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Abstract — This paper is devoted to the study of MHD Jeffrey fluid in a vertical channel in presence of wall slip
and Hall current. The channel is caused due to peristaltic transport on the walls having different amplitudes
and phase. The analytical solution has been carried out by using the long-wave approximation and low
Reynolds number. Closed form expressions for velocity and temperature are developed. The expressions for the
zeroth-order and the first order solutions are obtained and the results are presented graphically for different
values of parameters entering into the problem
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I. INTRODUCTION
The problem in mechanism of peristaltic transport has attracted the attention of many investigators and is still

in demand due to its practical applications especially in physiology. Examples include urine transport from
kidney to bladder through the ureter, chyme movement inside the gastro-intestinal tract, transport of
spermatozoa in the ductus efferentes of the male reproductive tracts and so on. Since the first investigation of
Latham [1], a number of analytical, numerical and experimental studies on peristaltic flow of different fluids
have been reported under different conditions with reference to physiological and mechanical situations. In view
of these applications, Hayat et al. [10] have investigated the series solutions for magnetohydrodynamic flow of a
Jeffery fluid in a porous channel by using powerful analytic method namely the homotopy analysis method
(HAM). Srinivas and Muthuraj [11] have analyzed the MHD mixed convective heat and mass transfer
peristaltic flow through a vertical porous space in presence of a chemical reaction Srinivas and Muthuraj [12]
have analyzed the problem of MHD peristaltic transport of a Jeffrey fluid in an inclined asymmetric channel
under the influence of slip condition near the channel wall using long wavelength and low Reynolds number
approximations.Muthuraj and Srinivas [13] have discussed MHD peristaltic flow of a Newtonian fluid through
porous space in a vertical channel with compliant walls. Nadeem and Akram [14] have examined the peristaltic
transport of couple-stress fluid in an asymmetric channel with an induced magnetic field under the assumptions
of long wave length and low but finite Reynolds number. Eldabe et al. [15] have analyzed the effect of wall
properties on the peristaltic transport of a dusty fluid with heat and mass transfer by using perturbation

technique for small geometric parameter. Vajravelu et al. [16] have studied he peristaltic flow of a Jeffrey fluid
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in a vertical porous stratum with heat transfer under long wavelength and low Reynolds number assumptions.
The effect of heat and mass transfer in MHD peristaltic flow of a Maxwell fluid in a planar channel with
compliant walls was studied by Hayat and Hina [17].

From the Literature survey, it is evident that, several authors have presented the fluid flow investigations when
the flow field obeys the conventional no-slip condition. However, there are fluids, such as, polymeric materials
that slip or stick-slip on solid boundaries. Such flow under an applied pressure gradient yields a sudden increase
in the throughout at a critical pressure gradient causing "spurt”. Ellahi et al. [18] have presented the analysis of
steady flow of a third grade fluid between the concentric cylinders. Nadeem and Akram [19] have discussed the
effects of partial slip on the peristaltic flow of a MHD Newtonian fluid in an asymmetric channel by using
Adomian decomposition method. Akbar et al. [20] have investigated the peristaltic flow of a Williamson fluid
in an inclined asymmetric channel in presence of velocity and thermal slip conditions. Ahmad et al. [21] have
investigated the effects of Hall current on unsteady MHD flows of a second grade fluid. Ali et al.[22] have
investigated the effect of Hall current on MHD mixed convection boundary layer flow over a stretched vertical

flat plate._Srinivasacharya and Kaladhar [23] have presented the Mixed convection flow of couple stress fluid

between parallel vertical plates with Hall and lon-slip effects.

To the best of the author’s knowledge, no research work is carried out in peristaltic transport of Jeffrey
fluid including the Hall effects and wall slip condition. Therefore, the main purpose of the present study is to
investigate the influences of hall current and wall slip on peristaltic transport of a Jeffery fluid flow in a vertical
channel. The study of such flows with Hall currents has an important role to play in many engineering problems
of MHD generators and of Hall accelerators as well as in flight magnetohydrodynamics. In the present paper,
the problem first formulated in wave frame of reference and then analytic solutions to the velocity and
temperature are presented. The organization of the paper is as follows. The problem is formulated in section 2.
Section 3 deals with the solution to the problem. Results and discussion are given in section 4. The conclusions

have been summarized in section 5.

