
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 66 Issue 5 – May 2020 

 

ISSN: 2231-5373                            http://www.ijmttjournal.org                                   Page 192 

 A Fixed Point Theorem on b-Metric Space 

Swati Agrawal, Pannalal Sanodia 

Oriental Institute of science and technology , Bhopal,(M.P) India 
Institute for Excellence In Higher Education, Bhopal (M.P), India 

 

Abstract: The intend of this paper to obtain different concepts of contractive mapping stay alive on b-metric 

space. On b-metric space  establish the completeness and also verify that mapping has unique of fixed point. 
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I. Introduction 

 
In various twigs of science, economics, computer science, engineering and the progress of nonlinear analysis, 

the fixed point theory is one of the mainly essential tools. 

 

In 1989, Backhtin [1] introduce the perception of b-metric space. In 1993, Czerwik[4],[5] unmitigated the 

results of b-metric spaces .Using this initiative many researcher offered simplification of the prominent banach 

fixed point theorem within the b-metric space. 

 

Mehmet Kir[6], Czerwik,s[4],[5], Pacurar[7] extensive the fixed point theorem within b-metric space. Different 
exertion of the convergence of measurable functions by means of admiration to measure, Czerwik [4],[5] first 

offered a simplification of banach fixed point theorem within b-metric spaces. 

 

We would akin to  broaden some fixed point theorem which are  convincing within b-metric space. 

 
Definition 1.1. Let 𝑋 be a non-empty set and 𝑠 ≥ 1  be a given real number. A function 𝑑:𝑋 × 𝑋 → 𝑅+  is 

called a b- metric provided that for all  𝑥,𝑦, 𝑧 ∈ 𝑋 

1) 𝑑 𝑥, 𝑦 = 0  if and only if  𝑥 = 𝑦, 

2) 𝑑 𝑥, 𝑦 = 𝑑(𝑦, 𝑥), 

3) 𝑑 𝑥, 𝑧 ≤ 𝑠 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧  . 
A pair(𝑋, 𝑑) is called a b-metric space. It is clear that definition of b-metric space is an extension of usual metric 

space.  

 

Some examples of b-metric spaces are given below: 
 
Example 1.2. By Boriceanu [3], The set 𝑙𝑝(𝑅) (with 0 < p < 1), where 𝑙𝑝 𝑅 ≔ {(𝑥𝑛 ) ⊂ 𝑅 | |𝑥𝑛 |𝑝 < ∞}∞

𝑛=1 , 

together with the function 𝑑: 𝑙𝑝 𝑅 𝑋 𝑙𝑝 𝑅  → 𝑅,  

𝑑 𝑥, 𝑦 =   |𝑥𝑛 − 𝑦𝑛 |𝑝
∞

𝑛=1

  

1/𝑝

 

where 𝑥 = 𝑥𝑛  ,𝑦 = 𝑦𝑛 ∈ 𝑙𝑝(𝑅) is a b-metric space. By an elementary calculation we obtain that  

𝑑 𝑥, 𝑧 ≤ 2
1
𝑝  𝑑 𝑥,𝑦 + 𝑑 𝑦, 𝑧  . 

 

Example 1.3.  By Boriceanu [4], Let  𝑋 =  0,1,2   and 𝑑 2,0 = 𝑑 0,2 = 𝑚 ≥ 2, 𝑑 0,1 = 𝑑 1,2 =

𝑑 1,0 = 𝑑 2,1 = 1 and  𝑑 0,0 = 𝑑 1,1 = 𝑑 2,2 = 0. then 𝑑(𝑥,𝑦) ≤
𝑚

2
 𝑑 𝑥, 𝑧 + 𝑑(𝑧,𝑦)  for all 

𝑥, 𝑦, 𝑧 ∈ 𝑋. if 𝑚 > 2 then the triangle inequality does not hold. 

    

Example 1.4. By Boriceanu[3], The space 𝐿𝑝  0,1  (where  0 < 𝑝 < 1 ) of all real functions 𝑥 𝑡 , 𝑡 ∈  0,1  such 

that    𝑥 𝑡  𝑝𝑑𝑡 <  ∞
1

0
,  is a b-metric space if we take  𝑑 𝑥,𝑦 = (  𝑥 𝑡 − 𝑦 𝑡  𝑝𝑑𝑡)

1

0

1

𝑝
, for each 𝑥,𝑦 ∈

𝐿𝑝 [0,1]. 

