CDPU Hypergraphs

Beena Koshy

Assistant Professor, Department of Mathematics, Catholicate College, Pathanamthitta, Kerala, India

Abstract - A graph G = (V, E) is complementary distance pattern uniform (CDPU), if there exists $M \square V(G)$ such that $f_M(u) = \{d(u, v) : v \in M\}$, for every $u \in V(G)$ - M, is independent of the choice of $u \in V(G)$ - M and the set M is called the CDPU set. In this paper, we extend the notion of CDPU sets into hypergraphs. As every graph admits a CDPU set and a graph has more than one CDPU set, we can construct a hypergraph corresponding to that graph with the same vertex set and edge set corresponds to the different CDPU sets of a graph G.

Keywords — Complementary distance pattern uniform set, CDPU hypergraph.

I. INTRODUCTION

For all terminology and notation in graph theory, not defined specifically in this paper, we refer the reader to Harary [8]. Unless mentioned otherwise, all the graphs considered in this paper are simple, self-loop-free and finite. B.D.Acharya [9] define the M- distance pattern of a vertex as follows:

Let G = (V, E) be a (p, q) graph and M be any non-empty subset of V(G). Then, the M-distance pattern of u is the $setf_M(u) = \{d(u, v): v \in M\}$, where d(u, v) denotes the usual distance between u and v in G. If for a subset M of vertices in a graph G = (V, E), f_M is injective, then the set M is called the distance pattern distinguishing set (DPD-set in short). Germina and Beena[7]defined Complementary Distance Pattern Uniform (CDPU) Graphas, if $f_M(u)$ is independent of the choice of $u \in V\text{-}M$, then G is called a Complementary Distance Pattern Uniform (CDPU) Graph and the set M is called the CDPU set. The least cardinality of CDPU set in G is called the CDPU number of G, denoted G(G).

II. CDPU HYPERGRAPHS

Let G be a connected graph on n vertices. When |M| = n - 1 and eccentricity of a vertex in M is same as the eccentricity of avertex in V -M, then we say that M is a trivial CDPU set. All other CDPU sets are said to be non-trivial.

Here, we are considering only non-trivial CDPU sets.

Definition 2.1 Let M_1 , M_2 , ... M_k be the non-trivial CDPU sets of a graph with $V(G) = \{v_1, v_2, ...v_n\}$. The CDPU hypergraph of G, denoted by H_G , is defined $V(H_G) = \{v_1, v_2, ...v_n\}$ and $E(H_G) = \{M_1, M_2, ...M_k\}$

Since every connected graph possess CDPU sets, we can easily see that there corresponds a CDPU hypergraph H_G for every graph G.

CDPU HYPERGRAPHS OF VARIOUS CLASSES OF GRAPHS

Theorem 2.2The CDPU hypergraph of K₃ is a totally disconnected graph on 3 vertices.

Fig. 1 K₃ and the corresponding CDPU graph

Proof: The CDPU sets for a complete graph K_3 with vertices $\{v_1, v_2, v_3\}$ are $M_1 = \{v_1\}$, $M_2 = \{v_2\}$ and $M_3 = \{v_3\}$. Hence we have three vertices and three edges that are totally disconnected in the corresponding hypergraph.

Theorem 2.3The CDPU hypergraph of K_4 is $(K_4)_2$.

Fig. 2: K_4 and the corresponding CDPU graph

Proof: Let $V(K_4) = \{v_1, v_2, v_3, v_4\}$. The CDPU sets are $\{v_1\}, \{v_2\}, \{v_3\}, \{v_4\}, \{v_1, v_2\}, \{v_1, v_3\}, \{v_1, v_4\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}$. Hencein H_{K_4} , there are four vertices and ten edges which is isomorphic to $(K_4)_2$.

Hence, we generalize the case of a CDPU hypergraph corresponding to a complete graph in Theorem 2.4.

Theorem 2.4 $H_{K_n} \cong (K_n)_{n-2}$

Theorem 2.5 The CDPU hypergraph of a path P_n , n even is an n-2 uniform hypergraph.

Fig.3: P₆and the corresponding CDPU graph

Proof: For a path P_n with n even, there are exactly two vertices with the same eccentricity. Hence, there are exactly $\frac{n}{2}$ different eccentricities for P_n . Let it be $e_1, e_2, \dots e_{\frac{n}{2}}$. Then, $M_i = V(P_n)$ - {vertices corresponding to eccentricity e_i } are the $\frac{n}{2}$ different CDPU sets for G. Thus, all M_i 's contains n-2 vertices. Hence, H_{P_n} is ann-2 uniform hypergraph.

