Weighted dom-chromatic number of some classes of Type-I weighted caterpillars

P. Palanikumar ${ }^{1}$ and S. Balamurugan ${ }^{2}$
${ }^{1}$ Department of Mathematics, Mannar Thirumalai Naicker College, Madurai - 625 004, Tamilnadu, India
${ }^{2}$ PG Department of Mathematics, Government Arts College,
Melur - 625 106, Tamilnadu, India

Abstract

A set D of vertices is a dominating set of G if every vertex not in D is adjacent to at least one member of D. A set D of vertices is said to be dom-chromatic if D is a dominating set and $\chi(\langle D\rangle)=$ $\chi(G)$. A Weighted tree, (T, w) a tree together with a positive weight function on the vertex set $w: V(T) \longrightarrow R^{+}$. The weighted domination number $\gamma_{w}(T)$ of (T, w) is the minimum weight $w(D)=\sum_{v \in D} w(v)$ of a dominating set D of T. The weighted dom-chromatic number $\gamma_{w c h}(T)$ of (T, w) is the minimum weight $w(D)=\sum_{v \in D} w(v)$ of a dom-chromatic set D of T. A caterpillar is a graph which can be obtained from the path on n vertices by appending x_{i} pendant vertices to the $i^{\text {th }}$ vertex of the path, P_{n}. The caterpillar with parameters $n, x_{1}, x_{2}, \ldots, x_{n}$ will be denoted as $P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. In this paper, the weighted dom-chromatic numbers are determined for some classes of Type-I weighted caterpillars.

Keywords: dominating set, dom-chromatic set, weighted domination, weighted dom-chromatic number, Type-I weighted labeling

MSC Subject Classification: 05C69

1 Introduction

A set S of vertices is a dominating set of G if every vertex not in S is adjacent to at least one member of S. The minimum cardinality of a dominating set in
G is called the domination number and is denoted by $\gamma(G)$. The set $\mathcal{D}(G)$ is the collection of all dominating sets of G. A subset S of V is said to be a domchromatic set (or dc-set) if S is a dominating set and $\chi(<S>)=\chi(G)$. The minimum cardinality of a dom-chromatic set in G is called the domchromatic number (or dc-number) and is denoted by $\gamma_{c h}(G)$. The set $\mathcal{D}_{c h}(G)$ is the collection of all dom-chromatic sets of G

A Weighted tree, (T, w) a tree together with a positive weight function on the vertex set $w: V(T) \longrightarrow R^{+}$. The weighted domination number $\gamma_{w}(T)$ of (T, w) is the minimum weight $w(D)=\sum_{v \in D} w(v)$ of a dominating set D of T. The weighted dom-chromatic number $\gamma_{w c h}(T)$ of (T, w) is the minimum weight $w(D)=\sum_{v \in D} w(v)$ of a dom-chromatic set D of T.
P. Palanikumar and S. Balamurugan [12] has introduced the concept of Type-I weighted labeling and they study the weighted dom-chromatic number of a weighted tree. Also, determine the weighted dom-chromatic number of a Type I weighted paths.

Theorem 1.1. [12] Let (T, w) be a weighted tree and $[1,2, \ldots, n]$ be a leaffirst labeling of T Where $w(i)=w_{i}$ for $i=1,2, \ldots, n$. If i is a leaf of T then $\eta_{c h}(i)=w_{i} ; \theta_{c h}(i)=0 ; \lambda_{c h}(i)=w_{i} ; \mu_{c h}(i)=0$.

Definition 1.2. [12] Let (T, w) be a weighted tree and $[1,2, \ldots, n]$ be a leaffirst labeling of (T, w). Then L is said to be of Type-I if i is the first leaf of $T-\{1,2, \ldots, i-1\}$ from left.

Theorem 1.3. [12] For a path $P_{n},(n \geq 3)$ of Type-I,

$$
\gamma_{w c h}\left(P_{n}\right)= \begin{cases}\frac{1}{6}\left(n^{2}+n+6\right) & \text { if } n \equiv 0(\bmod 3) \\ \frac{1}{6}\left(n^{2}+n+10\right) & \text { if } n \equiv 1(\bmod 3) \\ \frac{1}{6}\left(n^{2}+n+12\right) & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

2 Caterpillar

A caterpillar is a graph which can be obtained from the path on n vertices by appending x_{i} pendant vertices to the $i^{\text {th }}$ vertex of the path,
P_{n}. The caterpillar with parameters $n, x_{1}, x_{2}, \ldots, x_{n}$ will be denoted as $P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Note, this is a tree with the property that the removal of its leaves and incident edges results in a path P_{n} called the spine of the caterpillar. Let l denote the number of leaves, i.e., $l=\sum_{i=1}^{n} x_{i}$. We say a caterpillar is complete if every vertex on the spine of the caterpillar is adjacent to at least one leaf.

