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Abstract - A graph G = (V, E) is complementary distance pattern uniform (CDPU), if there exists M ⸦V(G)such 
that fM(u) = {d(u, v) : v ϵ M}, for every u ϵ V(G) - M, is independent of the choice of u ϵ V(G) -M and the set M is 

called the CDPU set. In this paper, we extend the notion of CDPU sets into hypergraphs. As every graph admits 

a CDPU set and a graph has more than one CDPU set, we can construct a hypergraph corresponding to that 

graph with the same vertex set and edge set corresponds to the different CDPU sets of a graph G. 
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I. INTRODUCTION 

For all terminology and notation in graph theory, not defined specifically in this paper, we refer the reader to 

Harary [8]. Unless mentioned otherwise, all the graphs considered in this paper are simple, self-loop-free and 

finite. B.D.Acharya [9] define the M− distance pattern of a vertex as follows : 

Let G = (V, E) be a (p, q) graph and M be any non-empty subset of V(G). Then, the M-distance pattern of u is 
the setfM(u) = {d(u, v): v ϵ M}, where d(u, v) denotes the usual distance between u and v in G. If for a subset M 

of vertices in a graph G = (V, E), fM is injective, then the set M is called the distance pattern distinguishing set 

(DPD-set in short).Germina and Beena[7]defined  Complementary Distance Pattern Uniform (CDPU) Graphas, 

if fM(u) is independent of the choice of u ϵ V-M, then G is called a Complementary Distance Pattern Uniform 

(CDPU) Graph and the set M is called the CDPU set. The least cardinality of CDPU set in G is called the CDPU 

number ofG, denoted σ(G). 

II. CDPU HYPERGRAPHS 

Let G be a connected graph on n vertices. When |M| = n - 1 and eccentricity of a vertex in M is same as the 

eccentricity of avertex in V -M, then we say that M is a trivial CDPU set. All other CDPU sets are said to be 

non-trivial. 

Here, we are considering only non-trivial CDPU sets. 

 
Definition 2.1   Let M1, M2, …Mk be the non-trivial CDPU sets of a graph  with V(G) = {v1, v2, …vn}.The 

CDPU hypergraph of G, denoted by HG, is defined V(HG) = {v1, v2, …vn}and E(HG) = {M1, M2, …Mk} 

 

Since every connected graph possess CDPU sets, we can easilysee that there corresponds a CDPU hypergraph 

HG for everygraph G. 

 

CDPU HYPERGRAPHS OF VARIOUS CLASSES OF GRAPHS 

 

Theorem 2.2The CDPU hypergraph of K3 is a totally disconnected graph on 3 vertices. 

 

 
Fig. 1 K3 and the corresponding CDPU graph 

 

Proof: The CDPU sets for a complete graph K3 with vertices {v1,v2,v3} are M1 = {v1}, M2 = {v2} and M3 = {v3}. 

Hence we have three vertices and three edges that are totally disconnected in the corresponding hypergraph. 
 

Theorem 2.3The CDPU hypergraph of K4 is (K4)2. 
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Fig. 2: K4 and the corresponding CDPU graph 

 
Proof: Let V(K4) = {v1, v2, v3, v4}. The CDPU sets are {v1},{v2},{v3},{v4},{v1, v2},{v1, v3},{v1, v4},{v2, v3},{v2, 

v4},{v3, v4}. Hencein 𝐻𝐾4
,  there are four vertices and ten edges which is isomorphic to (K4)2. 

 

Hence, we generalize the case of a CDPU hypergraph corresponding to a complete graph in Theorem 2.4. 

 

Theorem 2.4𝐻𝐾𝑛
≅ (𝐾𝑛 )𝑛−2 

 

 

Theorem 2.5  The CDPU hypergraph of a path 𝑃𝑛 , n evenis an n-2 uniform hypergraph. 

 

 

 
Fig.3: P6and the corresponding CDPU graph 

 

Proof: For a path Pn with n even, there are exactly two vertices with the same eccentricity. Hence, there are 

exactly 
𝑛

2
 different eccentricities for Pn. Let it be𝑒1 , 𝑒2 ,… 𝑒𝑛

2
. Then, Mi = V(Pn)- {vertices corresponding to 

eccentricity ei}are the 
𝑛

2
different CDPU sets for G. Thus, allMi's contains n-2 vertices. Hence, 𝐻𝑃𝑛

 is ann-2 

uniform hypergraph. 

 

Remark 2.6For a path Pn with n odd, there is only one vertex with eccentricity 
𝑑

2
, where d is the diameter of Pn 

and exactly two vertices with the eccentricities 
𝑑

2
+ 1,

𝑑

2
+ 2, …𝑑. Hence, there areexactly 

𝑛+1

2
different 

eccentricities for G.Let it be 𝑒1 , 𝑒2 ,… 𝑒𝑛+1

2
. Then, Mi = V(Pn) - {vertices corresponding to eccentricity ei} are the 

𝑛+1

2
 different CDPU sets for G. Thus in 𝐻𝑃𝑛

, exactly one hyperedge contains n-1 vertices and all other 

hyperedges contains n-2 vertices. 
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Fig.4: P5 and the corresponding CDPU hypergraph 

 

Remark 2.7Let𝐺 ≅ 𝐾1,𝑛  with V(G) = {u, v1, v2, … vn} with u as the central vertex. Since {u}, the union of v 

and every n-j, j = 2, 3,… n-1 combinations and {v2, v3, … vn}are CDPU sets,  so are the hyper edges in HG. 