Remark 2.6For a path P_n with n odd, there is only one vertex with eccentricity $\frac{d}{2}$, where d is the diameter of P_n and exactly two vertices with the eccentricities $\frac{d}{2}+1,\frac{d}{2}+2,...d$. Hence, there are exactly $\frac{n+1}{2}$ different eccentricities for G.Let it be $e_1,e_2,...e_{\frac{n+1}{2}}$. Then, $M_i = V(P_n)$ - {vertices corresponding to eccentricity e_i } are the $\frac{n+1}{2}$ different CDPU sets for G. Thus in H_{P_n} , exactly one hyperedge contains n-1 vertices and all other hyperedges contains n-2 vertices.

Fig.4: P₅ and the corresponding CDPU hypergraph

Remark 2.7Let $G \cong K_{1,n}$ with $V(G) = \{u, v_1, v_2, \dots v_n\}$ with u as the central vertex. Since $\{u\}$, the union of v and every n-j, j = 2, 3,... n-1 combinations and $\{v_2, v_3, \dots v_n\}$ are CDPU sets, so are the hyper edges in H_G .

Fig 5: $K_{1,3}$ and the corresponding CDPU hypergraph

Theorem 2.8 The CDPU hypergraph of the cycle C_4 is K_4 .

Fig.6: C₄ and the corresponding CDPU hypergraph

Proof: The CDPU sets for a cycle C_4 with vertices $\{v_1, v_2, v_3, v_4\}$ are $M_1 = \{v_1, v_3\}$, $M_2 = \{v_2, v_4\}$, $M_3 = \{v_1, v_4\}$, $M_4 = \{v_3, v_4\}$, $M_5 = \{v_2, v_3\}$, $M_6 = \{v_1, v_2\}$. There are four vertices and six edges in H_{C_4} witheach of the vertices have degree three which implies that $H_{C_4} \cong K_4$.

Theorem 2.9 The CDPU hypergraph of C_5 is a 3- uniform hypergraph.

Proof: Let $V(C_5) = \{v_1, v_2, v_3, v_4, v_5\}$. The CDPU sets are $M_1 = \{v_1, v_2, v_3\}$; $M_2 = \{v_2, v_3, v_4\}$; $M_3 = \{v_3, v_4, v_5\}$; $M_4 = \{v_4, v_5, v_1\}$; $M_5 = \{v_5, v_1, v_2\}$. Thus in H_{C_5} , there are five vertices and five edges in which each of the vertices have degree three, implies that H_{C_5} is a 3-uniform hypergraph.

Theorem2.10 H_G is a 1-uniform hypergraph if and only if $G \cong K_2$ or K_3 .

Proof: Let $G \cong K_2$ and $V(G) = \{v_1, v_2\}$. Then $M_1 = \{v_1\}$ and $M_2 = \{v_2\}$ are the CDPU sets which implies in H_G , there are two vertices with loop in each vertex. Let $G \cong K_3$ and $V(K_3) = \{v_1, v_2, v_3\}$. Then $M_1 = \{v_1\}$, $M_2 = \{v_2\}$ are the CDPU sets which implies in H_G , there are three vertices with loop in each vertex. Hence, if $G \cong K_2$ or K_3 , then H_G is a 1-uniform hypergraph.

Conversely, assume that H_G is a 1-uniform hypergraph. Thus, there exists loop on each vertex. Clearly, H_G is a disconnected graph. Also, each M_i contains exactly one vertex implies that every vertex in G is a full degree vertex. Hence, $G \cong K_n$. When $G \cong K_n$, $n \ge 4$, there should be CDPU sets with |M| = 1, 2, ..., n-2. Hence, $G \cong K_2$ or K_3

Fig. 7: P₃ and the corresponding CDPU hypergraph

Remark 2.11 Let Gbe a connected graph with three vertices. Then $G \cong P_3$ or K_3 . When $G \cong P_3$, with $V(P_3) = \{v_1, v_2, v_3\}$, then $M_1 = \{v_2\}$ and $M_2 = \{v_1, v_3\}$ are two CDPU sets for G. In H_G , M_1 and M_2 are two hyperedges that are not connected [see Fig. 7]. So H_G is disconnected. Then $G \cong K_3$ with $V(K_3) = \{u_1, u_2, u_3\}$, then $M_1 = \{u_1\}$, $M_2 = \{u_2\}$, $M_3 = \{v_3\}$ are three CDPU sets for G [seeFig. 1]. Hence, H_G is disconnected.