Let $P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a caterpillar. We first consider the case of caterpillars where $x_{1}=x_{n}=l$ and $x_{i}=0$ for $2 \leq i \leq n-1$. It is observe that it can have three cases that is a path with n vertices where $n=3 k, 3 k+1$, $3 k+2$ to determine $\gamma_{w c h}\left(P_{n}(l, 0,0, \ldots 0, l)\right)$.

Theorem 2.1. For a caterpillar, $P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $x_{1}=x_{n}=l$, $x_{i}=0$ for $2 \leq i \leq n-1$ of Type-I, then

$$
\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)= \begin{cases}\frac{1}{6}\left(n^{2}+3 n+6\right)+\frac{(n+6) l}{3} & \text { if } n \equiv 0(\bmod 3) \\ \frac{1}{6}(n+1)(n+2)+\frac{(n+5) l}{3} & \text { if } n \equiv 1(\bmod 3) \\ \frac{1}{6}(n+1)(n+2)+\frac{(n+7) l}{3} & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

Proof. Let $G=\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right), w\right)$ be a weighted caterpillar with $x_{1}=$ $x_{n}=l$ and $x_{i}=0$ for $2 \leq i \leq n-1$. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Attach l pendent vertices, namely $\left\{r_{1}, r_{2}, \ldots, r_{l}\right\}$, the left siblings, at v_{1} and Attach l pendent vertices, namely $\left\{s_{1}, s_{2}, \ldots, s_{l}\right\}$, the right siblings, at v_{n} as shown in Figure 2.1.

Figure 2.1: A caterpillar $P_{n}(l, 0,0, \ldots, 0, l)$
Let $L=[1,2, \ldots, n]$ be a leaf-first labeling of $\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right), w\right)$ and L is of Type-I.

If $l=1$, then $G=P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ reduces to a path on $n+2$ vertices. Thus, $\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\gamma_{w c h}\left(P_{n+2}\right)$. By Theorem 1.3, the result is obvious.

Now we consider for $l>1$. To dominate the left sibling vertices $\left\{r_{1}, r_{2}, \ldots, r_{l}\right\}$, the minimum weighted vertex is v_{1} and to dominate the right sibling vertices $\left\{s_{1}, s_{2}, \ldots, s_{l}\right\}$, the minimum weighted vertex is v_{n}. Thus v_{1} and v_{n} are must be in $\gamma_{w^{-}}$set of G. We consider the following cases.
Case (1): Suppose $n \equiv 0(\bmod 3)$. Then $n=3 k$ for some integer $k \geq 1$. Let $\left\{v_{1}, v_{2}, \ldots, v_{3 k}\right\}$ be the vertices of $P_{3 k}$. As the maximum weighted vertex $v_{3 k}$ dominates the vertex $v_{3 k-1}$, to dominate the maximum weighted vertex $v_{3 k-2}$, choose the minimum weighted vertex $v_{3 k-3}$ for the γ_{w}-set so that the vertices $v_{3 k-4}$ and $v_{3 k-2}$ are dominated. Similarly, to dominate the maximum weighted vertex $v_{3 k-5}$, choose the minimum weighted vertex $v_{3 k-6}$ for the γ_{w}-set so that the vertices $v_{3 k-7}$ and $v_{3 k-5}$ are dominated.

Proceeding in this way, to dominate the maximum weighted vertex v_{4}, choose the minimum weighted vertex v_{3} for the γ_{w}-set of G. Then the vertices v_{2} and v_{4} are dominated. Thus the set of vertices $\left\{v_{3 k-3}, v_{3 k-6}, \ldots, v_{6}, v_{3}\right\}$ belongs to the γ_{w}-set of G. Since the vertices v_{1} and $v_{3 k}$ are included in any weighted dominating set of G, the set $D=\left\{v_{1}, v_{3}, v_{6}, \ldots, v_{3 k-3}, v_{3 k}\right\}$ will be a minimum weighted dominating set of G.

