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I. Introduction 

 We consider the linear stability of zonal flows of an inviscid, incompressible fluid on a β-plane. For this 

problem, [5] derived potential vorticity equation that governs the stability. [1] posed this problem and now it is 

known as Kuo problem. For this problem, [1] derived the inflexion point criterion namely ''U vanishes 

somewhere in the flow domain which is the extension of Rayleigh inflexion point theorem for the case of shear 

flows. [3] shown the range of wave velocity of an unstable mode. The instabilityregion of [3] does not depend 

on ''U .  [2] derived two parabolic instability region which includes ''U  and depends on functions which 

is either greater than zero or less than zero. [6] derived condition for temporal growth rate of an unstable mode and 

necessary condition for the non-existence for non-oscillatory unstable modes. For the case of homogeneous shear 

flows in sea straits of arbitrary cross section, [4] derived parabolic instability regions. Our present work is an 

extension of the work done by [4] for the case of zonal flows.  

 In this paper, we derived two parabolic instability region for a class of flows which does not depend 

function either greater than zero or less than zero as given in [2] and intersect with standard Howard semicircle 

under some condition. 
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II. Kuo Problem 

 The Kuo problem is given by  
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Here prime denotes differentiation with respect to z, ir iccc   is the complex wave velocity of the disturbance, 

k is the wave number, U(z) is the basic velocity profile, β is Coriolis force in the latitudinal direction.  
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withboundary conditions 
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III. Main Results 

Theorem 3.1: 

 If  ir iccc  with 0ic   then   
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Proof: 

Multiplying (3) by *G , integrating over  21, zz   and using (4), we get 
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Equating real and imaginary parts, we get 
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and 
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Since 0ic , we have 
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Theorem 3.2: 

 If 0min U then 

 maxmin
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Proof: 

Multiplying (6) by  maxmin UU  and adding with (5), we get 
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Since    0maxmin  UUcU r  , dropping this term from the above equation, we get 
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Multiplying (6) by  rc  and adding with (5), we get 

 
 

0
24

)2( 2
''

2

2

2'
22

2
'

2

1

2

1

2

1




















   dzG

U
dzG

cU

cUU
dzGkGU

z

z

z

z

r

z

z

 .   (8)  

Substituting ((7) in (8), we get 
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That is  
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Theorem 3.3: 

 If c  where    minmaxmaxminmax 223 UUUUUc  then  maxmin

2 UUcc ri    

intersect the Howard semicircle. 

Proof: 

The Howard semicircle is given by  
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Substituting (9) in (10), we get 
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 maxmin

2 2 UUcc ri   , where
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Proof: 

Multiplying (6) by  minmax UU  and adding with (5), we get 
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 Since    0maxmin  UUcU r  , dropping this term from the above equation, we get 
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Theorem 3.5: 

 If c   where    minmaxminmax 2233 UUUUc   then  maxmin

2 2 UUcc ri    

intersect the Howard semicircle. 

Proof: 
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Substituting (11) in (10), we get 

    02 maxminmaxminmaxmin
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Solving, we get 
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If c  , where    minmaxminmax 2233 UUUUc   then the parabola 

 maxmin
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IV. Concluding Remarks 

In this present paper, we derived analytical results on Kuo problem, which deals with linear stability of zonal 

flows of an inviscid, incompressible fluid on a β–plane. We obtained two parabolic instability region which 

intersect with standard Howard semicircle for a class of flows under some condition. 
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