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I. Introduction 

 A collection of objects under study is known as population. The number of objects in the population is 

known as population size. It may be finite or infinite. In sampling theory, we assume that population size is 

finite. A part or subset of the population is known as sample. The method of selecting a sample is known 

as sampling method.  A sample is small if its size is less than 30 and otherwise it is known as large. A 

statistical constant of the population is known as parameter. Population mean and population variance are 

examples for parameters.  A statistical constant of the sample is known as statistic, Sample mean and sample 

variance are examples for statistic. Estimation is the process of estimating the parameters of the population 

using statistic. A Statistic used to estimate a parameter is known as an estimator of the parameter. The value of 

an estimator in a particular sample is known as an estimate. 

Unbiased Estimator: An estimator T is said to be unbiased estimator for the parameter θ  if 

 E (T) =θ . That is, T is an unbiased estimator of θ  if T is equal to θ  on the average over all possible samples. 

If E (T) θ , then T is known as biased estimator of  θ  and its bias is given by B (θ ) = E (T) - θ . The relative 

measure of bias is B (θ ) /θ .  

 The mean square error of an estimator T in estimating θ  is defined by MSE = E (T-θ ) 2 

Relative Efficiency: Given two estimators T1 and T2 of a parameter, then the relative efficiency of T1 as 

compared to T2 which differs in respect of sample size or sampling method or both is defined as                       

RE (T1, T2) =  
)MSE(T

)(T MSE

1

2 ,     If T1 and T2 are unbiased estimators,  

then       RE (T1 , T2) = 
)V(T

)(T V

1

2  

If RE (T1, T2) <1, then T2 is more efficient than T1   

 If RE (T1, T2) >1, Then T1 is more efficient than T2 

 If RE (T1, T2) =1, Then T1 & T2 are equally efficient.   
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Simple Random Sampling (S.R.S)   

If the sample is drawn unit by unit with equal probability of selection for every unit of the population at each 

draw, then the sample is known as simple random sample.  The procedure of selecting a simple random sample 

is known as simple random sampling (S.R.S) method.  If a unit that has been selected in the simple random 

sample is removed from the population for all subsequent draws, then it is known as simple random sampling 

without replacement (SRSWOR).  Otherwise, it is known as simple random sampling with replacement 

(SRSWR). If all the units in the population are equally important or if the population is homogeneous, then the 

simple random sampling method is adopted. 

 Let us consider a finite population of N units and the values of a characteristic y on these N units are 

denoted by NYYY ,...,, 21 . Further, assume that a simple random sample of n units is selected from the 

population and the values of the characteristic y on these n units are denoted by nyyy ,...,, 21 .   

 Population mean   =  i

i

Y
N

1

N

Y
Y

N

1




          Sample mean = i

n

i

y
nn

y
y 




1

1
 

Mean per unit estimator 

In simple random sampling without replacement, the sample mean per unit is an unbiased estimator of 

population mean. 

i.e.,        E ( y ) = Y
                                                                                                            (1.1)

 

             V ( srsy ) =
n

n

N

N 
  S2 = )1(

S2

f
n

   where   f = 
N

n
                                   (1.2) 

 

Ratio estimator of population mean 

In ratio method of estimation, an auxiliary variable xi which is correlated with iy  is obtained for each unit in 

the sample. The population means X  of  ix  must be known. The ratio estimate of population mean Y is 

                                                                                                                      (1.3)

                                          

 

In a simple random sample of size n, (n large) 

                                                                         (1.4) 

Where    is the population correlation between y and x. 

Linear regression estimate of population mean 

As in the ratio method of estimation, linear regression estimate uses an auxiliary variable ix  that is correlated 

with iy . The linear regression estimate of Y is  
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y

lr = y  + b ( X - x )                                                                                                   (1.5) 

Where b is a least square estimate of the change in y when x is increased by unity. In simple random sample of 

size n large [2][4][7] 

V ( lry )  = )ρ1(S
1 22 


y
n

f
                                                                                               (1.6) 

II. Comparison of estimators using simple random sampling 

The approximate formulae for the variance of ratio and regression estimates are valid only when sample size n is 

large. So, these comparisons are made for the sample size n large. 