For chromatic preserving, add a neighbor of least weight vertex to this set. Obviously, it is r_{1}. Thus the least weight dom-chromatic set D is $\left\{r_{1}, v_{1}, v_{3}, v_{6}, \ldots, v_{3 k-6}, v_{3 k-3}, v_{3 k}\right\}$.

Hence, the minimum weight of a dom-chromatic set is, $\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=$ $w(D)=\sum w\left(v_{i}\right)=1+(l+1)+[(l+3)+(l+6)+\ldots+(l+3 k-3)]+(2 l+3 k-1)=$ $\frac{1}{6}\left(n^{2}+3 n+6\right)+\frac{(n+6) l}{3}$

Case(2): Suppose $n \equiv 1(\bmod 3)$. Then $n=3 k+1$ for some integer $k \geq 1$. Let $\left\{v_{1}, v_{2}, \ldots, v_{3 k+1}\right\}$ be the vertices of $P_{3 k+1}$. As the maximum weighted vertex $v_{3 k+1}$ dominates the vertex $v_{3 k}$, to dominate the maximum weighted vertex $v_{3 k-1}$, choose the minimum weighted vertex $v_{3 k-2}$ for the $\gamma_{w^{-}}$ set so that the vertices $v_{3 k-3}$ and $v_{3 k-1}$ are dominated. Similarly, to dominate
the maximum weighted vertex $v_{3 k-4}$, choose the minimum weighted vertex $v_{3 k-5}$ for the γ_{w}-set so that the vertices $v_{3 k-6}$ and $v_{3 k-4}$ are dominated.

Proceeding in this way, to dominate the maximum weighted vertex v_{5}, choose the minimum weighted vertex v_{4} for the γ_{w}-set of G. Then the vertices v_{3} and v_{5} are dominated. Thus the set of vertices $\left\{v_{3 k-2}, v_{3 k-5}, \ldots, v_{7}, v_{4}\right\}$ belongs to the γ_{w}-set of G. Since the vertices v_{1} and $v_{3 k+1}$ are included in any weighted dominating set of G, the set $\left\{v_{1}, v_{4}, v_{7}, \ldots, v_{3 k-2}, v_{3 k+1}\right\}$ will be a minimum weighted dominating set of G.

For chromatic preserving, add a neighbor of least weight vertex to this set. Naturally, it is r_{1}. Thus the least weight dom-chromatic set D is $\left\{r_{1}, v_{1}, v_{4}, \ldots, v_{3 k-2}, v_{3 k+1}\right\}$.

Hence, the minimum weight of a dom-chromatic set is, $\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=$ $w(D)=\sum w\left(v_{i}\right)=1+[(l+1)+(l+4)+(l+7)+\ldots+(l+3 k-2)]+(2 l+3 k)=$ $\frac{1}{6}(n+1)(n+2)+\frac{(n+5) l}{3}$

Case (3) : Suppose $n \equiv 2(\bmod 3)$. Then $n=3 k+2$ for some integer $k \geq 1$. Let $\left\{v_{1}, v_{2}, \ldots, v_{3 k+2}\right\}$ be the vertices of $P_{3 k+2}$. As the maximum weighted vertex $v_{3 k+2}$ dominates the vertex $v_{3 k+1}$, to dominate the maximum weighted vertex $v_{3 k}$, choose the minimum weighted vertex $v_{3 k-1}$ for the $\gamma_{w^{-}}$ set so that the vertices $v_{3 k-2}$ and $v_{3 k}$ are dominated. Similarly, to dominate the maximum weighted vertex $v_{3 k-3}$, choose the minimum weighted vertex $v_{3 k-4}$ for the γ_{w}-set so that the vertices $v_{3 k-5}$ and $v_{3 k-3}$ are dominated.

Proceeding in this way, to dominate the maximum weighted vertex v_{3}, choose the minimum weighted vertex v_{2} for the γ_{w}-set of G. Then the vertices v_{1} and v_{3} are dominated. Thus the set of vertices $\left\{v_{3 k-1}, v_{3 k-4}, \ldots, v_{6}, v_{2}\right\}$ belongs to the γ_{w}-set of G. Since the vertices v_{1} and $v_{3 k+2}$ are included in any weighted dominating set of G, the set $D=\left\{v_{1}, v_{2}, v_{5}, \ldots, v_{3 k}, v_{3 k+2}\right\}$ will be a minimum weighted dominating set of G.

