Weighted dom-chromatic number of Type-I weighted complete caterpillars

P. Palanikumar¹ and S. Balamurugan²

 $^{1}\mathrm{Department}$ of Mathematics, Mannar Thirumalai Naicker College,

Madurai - 625 004, Tamilnadu, India $^2{\rm PG}$ Department of Mathematics, Government Arts College,

Melur - 625 106, Tamilnadu, India

Abstract

A set D of vertices is a dominating set of G if every vertex not in D is adjacent to at least one member of D. A set D of vertices is said to be dom-chromatic if D is a dominating set and $\chi(\langle D \rangle) =$ $\chi(G)$. A Weighted tree, (T, w) a tree together with a positive weight function on the vertex set $w: V(T) \longrightarrow R^+$. The weighted domination number $\gamma_w(T)$ of (T, w) is the minimum weight $w(D) = \sum_{v \in D} w(v)$ of a dominating set D of T. The weighted dom-chromatic number $\gamma_{wch}(T)$ of (T, w) is the minimum weight $w(D) = \sum_{v \in D} w(v)$ of a dom-chromatic set D of T. A caterpillar is a graph which can be obtained from the path on n vertices by appending x_i pendant vertices to the i^{th} vertex of the path, P_n . The caterpillar with parameters n, x_1, x_2, \ldots, x_n will be denoted as $P_n(x_1, x_2, \ldots, x_n)$. In this paper, the weighted dom-chromatic numbers are determined for some Type-I weighted complete caterpillars.

Keywords: dominating set, dom-chromatic set, weighted domination, weighted dom-chromatic number, Type-I weighted labeling MSC Subject Classification: 05C69

1 Introduction

A set S of vertices is a *dominating set* of G if every vertex not in S is adjacent to at least one member of S. The minimum cardinality of a dominating set in

G is called the *domination number* and is denoted by $\gamma(G)$. The set $\mathcal{D}(G)$ is the collection of all dominating sets of G. A subset S of V is said to be a *domchromatic set* (or *dc-set*) if S is a dominating set and $\chi(\langle S \rangle) = \chi(G)$. The minimum cardinality of a dom-chromatic set in G is called the *domchromatic number* (or *dc-number*) and is denoted by $\gamma_{ch}(G)$. The set $\mathcal{D}_{ch}(G)$ is the collection of all dom-chromatic sets of G

A Weighted tree, (T, w) a tree together with a positive weight function on the vertex set $w: V(T) \longrightarrow R^+$. The weighted domination number $\gamma_w(T)$ of (T, w) is the minimum weight $w(D) = \sum_{v \in D} w(v)$ of a dominating set D of T. The weighted dom-chromatic number $\gamma_{wch}(T)$ of (T, w) is the minimum weight $w(D) = \sum_{v \in D} w(v)$ of a dom-chromatic set D of T.

P. Palanikumar and S. Balamurugan [13] has introduced the concept of Type-I weighted labeling and they study the weighted dom-chromatic number of a weighted tree and determine the weighted dom-chromatic number of a Type I weighted paths. Also, they found the Weighted dom-chromatic number of some classes of Type-I weighted caterpillars in [14]. In this paper, the weighted dom-chromatic numbers are determined for some Type-I weighted complete caterpillars.

Theorem 1.1. [13] Let (T, w) be a weighted tree and [1, 2, ..., n] be a leaffirst labeling of T Where $w(i) = w_i$ for i = 1, 2, ..., n. If i is a leaf of T then $\eta_{ch}(i) = w_i; \theta_{ch}(i) = 0; \lambda_{ch}(i) = w_i; \mu_{ch}(i) = 0.$

Definition 1.2. [13] Let (T, w) be a weighted tree and [1, 2, ..., n] be a leaffirst labeling of (T, w). Then L is said to be of Type-I if i is the first leaf of $T - \{1, 2, ..., i - 1\}$ from left.

Theorem 1.3. [13] For a path P_n , $(n \ge 3)$ of Type-I,

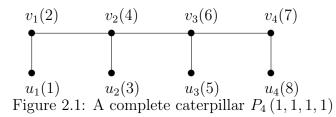
$$\gamma_{wch}(P_n) = \begin{cases} \frac{1}{6} (n^2 + n + 6) & \text{if } n \equiv 0 \pmod{3} \\ \frac{1}{6} (n^2 + n + 10) & \text{if } n \equiv 1 \pmod{3} \\ \frac{1}{6} (n^2 + n + 12) & \text{if } n \equiv 2 \pmod{3} \end{cases}$$

2 Complete Caterpillar

A caterpillar is a graph which can be obtained from the path on n vertices by appending x_i pendant vertices to the i^{th} vertex of the path, P_n . The caterpillar with parameters n, x_1, x_2, \ldots, x_n will be denoted as $P_n(x_1, x_2, \ldots, x_n)$.