 

 

 
Fig 5: 𝐾1,3  and the corresponding CDPU hypergraph 

 

 

 

Theorem 2.8  The CDPU hypergraph of the cycle C4 is K4. 
 

 
Fig.6: C4 and the corresponding CDPU hypergraph 

 

Proof: The CDPU sets for a cycle C4 with vertices {v1, v2, v3, v4} areM1 = {v1, v3}, M2 = {v2, v4}, M3 ={v1,v4}, 

M4 = {v3, v4}, M5 ={v2, v3}, M6 = {v1,v2}. There are four vertices and six edges in 𝐻𝐶4
 witheach of the vertices 

have degree three which implies that𝐻𝐶4
 ≅ 𝐾4. 

 

Theorem 2.9  The CDPU hypergraph of C5 is a 3- uniform hypergraph. 

 

Proof : Let V(C5) = { v1, v2, v3, v4, v5}.The CDPU sets are M1 = {v1, v2, v3}; M2 = {v2, v3, v4}; M3 = {v3, v4, v5}; 

M4={v4, v5, v1};M5 = {v5, v1, v2}. Thus in 𝐻𝐶5
, there are five vertices and five edges in which each of the 

vertices have degree three, impliesthat 𝐻𝐶5
 is a3-uniform hypergraph. 

 

Theorem2.10 HG is a 1-uniform hypergraph if and only if G ≅ K2 or K3. 

 

Proof: Let G ≅ K2 and V(G) = {v1, v2}. Then M1 = {v1} and M2 = {v2} are the CDPU sets which implies in HG, 

there are two vertices with loop in each vertex. Let G ≅ K3 and V(K3) = {v1, v2, v3}. Then M1 = {v1}, M2 

={v2}and M3 = {v3} are the CDPU sets which implies in HG, there are three vertices with loop in each vertex.  

Hence, if G ≅ K2 or K3, then HG is a 1-uniform hypergraph. 
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Conversely, assume that HG is a 1-uniform hypergraph. Thus, there exists loop on each vertex. Clearly, HG is a 

disconnected graph. Also, each Mi contains exactly one vertex implies that every vertex in G is a full degree 

vertex. Hence, G ≅ Kn. When G ≅ Kn, n ≥ 4, there should be CDPU sets with |M| = 1, 2, …, n-2. 

Hence, G ≅ K2 or K3  

 

 
Fig.7: P3 and the corresponding CDPU hypergraph 

 

Remark 2.11 Let Gbe a connected graph with three vertices. Then G ≅ P3or  K3. When G ≅ P3, with  

V(P3) = {v1, v2, v3}, then M1 = {v2} and M2 = {v1, v3} are two CDPU sets for G. In HG, M1 and M2 are two 

hyperedges that are not connected [see Fig. 7]. So HG is disconnected. Then G ≅ K3 with V(K3) = {u1, u2, u3}, 

then M1 = {u1}, M2 = {u2}, M3 = {v3} are three CDPU sets for G [seeFig. 1]. Hence, HG is disconnected. 

 

 
Fig.8: Graphs and corresponding CDPU graphs 
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Theorem 2.12 Let G be a connected graph with 4 vertices. Then, HG is disconnected if and only if  

G ≅ P4 or K4-x 

 

Proof: Fig.8 shows the different connected graphs on 4 vertices and their corresponding CDPU hypergraphs. 

 

When G ≅ P4 with V(P4) = {v1, v2, v3,v4}, M1 = {v2, v3} and M2 = {v1, v4} are the CDPU sets which gives a 

disconnected CDPU hypergraph. 

When G ≅ K4-x with V(K4-x) = {v1, v2, v3,v4}, M1 = {v2, v4}, M2 = {v2}, M3= {v4} and M4 ={v1, v3} are the 

CDPU sets which gives a disconnected CDPU hypergraph. 

Conversely, assume that G is not isomorphic to P4 or K4-x. G ≅ C4 implies HG, a connected hypergraph. When  

G≅ G2, G5 and G6 implies HG, a connected hypergraph. 

 

Remark 2.13 Let G be a graph on p ≥ 5 vertices. Then, HG is connected. 

 

Theorem 2.14 HG is disconnected if and only if G ≅ K2, K3, P3,P4 and K4-x. 

 

Theorem 2.15  HG is a2-uniform hypergraph if and only if G ≅ P4 or C4. 

 

Proof: When G ≅ P4 or C4, clearly HG is a 2-uniform hypergraph. 

 

 Conversely, assume that HG is a 2-uniform hypergraph. Then, there exists Mi's such that |Mi| = 2, for every i. 

Thus, the diameter of G is atleast two [see Fig.8]. For graphs with diameter two, except C4 has some M with |M| 

> 2. When diameter is three, all but P4, has M such that |M| > 2. If diameter is greater than three, then clearly |M| 
≥ 3. 

 

Remark 2.16  If v is a vertex of full degree in a graph G, then there exist an M with M = {v} and hence, there is 

a loop incident with the vertex v and conversely. Thus, anedge in HG is a loop if and only if G has a full 

degreevertex. 

 

Remark 2.17  Every vertex in HG is incident with a loopif and only if G ≅ Kn. 

 

Remark 2.18  For a graph G with CDPU sets Mi, i = 1, 2, …,k and Mi∩ Mj≠ ∅ , for every i and j; ∩𝑖=1
𝑘 Mi=∅. 

Thus CDPUhypergraph does not follow Helly property. 

 

 

CONCLUSIONS 

 

Every connected graph possess CDPU sets. In this paper, an idea of using these CDPU sets for constructing  a 
new hypergraph is introduced. CDPU hypergraph of various classes of graphs and various properties of these 

hypergraphs are established. 
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