Clearly, the set D preserves the chromticity of least weight in G. Hence, the minimum weight of a dom-chromatic set is, $\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=$ $w(D)=\sum w\left(v_{i}\right)=(l+1)+[(l+2)+(l+5)+\ldots+(l+3 k-1)]+(2 l+3 k+1)=$ $\frac{1}{6}(n+1)(n+2)+\frac{(n+7) l}{3}$.

We next consider the case of caterpillars where $x_{1}=l$ and $x_{i}=0$ for $2 \leq i \leq n$. We observe that it can have three cases that is a path with n vertices where $n=3 k, 3 k+1,3 k+2$ to determine $\gamma_{w c h}\left(P_{n}(l, 0,0, \ldots 0,0)\right)$.

Theorem 2.2. For a caterpillar, $P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $x_{1}=l, x_{i}=0$ for $2 \leq i \leq n$ of Type-I, then

$$
\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)= \begin{cases}\frac{1}{6}\left(n^{2}+n+6\right)+\frac{(n+3) l}{3} & \text { if } n \equiv 0(\bmod 3) \\ \frac{1}{6}\left(n^{2}+n+10\right)+\frac{(n+2) l}{3} & \text { if } n \equiv 1(\bmod 3) \\ \frac{1}{6}\left(n^{2}+n+6\right)+\frac{(n+1) l}{3} & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

Proof. Let $G=\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right), w\right)$ be a weighted caterpillar with $x_{1}=l$ and $x_{i}=0$ for $2 \leq i \leq n$. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Attach l pendent vertices, namely $\left\{r_{1}, r_{2}, \ldots, r_{l}\right\}$, the left siblings, at v_{1} as shown in Figure 2.2.

Figure 2.2: A caterpillar $P_{n}(l, 0,0, \ldots, 0,0)$
Let $L=[1,2, \ldots, n]$ be a leaf-first labeling of $\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right), w\right)$ and L is of Type-I.

If $l=1$, then $G=P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ reduces to a path on $n+1$ vertices. Thus, $\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\gamma_{w c h}\left(P_{n+1}\right)$. By Theorem 1.3, the result is obvious.

Now we consider for $l>1$. To dominate the left sibling vertices $\left\{r_{1}, r_{2}, \ldots, r_{l}\right\}$, the minimum weighted vertex is v_{1}. Thus v_{1} must be in γ_{w}-set of G. We consider the following cases.
Case (1): Suppose $n \equiv 0(\bmod 3)$. Then $n=3 k$ for some integer $k \geq 1$. Let $\left\{v_{1}, v_{2}, \ldots, v_{3 k}\right\}$ be the vertices of $P_{3 k}$. It is obvious that $v_{3 k}$ admits the maximum weight in G. Hence to dominate the vertex $v_{3 k}$, choose the minimum weighted vertex $v_{3 k-1}$ for the γ_{w}-set. Then the vertices $v_{3 k-2}$ and $v_{3 k}$
are dominated. Similarly, to dominate the maximum weighted vertex $v_{3 k-3}$, choose the minimum weighted vertex $v_{3 k-4}$ for the γ_{w}-set so that the vertices $v_{3 k-5}$ and $v_{3 k-3}$ are dominated.

Proceeding in this way, to dominate the maximum weighted vertex v_{3}, choose the minimum weighted vertex v_{2} for the γ_{w}-set of G. Then the vertices v_{1} and v_{3} are dominated. Thus the set of vertices $\left\{v_{3 k-1}, v_{3 k-4}, \ldots, v_{5}, v_{2}\right\}$ belongs to the γ_{w}-set of G. Since the vertex v_{1} is included in any weighted dominating set of G, the set $D=\left\{v_{1}, v_{2}, v_{6}, \ldots, v_{3 k-3}, v_{3 k}\right\}$ will be a minimum weighted dominating set of G.

Naturally, the set D preserves the chromaticity of least weight in G. Hence, the minimum weight of a dom chromatic set is, $\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=$ $w(D)=\sum w\left(v_{i}\right)=(l+1)+[(l+2)+(l+5)+\ldots+(l+3 k-1)]=$ $\frac{1}{6}\left(n^{2}+n+6\right)+\frac{(n+3) l}{3}$.