Note, this is a tree with the property that the removal of its leaves and incident edges results in a path P_n called the *spine* of the caterpillar. Let l denote the number of leaves, i.e., $l = \sum_{i=1}^{n} x_i$. We say a caterpillar is complete if every vertex on the spine of the caterpillar is adjacent to at least one leaf.

Also, a caterpillar $P_n(x_1, x_2, ..., x_n)$, is complete if the $x_i > 0$ for $1 \le i \le n$. First, let us consider the class of complete caterpillars where $x_i = 1$ for $1 \le i \le n$, that is , having only one leaf attached to each vertex on the spine of the caterpillar. Examples are given in Figure 2.1.



As an example of Type -I weighted complete caterpillar $P_4(1, 1, 1, 1)$, shown in Figure 2.1. Let $P_4(1, 1, 1, 1)$ have the vertices $\{v_1, v_2, v_3, v_4, u_1, u_2, u_3, u_4\}$ as shown in Figure 2.1. The minimum weighted dom-chromatic set is $D = \{v_1, u_1, u_2, u_3, v_4\}$ and w(D) = 1+2+3+5+7 = 18. Thus $\gamma_{wch}(P_4(1, 1, 1, 1)) = 18$.

Observe that the weighted dom chromatic number of the above caterpillars is the sum of the weight of the pendent vertices of P_4 and weight of the leaves except the maximum weight of the leaf.

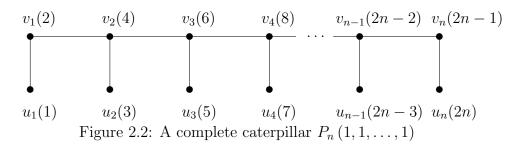
Now, we are ready to prove Proposition.

Theorem 2.1. For a caterpillar, $P_n(x_1, x_2, \ldots, x_n)$, where $x_i = 1$ for $1 \le i \le n$ of Type-I, then $\gamma_{wch}(P_n(x_1, x_2, \ldots, x_n)) = n^2 + 2$

ISSN: 2231-5373

Proof. Let $G = (P_n(x_1, x_2, \ldots, x_n), w)$ be a weighted complete caterpillar with $x_i = 1$ for $1 \le i \le n$. Let $V(P_n) = \{v_1, v_2, \ldots, v_n\}$. Attach one pendent vertex u_j for $1 \le j \le n$ at each v_i for $1 \le i \le n$ as shown in Figure 3.2. Then $V((P_n(x_1, x_2, \ldots, x_n)) = \{v_1, v_2, \ldots, v_n, u_1, u_2, \ldots, u_n\}$. Thus $|V((P_n(x_1, x_2, \ldots, x_n))| = 2n$.

let L = [1, 2, ..., n] be a leaf-first labeling of $(P_n(x_1, x_2, ..., x_n), w)$ and L is of Type-I.



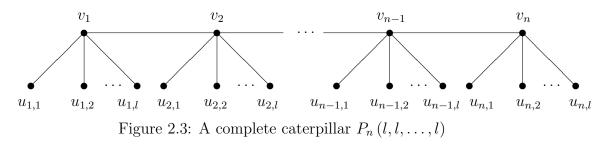
To dominate the maximum weighted vertex u_n , choose the minimum weighted vertex is v_n for the γ_w -set of G. A dominating set of G either contains a non-end vertex v or the end vertex of v. This implies that the weighted vertex v_n unioned with the set of leaves except u_n will be a minimum weighted dominating set of G. Thus, the minimum weighted dominating set of G is $\{u_1, u_2, \ldots, u_n, v_n\}$. For chromatic preservation, add a neighbor of least weight vertex to this set. Naturally, it is v_1 . Therefore, the least weight dom-chromatic set is $D = \{v_1, u_1, u_2, \ldots, u_n, v_n\}$. Hence the minimum weight of a dom-chromatic set is, $\gamma_w(P_n(x_1, x_2, \ldots, x_n)) = w(D) =$ $\sum w(v_i) = (1 + 3 + 5 + \ldots + 2n - 3 + 2n - 1) + 2 = n^2 + 2$.