Therefore, the three comparable variances for the estimated population mean asY given in (1.2), (1.4) and 

(1.6) are as follows: 

V ( y ) =
n

n

N

N 
  S2 = )1(

S2

f
n


                                (Mean per unit) 

 

                        (Ratio) 

 V( lry )  = )ρ1(S
1 22 


y
n

f
                                        (Regression) 

It is clear that variance of regression estimate is smaller than that of mean per unit only when , if  

then the two variances are equal. And also, the variance of the regression estimate is smaller than that of the 

ratio estimate if  or . Thus the regression estimate is more precise than 

the ratio estimate if this happens only when the relation between  and  is a straight line through the 

origin.  

In large samples, with simple random sampling, the ratio estimator has a smaller variance than the mean per unit 

estimator, if  .[4][7] 

There is no theoretical expression for the relation among mean per unit, ratio and regression estimates. So, we 

made an attempt in this paper to derive the relation among these three estimators with respect to relative bias 

and relative efficiency by taking the samples from the bivariate populations generated from Uniform, 

Exponential, Normal and Double exponential distributions. [2][4][7] 
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III. Generation of random samples using simulation technique 

 Simulation is a technique that generates a large number of simulated samples of data based on an 

assumed data generating process that characterizes the population from which the simulated samples are drawn. 

Monte carlo simulation is mainly used when there is a difficulty to solve analytically or when there are too many 

particles in the system to solve and may be having complex interactions among the particles. 

 Given a random sample from standard uniform distribution U(0,1), a random sample for any distribution 

can be obtained by transformation. For some distributions, the transformation from uniform distribution is 

simple and can be made exactly, but for some distributions more complicated transformations must be 

approximated.[6] 

 However, firstly we must consider the generation of independent variate from U(0,1). The most useful 

source of pseudo random integers is linear congruential sequence. A congruential sequence can take many 

forms, but the most commonly used form is  for  where 

 are the integers and                                    (3.1)                                                     

Integers produced in (3.1) are in the interval . They are transformed by  onto (0, 1) over which they 

approximate a U (0, 1) process.[6] 

 

Inverse method of transformation 

Let us consider a continuous random variable with cumulative distribution function  i.e., 

 then the inverse of  denoted by  if well defined for . 

If U is a standard uniform variate U(0,1), then  is the required distribution function. 

Generation of Random Samples from Uniform Distribution 

A continuous random variable X is said to follow U (a,b) distribution, its pdf is  

 

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otherwise
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1

  , then by inverse transform method, 

                ii uabax )( 
,
 where )1,0(~ Uui                                                  (3.2) 

 Generation of Random Samples from Exponential Distribution 

A continuous random variable X is said to follow exponential distribution with location parameter a 

(any real number) and scale parameter b>0, if its pdf is given by  
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By inverse transform method, 
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)ln( ii ubax   where )1,0(~ Uui .                                                                        (3.3) 

                        

Generation of Random Samples from Double Exponential Distribution 

A continuous random variable X is said to follow double exponential (Laplace) distribution with 

location parameter a ( any real number) and scale parameter b>0,  if its pdf is given by  

  



xe
b

xf b
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 By inverse transform method, 






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2/1;)ln(

12

12

uifuba

uifuba
xi   Where )1,0(~21 Uuandu                            (3.4)

  

 

Generation of Random Samples from Normal Distribution (Box-Muller Method) 

Another method that is also very easy to implement was introduced by Box and Muller (1958).  It is a 

direct transformation of two independent U(0,1) variates U1 and U2  two independent N (0,1) variates X1 and 

X2, 

    211 2cos)ln(2 uux                             

         
   212 2sin)ln(2 uux    where )1,0(~21 Uuandu .                                       (3.5)

  

This Method is adopted here for the generation of normal random variable.  

 If we want to generate bivariate distributions when the variates are independent then we simply generate 

the distribution for each dimension separately. However there may be known correlations between the variates. 