Case (2): Suppose $n \equiv 1(\bmod 3)$. Then $n=3 k+1$ for some integer $k \geq 1$. Let $\left\{v_{1}, v_{2}, \ldots, v_{3 k+1}\right\}$ be the vertices of $P_{3 k+1}$. It is obvious that $v_{3 k+1}$ admits the maximum weight in G. Hence to dominate the vertex $v_{3 k+1}$, choose the minimum weighted vertex $v_{3 k}$ for the γ_{w}-set. Then the vertices $v_{3 k-1}$ and $v_{3 k+1}$ are dominated. Similarly, to dominate the maximum weighted vertex $v_{3 k-2}$, choose the minimum weighted vertex $v_{3 k-3}$ for the $\gamma_{w^{-}}$ set so that the vertices $v_{3 k-4}$ and $v_{3 k-2}$ are dominated.

Proceeding in this way, to dominate the maximum weighted vertex v_{4}, choose the minimum weighted vertex v_{3} for the γ_{w}-set of G. Then the vertices v_{2} and v_{4} are dominated. Thus the set of vertices $\left\{v_{3 k}, v_{3 k-3}, \ldots, v_{6}, v_{3}\right\}$ belongs to the γ_{w}-set of G. Since the vertex v_{1} is included in any weighted dominating set of G, the set $\left\{v_{1}, v_{3}, v_{6}, \ldots, v_{3 k-3}, v_{3 k}\right\}$ will be a minimum weighted dominating set of G.

For chromatic preserving, a least weight vertex is to be added which is r_{1}. Thus the least weight dom-chromatic set D is $\left\{r_{1}, v_{1}, v_{3}, v_{6}, \ldots, v_{3 k-3}, v_{3 k}\right\}$.

Hence, the minimum weight of a dom-chromatic set is, $\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=$ $w(D)=\sum w\left(v_{i}\right)=1+(l+1)+[(l+3)+(l+6)+\ldots+(l+3 k)]=$ $\frac{1}{6}\left(n^{2}+n+10\right)+\frac{(n+2) l}{3}$

Case (3): Suppose $n \equiv 2(\bmod 3)$. Then $n=3 k+2$ for some integer $k \geq 1$. Let $\left\{v_{1}, v_{2}, \ldots, v_{3 k+2}\right\}$ be the vertices of $P_{3 k+2}$. It is obvious that $v_{3 k+2}$ admits the maximum weight in G. Hence to dominate the vertex $v_{3 k+2}$, choose the minimum weighted vertex $v_{3 k+1}$ for the γ_{w}-set. Then the vertices $v_{3 k}$ and $v_{3 k+2}$ are dominated. Similarly, to dominate the maximum weighted vertex $v_{3 k-1}$, choose the minimum weighted vertex $v_{3 k-2}$ for the γ_{w}-set so that the vertices $v_{3 k-3}$ and $v_{3 k-1}$ are dominated.

Proceeding in this way, to dominate the maximum weighted vertex v_{5}, choose the minimum weighted vertex v_{4} for the γ_{w}-set of G. Then the vertices v_{3} and v_{5} are dominated. Thus the set of vertices $\left\{v_{3 k+1}, v_{3 k-2}, \ldots, v_{7}, v_{4}\right\}$ belongs to the γ_{w}-set of G. Since the vertex v_{1} is included in any weighted dominating set of G, the set $\left\{v_{1}, v_{4}, v_{7}, \ldots, v_{3 k-2}, v_{3 k+1}\right\}$ will be a minimum weighted dominating set of G.

For chromatic preserving, a least weight vertex is to be added, Naturally, it is r_{1}. Thus the least weight dom-chromatic set D is $\left\{r_{1}, v_{1}, v_{4}, v_{7}, \ldots, v_{3 k-2}, v_{3 k+1}\right\}$.

Hence, the minimum weight of a dom-chromatic set is, $\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=$ $w(D)=\sum w\left(v_{i}\right)=1+[(l+1)+(l+4)+\ldots+(l+3 k+1)]=\frac{1}{6}\left(n^{2}+n+6\right)+$ $\frac{(n+1) l}{3}$

Next let us consider the case of caterpillars where $x_{n}=l$ and $x_{i}=0$ for $1 \leq i \leq n-1$. We observe that it can have three cases that is a path with n vertices where $n=3 k, 3 k+1,3 k+2$ to determine $\gamma_{w c h}\left(P_{n}(0,0, \ldots 0, l)\right)$.