Our next result of interest gives the class of complete caterpillars with $x_i = l$ where l > 1 for $1 \le i \le n$, that is , having k leaves attached to each vertex on the spine of the caterpillar. We observe that the weighted dom-chromatic number of the above caterpillars is the sum of the weights of the vertices of P_n .

Now, we are ready to prove our theorem.

Theorem 2.2. For a caterpillar, $P_n(x_1, x_2, ..., x_n)$, where $x_i = l$, where l > 1 for $1 \le i \le n$ of Type-I, then $\gamma_{wch}(P_n(x_1, x_2, ..., x_n)) = (n+1)\frac{|V(G)|}{2} - 1$

Proof. Let $G = (P_n(x_1, x_2, \ldots, x_n), w)$ be a weighted complete caterpillar with $x_i = l$, where l > 1 for $1 \le i \le n$. Let $V(P_n) = \{v_1, v_2, \ldots, v_n\}$. Attach l pendent vertex $u_{i,1}, u_{i,2}, \ldots, u_{i,l}$ at each v_i for $1 \le i \le n$ as shown in Figure 2.3. Then $V((P_n(x_1, x_2, \ldots, x_n))) = \{v_i, u_{i,j} : 1 \le i \le n ; 1 \le j \le l\}$. Thus $|V((P_n(x_1, x_2, \ldots, x_n))| = n(l+1).$



Let L = [1, 2, ..., n] be a leaf-first labeling of $(P_n(x_1, x_2, ..., x_n), w)$ and L is of Type-I as shown in Figure 2.4

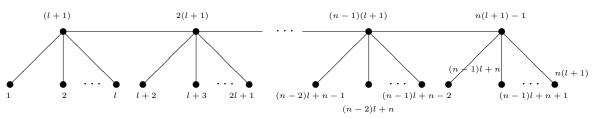


Figure 2.4: A weighted complete caterpillar $P_n(l, l, ..., l)$

A dominating set of G either contains a non-end vertex or the end vertex. It is easily observe that the set of vertices of P_n is a minimum weighted dominating set of G. Also, this set preserves the minimum weighed dom-chromatic in G. Thus, the minimum weighted dom-chromatic set of G is $D = \{v_1, v_2, \ldots, v_n\}$. Hence the minimum weight of a dom-chromatic set is, $\gamma_w(P_n(x_1, x_2, \ldots, x_n)) = w(D) = \sum w(v_i) = (l+1) + 2(l+1) + 3(l+1) + \ldots + (l+1)(n-1) + [n(l+1)-1] = (n+1)\frac{|V(G)|}{2} - 1.$

ISSN: 2231-5373

References

- [1] S. BALAMURUGAN, A study on chromatic strong domination in graphs, Ph.D Thesis, Madurai Kamaraj University, India 2008.
- [2] C. BERGE, Theory of graphs and its applications, Dunod, Paris, 1958.
- [3] P. DANKELMANN, D. RAUTENBACH AND L. VOLKMANN, Weighted Domination, 2004.
- [4] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.
- [5] F. HARARY, Graph Theory, (Addison Wesley, Reading, Mass 1972).
- [6] T. W. HAYNES, S. HEDETNIEMI AND P. SLATER, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [7] T. W. HAYNES, S. HEDETNIEMI AND P. SLATER, *Domination in Graphs : Advanced Topics*, Marcel Dekker, Inc., New York, 1997.
- [8] P.J. HEAWOOD Map color theorems, Quart. J. Math., 24(1890), 332-338.
- [9] T.N. JANAKIRAMAN, N. POOPALARANJANI, On Some Coloring and Domination Parameters in Graphs, Ph. D Thesis, Bharathidasan University, India 2006.
- [10] A. B. KEMPE, On the geographical problem of four colors, Amer. J. Math., 2(1879), 193-204.
- [11] MIN-JEN JOU AND JENQ-JONG LIN, Algorithms for Weighted Domination Number and Weighted Independent Domination Number of a Tree, Int. Journal of Cont. Math. Sci., 13 (2018), 133 - 140. https://doi.org/10.12988/ijcms.2018.8413

- [12] O. ORE, Theory of Graphs, Amer. Math. Soc. Transl., Vol. 38, Colloquium Publications, 1962, 206-212. https://doi.org/10.1090/coll/038.
- [13] P. PALANIKUMAR AND S. BALAMURUGAN, Weighted dom-chromatic number of a Tree, J. Pure & Appl. Math., Submitted.
- [14] P. PALANIKUMAR AND S. BALAMURUGAN, Weighted dom-chromatic number of some classes of Type-I weighted caterpillars, Int. J. of Mathematics Trends and Technology, Submitted.