To generate correlated random variates in two dimensions, the basic idea is that, we first generate independent 

variates and then perform a rotation of the coordinate system to bring about the desired correlation.[6] 

Thus, the algorithm for generating correlated random variables (X,Y) with the correlation coefficient ρ   is as 

follows. 

 (1) Independently generate X and X1 from the same distribution. 

 (2)  Set 
21 1   XXY                                                                                       } (3.6) 

 (3)  Return the correlated pair (X, Y). 

IV. Computation of Relative Bias, Standard error and Relative efficiency 

 A bivariate population (X, Y) of size N = 2000 is generated as in (3.6) with correlation coefficient ρ (X, 

Y) = 0.8 when each of X and Y follows uniform, exponential, normal and double exponential distributions. Let 

X  and Y  be the population means of X and Y respectively.  
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Generation of bivariate populations is given below: 

 Bivariate uniform distribution: If x  and x  follows  (0,1)U  and Y=  -1  2 xx    then (X,Y) follows 

Bivariate uniform with correlation coefficient is ρ = 0.8  

Bivariate exponential distribution: If x  and x  follows exp (1),and Y=  -1  2 xx   then (X,Y) follows 

Bivariate exponential with correlation coefficient is ρ = 0.8  

 Bivariate Normal distribution: If x  and x  follows normal (1,1) and Y=  -1  2 xx   then (X,Y) 

follows Bivariate Normal distribution with correlation coefficient is ρ = 0.8 

Bivariate Double exponential distribution:If x  and x  follows double exponential (1,2) and     

Y=  -1  2 xx    then (X,Y) follows Bivariate Double exponential distribution with correction 

coefficient is ρ = 0.8. 

SRSWOR of size „n‟ (n = 10, 30, 50, 70, 90, 110) are selected from each population. Let y i be the mean per 

unit estimator of Y  based on the i th sample for i = 1, 2… 1000 (iterations) then the estimator 

of (say)Yy
1000

1
) y( E srs
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.  
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Similarly, the relative biases and standard errors of ratio )Y( r  and regression )Y( lr  estimators are defined 

below.  
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The relative efficiency of an estimator with respect to some other estimator is computed using 

definition given in section (1).  

 

 

V. Empirical results 

Empirical results from bivariate uniform, bivariate exponential, bivariate normal, bivariate double 

exponential distributions are shown in the following tables. 

 

 

 

 

 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 66 Issue 5 – May 2020 

 

ISSN: 2231-5373                            http://www.ijmttjournal.org                                   Page 173 

                  Table 5.1: Shows relative bias of the estimators 

Population n 
srsY  

rY  lrY   srsYRB   rYRB   lrYRB  

 

Bivariate  

Uniform 

distribution 

 

      
4959.0

6967.0





X

Y
 

10 0.693 0.707 0.694 0.002 0.009 0.008 

30 0.702 0.698 0.697 0.003 0.003 0.004 

50 0.700 0.696 0.697 0.001 0.005 0.005 

70 0.701 0.696 0.697 0.001 0.006 0.004 

90 0.700 0.695 0.697 0.000 0.007 0.005 

110 0.699 0.695 0.696 0.001 0.007 0.005 

 

Bivariate 

Exponential 

distribution 

 

      

0090.1

4200.1





X

Y
 

10 1.401 1.480 1.412 0.001 0.057 0.009 

30 1.398 1.434 1.406 0.001 0.025 0.004 

50 1.403 1.425 1.408 0.002 0.018 0.005 

70 1.403 1.421 1.408 0.002 0.015 0.006 

90 1.398 1.420 1.407 0.001 0.014 0.005 

110 1.403 1.419 1.408 0.002 0.013 0.006 

 

Bivariate  

Normal distribution 

 

      

9916.0

4046.1





X

Y
 

10 1.376 1.522 1.369 0.017 0.019 0.022 

30 1.408 1.411 1.392 0.006 0.008 0.006 

50 1.402 1.401 1.391 0.002 0.001 0.006 

70 1.400 1.398 1.391 0.000 0.001 0.006 

90 1.398 1.395 1.391 0.001 0.003 0.006 

110 1.400 1.393 1.391 0.000 0.005 0.006 

 