Theorem 2.3. For a caterpillar, $P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $x_{n}=l, x_{i}=0$ for $1 \leq i \leq n-1$ of Type-I, then

$$
\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)= \begin{cases}\frac{1}{6}\left(n^{2}+3 n+6\right)+l & \text { if } n \equiv 0(\bmod 3) \\ \frac{1}{6}\left(n^{2}+3 n+8\right)+l & \text { if } n \equiv 1(\bmod 3) \\ \frac{1}{6}\left(n^{2}+3 n+2\right)+l & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

Proof. : Let $G=\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right), w\right)$ be a weighted caterpillar with $x_{n}=$ l and $x_{i}=0$ for $1 \leq i \leq n-1$. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Attach l
pendent vertices, namely $\left\{s_{1}, s_{2}, \ldots, s_{l}\right\}$, the right siblings, at v_{n} as shown in Figure 2.3

Figure 2.3: A caterpillar $P_{n}(0,0, \ldots, 0, l)$
Let $L=[1,2, \ldots, n]$ be a leaf-first labeling of $\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right), w\right)$ and L is of Type-I.

If $l=1$, then $G=P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ reduces to a path on $n+1$ vertices. Thus, $\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\gamma_{w c h}\left(P_{n+1}\right)$. By Theorem 1.3, the result is obvious.

Now we consider for $l>1$. To dominate the right sibling vertices $\left\{s_{1}, s_{2}, \ldots, s_{l}\right\}$, the minimum weighted vertex is v_{n}. Thus v_{n} must be in γ_{w}-set of G. We consider the following cases.
Case (1): Suppose $n \equiv 0(\bmod 3)$. Then $n=3 k$ for some integer $k \geq 1$. Let $\left\{v_{1}, v_{2}, \ldots, v_{3 k}\right\}$ be the vertices of $P_{3 k}$. Since $v_{3 k}$ dominates $v_{3 k-1}$, to dominate the maximum weighted vertex $v_{3 k-2}$, choose the minimum weighted vertex $v_{3 k-3}$ for the γ_{w}-set. Then the vertices $v_{3 k-4}$ and $v_{3 k-2}$ are dominated. Similarly, to dominate the maximum weighted vertex $v_{3 k-5}$, choose the minimum weighted vertex $v_{3 k-6}$ for the γ_{w}-set so that the vertices $v_{3 k-7}$ and $v_{3 k-5}$ are dominated.

Proceeding in this way, to dominate the maximum weighted vertex v_{4}, choose the minimum weighted vertex v_{3} for the γ_{w}-set of G. Then the vertices v_{2} and v_{4} are dominated. Thus the set of vertices $\left\{v_{3 k}, v_{3 k-3}, \ldots, v_{6}, v_{3}\right\}$ belongs to the γ_{w}-set of G.

Now, by choosing the minimum weighted vertex v_{1} to the γ_{w}-set, it is necessary to select the vertex v_{2} for the chromatic preservation. Hence, the weighted vertices v_{1}, v_{2} alongwith v_{3} contributes a weight of 6 to the $\gamma_{w c h}$-set. While, we choose the weighted vertex v_{2} for γ_{w}-set, it dominates
v_{1} and the γ_{w}-set unioned with v_{2} preserves the chromaticity. Moreover, it contributes a minimum weight of 5 to the $\gamma_{w c h}$-set. Hence, any γ_{w}-set unioned with v_{2} will be the least weight dom-chromatic set of G. Thus, $D=\left\{v_{2}, v_{3}, v_{6}, \ldots, v_{3 k-3}, v_{3 k}\right\}$ is a minimum weighted dom-chromatic set in G.

Hence, the minimum weight of a dom-chromatic set is, $\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=$ $w(D)=\sum w\left(v_{i}\right)=2+(3+6+\ldots+3 k-3)+(3 k-1+l)=l+\frac{1}{6}\left(n^{2}+3 n+6\right)$ Case (2): Suppose $n \equiv 1(\bmod 3)$. Then $n=3 k+1$ for some integer $k \geq 1$. Let $\left\{v_{1}, v_{2}, \ldots, v_{3 k+1}\right\}$ be the vertices of $P_{3 k+1}$. Since $v_{3 k+1}$ dominates $v_{3 k}$, to dominate the maximum weighted vertex $v_{3 k-1}$, choose the minimum weighted vertex $v_{3 k-2}$ for the γ_{w}-set. Then the vertices $v_{3 k-3}$ and $v_{3 k-1}$ are dominated. Similarly, to dominate the maximum weighted vertex $v_{3 k-4}$, choose the minimum weighted vertex $v_{3 k-5}$ for the γ_{w}-set so that the vertices $v_{3 k-6}$ and $v_{3 k-4}$ are dominated.

