed sets in topological spaces, Acta Math.Hunger, 112 (4)(2006)275-283.
[3] Balachandran K, P.Sundram, and J.Maki, On generalized continuous maps in topological spaces, mem.Fac/Sci.KochiUniv(math) 12(1991), 5-13.s
[4] Dontchev and T.Noiri, Quasi normal spaces and πg-closed sets, Acta Math.Hungar., 89(3) (2000), 211-219.
[5] Geethapadmini K and Janaki C, On $\pi g^{*} b$-closed sets in topological spaces,
[6] Hussain T, Almost continuous mappings, Prace Mat., 10(1966), 1-7.
[7] Jeyanthi V and Janaki C, On $\pi g r$-continuous functions, Inter J.Eng. research and Appl., Vol.3, Jan-Feb. (2013), 1861-1870.
[8] N.Levine, Genaralized closed sets in topology, Rend.Circ.Mat. Palermo(2) 19 919700, 89-96.
[9] Mashhour A.S., and Abd El-Monsef M.E. and EI-Deep. S.N., On pre-continuous and weak pre-continuous mapping, Proc.Math., Phys,Soc.Egypt, 53, (1982), 47-53.
[10] O.Njastad, On some classes of nearly open sets, Pacific J.of math., 15 (1965), 961-970.
[11] Palaniappan N, Regular generalized star openand generalized starregular open sets I Topology, J.Indian Acad.Math., Vol 23, No.2(2001), 197-204.
[12] Park J.H, On $\pi g p$ closed sets in topological spaces, acta Mathematica Hungarica, 12, (4), 257-283.
[13] D.Sreeja and C.Janaki, On $\pi g b$ closed sets in topological spaces, Int.J.of Mathematical Arcive-2(8), 2011, 1314-1320
[14] D.Sreeja and C.Janaki, Studies on $\pi g \alpha$ closed sets in topology, Ph.D Thesis,Bharathiar University, Coimbatore (2009)
[15] P.Sathishmohan, V. Rajendran and N. Bhuvaneswari, On $\pi g^{*} p$ closed sets in Topological Spaces, J.of Appl.Sci and Comp., Vol. 5(2018), 629-634.
[16] P.Sathishmohan, V. Rajendran and P.Jeevitha, On πg^{*} s irresolute functions in Topological Spaces, Int.J.of Matand appl., 6, (2018) 201-207
[17] Veerakumar M.K.R.S, Between closed sets and g-closed sets, Kochi University series Mathematics, 17(21),(2000), 1-19.
[18] D.Vidhya and R.Parimelazhagan, $g * b$-closed sets in Topological spaces, Int.J.of Contemp.Math.Sciences, 7 (27) (2012), 13051312.
[19] Zaitsev V , On certain class of Topological spaces and their bicompactification, Dok Akad Nauk SSSR 178(1968), 778-779