Bivariate Double 

exponential 

distribution 

 

      

9742.0

3726.1





X

Y
 

10 1.394 1.451 1.360 0.004 0.027 0.028 

30 1.399 1.425 1.378 0.001 0.018 0.016 

50 1.395 1.389 1.378 0.004 0.008 0.016 

70 1.386 1.384 1.376 0.010 0.012 0.017 

90 1.395 1.379 1.378 0.004 0.015 0.016 

110 1.405 1.376 1.383 0.003 0.011 0.012 

 

                  Table 5.2: Shows relative efficiency of the estimators 

Population n  srsYES ..   rYES ..   lrYES ..  ),.(. rsrs YYER  ),.(. lrsrs YYER  ),.(. lrr YYER  

 

Bivariate  

Uniform 

distribution 

                 

4959.0

6967.0





X

Y
 

10 0.094 0.095 0.061 1.101 0.649 0.677 

30 0.054 0.047 0.033 0.087 0.611 0.702 

50 0.040 0.034 0.024 0.852 0.601 0.706 

70 0.035 0.029 0.021 0.828 0.600 0.724 

90 0.031 0.026 0.019 0.838 0.612 0.731 

110 0.028 0.024 0.017 0.857 0.607 0.708 

 

Bivariate 

Exponential 

distribution 

           

10 0.317 0.318 0.220 1.003 0.694 0.698 

30 0.190 0.170 0.114 0.895 0.600 0.671 

50 0.138 0.125 0.084 0.906 0.609 0.672 

70 0.116 0.101 0.070 0.871 0.603 0.693 
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0090.1

4200.1





X

Y
 

90 0.108 0.094 0.064 0.870 0.593 0.681 

110 0.096 0.087 0.059 0.906 0.615 0.678 

 

Bivariate  

Normal 

distribution 

    

9916.0

4046.1





X

Y
 

10 0.323 0.358 0.207 1.108 0.641 0.578 

30 0.185 0.173 0.111 0.935 0.600 0.642 

50 0.146 0.135 0.087 0.925 0.596 0.644 

70 0.120 0.116 0.072 0.967 0.601 0.621 

90 0.106 0.104 0.065 0.981 0.613 0.607 

110 0.095 0.092 0.057 0.968 0.603 0.576 

 

Bivariate 

Double 

exponential 

distribution 

      

9742.0

3726.1





X

Y
 

10 0.351 0.359 0.280 1.022 0.798 0.850 

30 0.325 0.332 0.159 1.021 0.489 0.478 

50 0.247 0.246 0.121 0.995 0.487 0.488 

70 0.219 0.209 0.104 0.954 0.475 0.498 

90 0.193 0.190 0.092 0.984 0.477 0.474 

110 0.177 0.173 0.085 0.977 0.480 0.464 

 

 

 

VI. Final Conclusions 

 

(i) The mean per unit estimator has lowest relative bias than that of ratio and linear regression estimators 

for all four bivariate distributions. The linear regression estimator has less relative bias than that of 

ratio estimator in bivariate uniform and bivariate exponential distributions. But the ratio estimator 

has less relative bias than that of linear regression estimator in bivariate normal and bivariate 

double exponential distributions. 

(ii) The linear regression estimator has lowest standard error than that of mean per unit and ratio estimators 

for all four bivariate distributions. The ratio estimator has less standard error than that of mean per 

unit in bivariate uniform and bivariate exponential distributions. But the ratio and mean per unit 

has approximately same standard error in bivariate normal and bivariate double exponential 

distributions. 

(iii) The linear regression estimator is more efficient than that of mean per unit and ratio estimators for all 

the four bivariate distributions irrespective of sample size. The mean per unit is more efficient than 

that of ratio estimator if the sample size is small whereas ratio estimator is more efficient than that 

of mean per unit if the sample size is large.  
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