Proceeding in this way, to dominate the maximum weighted vertex v_{2}, choose the minimum weighted vertex v_{1} for the γ_{w}-set of G. Then the vertex v_{2} is dominated. Thus the set of vertices $\left\{v_{3 k+1}, v_{3 k-2}, \ldots, v_{4}, v_{1}\right\}$ belongs to the γ_{w}-set of G.

For chromatic preserving, a least weight vertex is to be added which is v_{2}. Therefore the least weight dom-chromatic set D is $\left\{v_{1}, v_{2}, v_{4}, \ldots, v_{3 k-2}, v_{3 k+1}\right\}$. Hence, the minimum weight of a dom-chromatic set is, $\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=$ $w(D)=\sum w\left(v_{i}\right)=2+(1+4+\ldots+3 k-2)+3 k+l=l+\frac{1}{6}\left(n^{2}+3 n+8\right)$.

Case (3): Suppose $n \equiv 2(\bmod 3)$. Then $n=3 k+2$ for some integer $k \geq 1$. Let $\left\{v_{1}, v_{2}, \ldots, v_{3 k+2}\right\}$ be the vertices of $P_{3 k+2}$. Since $v_{3 k+2}$ dominates $v_{3 k+1}$, to dominate the maximum weighted vertex $v_{3 k}$, choose the minimum weighted vertex $v_{3 k-1}$ for the γ_{w}-set. Then the vertices $v_{3 k-2}$ and $v_{3 k}$ are dominated. Similarly, to dominate the maximum weighted vertex $v_{3 k-3}$, choose the minimum weighted vertex $v_{3 k-4}$ for the γ_{w}-set so that the vertices $v_{3 k-5}$ and $v_{3 k-3}$ are dominated.

Proceeding in this way, to dominate the maximum weighted vertex v_{3}, choose the minimum weighted vertex v_{2} for the γ_{w}-set of G. Then the vertices
v_{1} and v_{3} is dominated. Thus the set of vertices $\left\{v_{3 k+2}, v_{3 k-1}, \ldots, v_{5}, v_{2}\right\}$ belongs to the γ_{w}-set of G.

For chromatic preserving, a least weight vertex is to be added which is v_{1}. Therefore the least weight dom-chromatic set D is $\left\{v_{1}, v_{2}, v_{5}, \ldots, v_{3 k-1}, v_{3 k+2}\right\}$.

Hence, the minimum weight of a dom-chromatic set is, $\gamma_{w c h}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=$ $w(D)=\sum w\left(v_{i}\right)=1+(2+5+\ldots+3 k-1)+3 k+1+l=l+\frac{1}{6}\left(n^{2}+3 n+2\right)$.

References

[1] S. Balamurugan, A study on chromatic strong domination in graphs, Ph.D Thesis, Madurai Kamaraj University, India 2008.
[2] P. Dankelmann, D. Rautenbach and L. Volkmann, Weighted Domination, 2004.
[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.
[4] F. Harary, Graph Theory, (Addison Wesley, Reading, Mass 1972).
[5] T. W. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[6] T. W. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs : Advanced Topics, Marcel Dekker, Inc., New York, 1997.
[7] P.J. Heawood Map color theorems, Quart. J. Math., 24(1890), 332338.
[8] T.N. Janakiraman, N. Poopalaranjani, On Some Coloring and Domination Parameters in Graphs, Ph. D Thesis, Bharathidasan University, India 2006.
[9] A. B. Kempe, On the geographical problem of four colors, Amer. J. Math., 2(1879), 193-204.
[10] Min-Jen Jou and Jenq-Jong Lin, Algorithms for Weighted Domination Number and Weighted Independent Domination Number of a Tree, Int. Journal of Cont. Math. Sci., 13 (2018), 133 - 140. https://doi.org/10.12988/ijcms.2018.8413
[11] O. Ore, Theory of Graphs, Amer. Math. Soc. Transl., Vol. 38, Colloquium Publications, 1962, 206-212. https://doi.org/10.1090/coll/038.
[12] P. Palanikumar and S. Balamurugan, Weighted dom-chromatic number of a Tree, J. Pure \& Appl. Math., Submitted.