 

Definition 1.5. By Boriceanu [3]  Let  𝑋, 𝑑  be  a  b-metric   space .Then  a  sequence {𝑥𝑛 } in   X  is   called a  

Cauchy  sequence  if  and  only  if  for  all   𝜀 > 0     there   exist   𝑛(𝜀) ∈ 𝑁 such that for each    𝑛,𝑚 ≥ 𝑛(𝜀)  

we  have  𝑑(𝑥𝑛 ,𝑥𝑚 ) < 𝜀. 
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Definition 1.6. By Boriceanu [3] Let  𝑋, 𝑑  be a b-metric space then a sequence {𝑥𝑛 } in X is called convergent 

sequence if and only if there exists  𝑥 ∈ 𝑋   such that for all there exists  𝑛 𝜖 ∈ 𝑁  such that for all    𝑛 ≥ 𝑛 𝜖    
we have  𝑑 𝑥𝑛 , 𝑥 < 𝜖. In this case we write lim𝑛→∞ 𝑥𝑛 = 𝑥. 
 

Definition 1.6.  [3] The b- metric  space is complete if every Cauchy sequence convergent.  

 

II. MAIN RESULT 

 

Theorem 2.1. Let  𝑋,𝑑  be a complete b-metric space. Let T be a mapping T:X→ 𝑋 such that 

𝑑 𝑇𝑥,𝑇𝑦 ≤ [𝑎 { 
𝑑 𝑥 ,𝑇𝑥 +𝑑 𝑦 ,𝑇𝑦 

2
 }  +b {

 𝑑 𝑥 ,𝑇𝑦 +𝑑 𝑦 ,𝑇𝑥 

2
 }   + 𝑐 𝑑 𝑥,𝑦 ],    ...(1)  

 

where   𝑎,𝑏, 𝑐 > 0  such that  𝑎 + 𝑏𝑠 + 𝑐 ≤ 1  ∀ 𝑥,𝑦 ∈ 𝑋  and  𝑠 ≥ 1 then  T has a unique fixed point. 

 

Proof:   Let 𝑥0 ∈ 𝑋  and    𝑥𝑛 𝑛=1
∞ ∈ 𝑋  

 

defined by the recursion    𝑥𝑛 = 𝑇𝑥𝑛−1 = 𝑇𝑛𝑥0  𝑛 = 1,2…                             …(2) 

 

By (1)  and  (2) we obtain that 
 

𝑑 𝑥𝑛 ,𝑥𝑛+1 = 𝑑 𝑇𝑥𝑛−1 ,𝑇𝑥𝑛  

≤  [ 𝑎 { 
𝑑 𝑥𝑛−1 ,𝑇𝑥𝑛−1  + 𝑑 𝑥𝑛 ,𝑇𝑥𝑛  

2
 } +b {

 𝑑 𝑥𝑛−1 ,𝑇𝑥𝑛   +𝑑  𝑥𝑛 ,𝑇𝑥𝑛−1   

2
  } + 𝑐 𝑑 𝑥𝑛 ,𝑥𝑛+1 ], 

𝑑 𝑇𝑥𝑛−1 ,𝑇𝑥𝑛   ≤ [𝑎 { 
𝑑 𝑥𝑛−1 ,𝑥𝑛   + 𝑑 𝑥𝑛 ,𝑥𝑛+1 

2
 } +b {

 𝑑 𝑥𝑛−1 ,𝑥𝑛+1   +𝑑  𝑥𝑛 , 𝑥𝑛   

2
  } + 𝑐 𝑑 𝑥𝑛 ,𝑥𝑛+1 ], 

𝑑 𝑇𝑥𝑛−1 ,𝑇𝑥𝑛   ≤ [𝑎 { 
𝑑 𝑥𝑛−1 ,𝑥𝑛   + 𝑑 𝑥𝑛 ,𝑥𝑛+1 

2
 } + b s {

 𝑑 𝑥𝑛−1 ,𝑥𝑛   +𝑑  𝑥𝑛 , 𝑥𝑛+1 

2
  } + 𝑐 𝑑 𝑥𝑛 ,𝑥𝑛+1 ], 

 1 −
𝑎

2
−

𝑏𝑠

2
− 𝑐  𝑑 𝑥𝑛 ,𝑥𝑛+1 ≤   

 𝑎

2
+

𝑏𝑠

2
   𝑑 𝑥𝑛−1 ,𝑥𝑛  ,      

 𝑑 𝑥𝑛 ,𝑥𝑛+1 ≤  
 

 𝑎

2
+
𝑏𝑠

2
  

 1−
𝑎

2
−
𝑏𝑠

2
−𝑐 

 𝑑 𝑥𝑛−1 ,𝑥𝑛  , 

𝑑 𝑥𝑛 ,𝑥𝑛+1 ≤  𝜆 𝑑 𝑥𝑛−1 ,𝑥𝑛  , 
 

where  𝜆 =
 

 𝑎

2
+
𝑏𝑠

2
  

 1−
𝑎

2
−
𝑏𝑠

2
−𝑐 

 < 1 

𝑑 𝑥𝑛 ,𝑥𝑛+1 ≤  𝜆  𝑑 𝑥𝑛−1 ,𝑥𝑛  ,      

𝑑 𝑥𝑛 ,𝑥𝑛+1 ≤ 𝜆2𝑑 𝑥𝑛−2 ,𝑥𝑛−1 ,                               
: 𝑑 𝑥𝑛 ,𝑥𝑛+1 ≤  𝜆𝑛  𝑑 𝑥0 ,𝑥1 . 
 