Fig.8: Graphs and corresponding CDPU graphs

Theorem 2.12 Let G be a connected graph with 4 vertices. Then, H_G is disconnected if and only if $G \cong P_4$ or K_4 -x

Proof: Fig.8 shows the different connected graphs on 4 vertices and their corresponding CDPU hypergraphs.

When $G \cong P_4$ with $V(P_4) = \{v_1, v_2, v_3, v_4\}$, $M_1 = \{v_2, v_3\}$ and $M_2 = \{v_1, v_4\}$ are the CDPU sets which gives a disconnected CDPU hypergraph.

When $G \cong K_4$ -x with $V(K_4$ -x) = $\{v_1, v_2, v_3, v_4\}$, $M_1 = \{v_2, v_4\}$, $M_2 = \{v_2\}$, $M_3 = \{v_4\}$ and $M_4 = \{v_1, v_3\}$ are the CDPU sets which gives a disconnected CDPU hypergraph.

Conversely, assume that G is not isomorphic to P_4 or K_4 -x. $G \cong C_4$ implies H_G , a connected hypergraph. When $G \cong G_2$, G_5 and G_6 implies H_G , a connected hypergraph.

Remark 2.13 Let G be a graph on $p \ge 5$ vertices. Then, H_G is connected.

Theorem 2.14 H_G is disconnected if and only if $G \cong K_2$, K_3 , P_3 , P_4 and K_4 -x.

Theorem 2.15 H_G is a2-uniform hypergraph if and only if $G \cong P_4$ or C_4 .

Proof: When $G \cong P_4$ or C_4 , clearly H_G is a 2-uniform hypergraph.

Conversely, assume that H_G is a 2-uniform hypergraph. Then, there exists M_i 's such that $|M_i| = 2$, for every i. Thus, the diameter of G is atleast two [see Fig.8]. For graphs with diameter two, except C_4 has some M with |M| > 2. When diameter is three, all but P_4 , has M such that |M| > 2. If diameter is greater than three, then clearly $|M| \ge 3$.

Remark 2.16 If v is a vertex of full degree in a graph G, then there exist an M with $M = \{v\}$ and hence, there is a loop incident with the vertex v and conversely. Thus, anedge in H_G is a loop if and only if G has a full degreevertex.

Remark 2.17 Every vertex in H_G is incident with a loopif and only if $G \cong K_n$.

Remark 2.18 For a graph G with CDPU sets M_i , i = 1, 2, ..., k and $M_i \cap M_j \neq \emptyset$, for every i and j; $\bigcap_{i=1}^k M_i = \emptyset$. Thus CDPUhypergraph does not follow Helly property.

CONCLUSIONS

Every connected graph possess CDPU sets. In this paper, an idea of using these CDPU sets for constructing a new hypergraph is introduced. CDPU hypergraph of various classes of graphs and various properties of these hypergraphs are established.

REFERENCES

- B.D. Acharya, Contributions to the Theories of Graphs, Graphoids and Hypergraphs, The Indian Institute of Technology, Bombay, 1975.
- [2] B.D. Acharya, Interrelations among the notions of independence, domination and full sets in a hypergraph, Nat. Acad. Sci. Letters, Vol.13, No.11, 1990.
- [3] B.D. Acharya and M. Lasvergnas, Hypergraphs with cyclomatic number zero, triangulated graphs, and an inequality, J. Combin.Theory, B.33 (1982), 52-56.
- [4] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
- [5] C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland, Amsterdam, 1989.
- [6] M. Buratti, G. Burosch and P.V. Ceccherint, A characterization of hypergraphs which are products of a finite number of edges, Rendiconti diMatematica, Serie VII Volume 17, Roma (1997),373-385.
- [7] Germina K.A., Beena Koshy, Complementary Distance Pattern Uniform Graphs, International Journal of Contemporary Mathematical Sciences, Volume 5, No. 55, pp.2745-2751, 2010.
- [8] F. Harary, Graph Theory, AddisonWesley, Reading Massachusetts, 1969.
- [9] Technical Report, DST grant-in-aid project No.SR/S4/MS:277/05, funded by the Department of Science Technology (DST), April 2011.