Therefore T is a contractive mapping. 
 

Now, we show that   𝑥𝑛  𝑛=1
∞  is a Cauchy sequence in X.  Let 𝑚. 𝑛 ∈ 𝑁,  𝑚 > 𝑛,    

 𝑑 𝑥𝑛 ,𝑥𝑚  ≤  𝑠{𝑑 𝑥𝑛 ,𝑥𝑛+1 + 𝑑 𝑥𝑛+1 ,𝑥𝑚    ≤ 𝑠𝑑 𝑥𝑛 ,𝑥𝑛+1 + 𝑠2{𝑑 𝑥𝑛+1 ,𝑥𝑛+2 + 𝑑 𝑥𝑛+2 , 𝑥𝑚  }, 
  ≤ 𝑠𝑑 𝑥𝑛 ,𝑥𝑛+1 + 𝑠2𝑑 𝑥𝑛+1 ,𝑥𝑛+2 + 𝑠2𝑑 𝑥𝑛+2 ,𝑥𝑚  , 
 ≤  𝑠𝑑 𝑥𝑛 ,𝑥𝑛+1 + 𝑠2𝑑 𝑥𝑛+1 ,𝑥𝑛+2 + 𝑠3𝑑 𝑥𝑛+2 , 𝑥𝑛+3 + ⋯… 

               ≤  𝑠𝜆𝑛𝑑 𝑥0 ,𝑥1 + 𝑠2𝜆𝑛+1𝑑 𝑥0 ,𝑥1 + 𝑠3𝜆𝑛+2𝑑 𝑥0 ,𝑥1 + ⋯… 

 ≤ 𝑠𝜆𝑛  𝑑 𝑥0 ,𝑥1 [1 + 𝑠𝜆 +  𝑠𝜆 2 +  𝑠𝜆 3 +  …… . ],      

 ≤
𝑠𝜆𝑛

1−𝑠𝜆
 𝑑 𝑥0 ,𝑥1 . 

 

Then  lim𝑛→∞ 𝑑 𝑥𝑛 ,𝑥𝑚  = 0, 𝑎𝑠   𝑛,𝑚 → ∞, since 𝜆 < 1,   lim
𝑛→∞

 
𝑠𝜆𝑛

1−𝑠𝜆
 𝑑 𝑥0 ,𝑥1  = 0 𝑎𝑠 𝑛,𝑚 → ∞. 

 

Hence   𝑥𝑛  𝑛=1
∞ ∈ 𝑋  is a Cauchy sequence. Since  𝑥𝑛  𝑛=1

∞  is a Cauchy sequence therefore  𝑥𝑛  𝑛=1
∞  

Converges  to  𝑥⋇ ∈ 𝑋. 

 

Now, we show that 𝑥⋇is the fixed point of T. 

 

𝑑 𝑥⋇,𝑇𝑥⋇ ≤ 𝑠 𝑑 𝑥⋇,𝑥𝑛+1 + 𝑑 𝑥𝑛+1 ,𝑇𝑥⋇    
  ≤ 𝑠 𝑑 𝑥⋇,𝑥𝑛+1 + 𝑠 𝑑 𝑇𝑥𝑛 ,𝑇𝑥⋇ , 

𝑑 𝑥⋇,𝑇𝑥⋇  ≤   𝑠 𝑑 𝑥⋇,𝑥𝑛+1  + 𝑠[ 𝑎 { 
𝑑 𝑥𝑛 ,𝑇𝑥𝑛   + 𝑑 𝑥⋇,𝑇𝑥⋇ 

2
 } + b {

 𝑑 𝑥𝑛 ,𝑇 𝑥⋇ +𝑑   𝑥⋇,𝑇𝑥𝑛   

2
  } + 𝑐 𝑑 𝑥𝑛 ,𝑥⋇ ],     
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  𝑑 𝑥∗,𝑇𝑥∗ ≤ [𝑠 𝑑 𝑥∗,𝑥𝑛+1  + 𝑠 𝑎 { 
𝑑 𝑥𝑛 ,𝑥𝑛+1  + 𝑑 𝑥⋇,𝑇𝑥⋇ 

2
 }  + 

𝑠2𝑏

2
  𝑑 𝑥𝑛 ,𝑥⋇   + 𝑑  𝑥⋇,𝑇𝑥⋇    

+
𝑠𝑏

2
{𝑑(𝑥⋇ ,𝑥𝑛+1)} +𝑠 𝑐 𝑑 𝑥𝑛 ,𝑥⋇ ],       

𝑑 𝑥⋇,𝑇𝑥⋇ ≤ [𝑠 𝑑 𝑥⋇,𝑥𝑛+1  + 
𝑠2  𝑎

2
 {𝑑 𝑥𝑛 ,𝑥⋇) + 𝑑(𝑥⋇,𝑥𝑛+1  }+ 

𝑠 𝑎

2
𝑑 𝑥⋇,𝑇𝑥⋇   } + 

𝑠2𝑏

2
  𝑑 𝑥𝑛 ,𝑥⋇   + 𝑑  𝑥⋇,𝑇𝑥⋇    

+
𝑠𝑏

2
{𝑑(𝑥⋇ ,𝑥𝑛+1)} +𝑠 𝑐 𝑑 𝑥𝑛 ,𝑥⋇ ],       

(1 −
𝑠 𝑎

2
   −

𝑠2𝑏

2
 ) 𝑑 𝑥⋇,𝑇𝑥⋇ ≤  ( 𝑠𝑐 +

𝑠2  𝑎

2
 +

𝑠2𝑏

2
) 𝑑 𝑥𝑛 ,𝑥⋇  + (s +  

𝑠2  𝑎

2
+ 

𝑠𝑏

2
) 𝑑 𝑥⋇,𝑥𝑛+1   

𝑑 𝑥⋇,𝑇𝑥⋇ ≤
(s +   

𝑠2  𝑎
2 +  

𝑠𝑏
2 )

(1 −
𝑠 𝑎
2    −

𝑠2𝑏
2  )

𝑑 𝑥⋇,𝑥𝑛+1  +
( 𝑠𝑐 +

𝑠2  𝑎
2  +

𝑠2𝑏
2 ) 

(1 −
𝑠 𝑎
2    −

𝑠2𝑏
2  )

𝑑 𝑥𝑛 ,𝑥⋇ . 

As  lim𝑛 → ∞, we have  lim𝑛→∞ 𝑑 𝑥⋇,𝑇𝑥⋇ = 0, 

 

Therefore𝑥⋇ = 𝑇𝑥⋇, 

 

Hence 𝑥⋇ is the fixed point of T. 

 

Uniqueness of Fixed Point:  We have to show that 𝑥⋇ is unique fixed point of T. 

 

Assume that 𝑥′ is another fixed point of T then we have  

 

 𝑇𝑥′ = 𝑥′    and      𝑇𝑥⋇ = 𝑥⋇ 

 𝑑 𝑥⋇,𝑥′    = 𝑑(𝑇𝑥⋇,𝑇𝑥′)  ≤ [𝑎 { 
𝑑 𝑥⋇,𝑇𝑥⋇ +𝑑 𝑥 ′,𝑇𝑥 ′ 

2
 } +b {

 𝑑 𝑥⋇,𝑇𝑥 ′ +𝑑 𝑥 ′,𝑇𝑥⋇ 

2
 } + 𝑐 𝑑 𝑥⋇,𝑥′ ],                                               

≤   [𝑎 { 
𝑑 𝑥⋇,𝑥⋇ +𝑑 𝑥 ′,𝑥 ′ 

2
 } +b {

 𝑑 𝑥⋇,𝑥 ′ +𝑑 𝑥 ′,𝑥⋇ 

2
 } + 𝑐 𝑑 𝑥⋇,𝑥′ ],  1 − 𝑏 − 𝑐  𝑑(𝑥∗, 𝑥′)    

=0, 

 

Since  1 − 𝑏 − 𝑐 ≠ 0 

 

Therefore   𝑑(𝑥∗, 𝑥′) =0, 
 

This is contradiction. Therefore  𝑥∗ = 𝑥′ . 
 

Hence 𝑥∗ is the unique fixed point. This completes the proof. 

 

Corollary: . Let  𝑋,𝑑  be a complete b-metric space  and 𝑠 ≥ 1. Let T be a mapping T: X→ 𝑋 such that 

𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑎 𝑑 𝑥,𝑇𝑥 + 𝑑 𝑦,𝑇𝑦  + 𝑏 𝑑 𝑥,𝑇𝑦 + 𝑑 𝑦,𝑇𝑦  + 𝑐 𝑑(𝑥, 𝑦)                                                     

where 𝑎, 𝑏, 𝑐 > 0 such that  2𝑎 + 𝑏 2𝑠 + 1 + 𝑐 < 1  ∀ 𝑥, 𝑦 ∈ 𝑋  then T has a unique fixed point. 
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