I1. Formulation of the problem: Consider an incompressible Jeffery fluid filling two-dimensional vertical

channel (Fig.1) induced by sinusoidal wave trains propagating with constant speed ¢ along the channel walls
27
H, =d, +a, cos T(X—ct) [

H, :—dz—blcos(%(X—ct)Hpj @

where @, , b, are the amplitudes of the waves, A is the wavelength, d, +d,is the width of the channel, the

phase difference ¢ varies in the range 0 < @ < 7. Further @, , b, ,d, , d, and ¢ satisfies the condition
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a’ +b? +2a,b, cosp<(d, +d,)? ®3)
The temperature at right hand side wall is T1' and concentration is C'1 while the temperature at the left hand side

wall is T, (T, > T,) and concentration is C,

The constitutive equations for an incompressible Jeffrey fluid are

T=—pl+S

= 0o
5= A
iy (1+27)

where T and Sare Cauchy stress tensor and extra stress tensor respectively, Eis the pressure, lis the identity
tensor, A, is the ratio of relaxation to retardation times, A, is the retardation time, y is the shear rate and dots

over the quantities indicate differentiation with respect to time. Under the assumption of Boussinesq
approximation, we shall investigate a coordinate system, moving with the wave speed c, in which the boundary

shape is stationary. Defining in wave frame (X, y), the velocity components (u, v) and pressure p by
x=X—ct,y=Y,u=U-c,v=V, p(x) =P(X,t)

where G V are the velocity components in the wave frame (i )_/) , 5 and P are pressures in wave and fixed

frame of references respectively.

— — — — 2 _
X:é’yzl’u:E’V:l’ p:dl—p’tzc—t’hlzi’hzzi’d:d—zl
A d, C cd pch A L 1 1
5=t,a=t 0o ToL 4o C=C pn
» O T,-T " c,-¢ 4

Introducing the above non-dimensional variables, the non- dimensional form basic field equations can be

expressed (See Refs. [11, 15])

du_ N _, @
ox oy
au  éu d d d M?
SRe[ua—X+v5j:—a—z+[68—X(SXX)+5(SXY)}+W[8le—(u+1)]+Gte+Gc¢ ©)
au v § d d M?5
83Re(ua—XJrv&j=—£+6{68—X(SXY)+a(sw)}+m[ml(u+1)+v8] ®)
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2 2 2 2
SReP( o Vaej {8286 a9}25,52 (a_“j {@] +B{a_”+52@} rad ()

ox oy ox*> oy’ OX oy oy OX
0 1 o° o° 0’0 0’0
sRe[ u v |1 62—(';+—(B +S,| 8 —+— ®)
ox oy) S, X ox° oy
cd
where FQe=b is the Reynolds number, P, =“—Cp is the Prandtl number, S, = H is the Schmidt
H k D,
d
number, S, = POy, K (T ) is the Soret number, G, = pr—(l) is the local temperature Grashof
T(C C)H uc
242
number, G, _ PP d(C,~0) is the local mass Grashof number, M? = —C%"% s the Hartmann number,
uc n
C2
E. = ? is the Eckert number, B, = P.E_ is the Brinkman number, m, is the Hall effect parameter,
C —
p\l1

Qd; . . .
K is the heat source parameter, A, is the ratio of

d, . . )
8=71 is the dimensionless wave number and o =

relaxation to retardation times, A, is the retardation time, g is the acceleration due to gravity, B, is the applied

magnetic field, o is the electrical conductivity, K is thermal conductivity, T is the temperature of the fluid, C is

the concentration of the fluid, T is the mean value of wall temperatures, 6 is the mean value of wall

concentrations, p is density of fluid, pis dynamic viscosity of the fluid, Q is absorption coefficient of the fluid,
B, is the co-efficient of thermal expansion, [, is the co-efficient of expansion with concentration, C is the
specific heat at constant pressure, D, is the co-efficient of mass diffusivity, kT is the thermal-diffusion ratio.

Introducing the dimensionless stream function (X, y) such that

u:a—wand V:_G_\p 9

OX

and eliminating the pressure gradient, equations (5) — (8) becomes

SRe[(\u\u —y, )+82(\u\|1 -y )] [ 52( -S )+(8—2—82 o ]S}
y T Xyy yyy y y axay yy ay2 aX (10)

M2

2
T [ Wy, +8°W,, |+ G0, +G.d,
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SReP,[y,0, —y,0, |=(8°0,,+0,,)+B, [452 (W )2 +(Wyy — 8w )1+ a0 (11)
1
SRe W0~ Wby |= (50, +0,, )+, (50, +0,,) (12)
where
i Y
s - 2|, 8c(w o dvol|dy )
1+2,| d; {9y ox Ox oy )|oxoy
B 1/ A2 2
S,y = 1 1+ OrLlOy 0 oy & 3_\|21_82 5_\|21 (14)
1+A | d, { oy ox oOx oy oy OX
2
Syy =— 25 1+ 67\'2(: a_‘l’i_@ﬁ a_\ll (15)
1+, d, {0y ox ©Ox oy )|oxoy

By using long wavelength approximation and neglecting the wave number along with low-Reynolds number,

the equations (10) — (15) become

‘Z;‘!j—H(1+x1)‘2;—"2’+et(1+x1)‘?—33+ec(1+x1)%=0 (16)
%0 oty Y

W+Br (W] +00=0 17
The corresponding boundary conditions will be

w:%, y,+Ly, =-1, 0=1, ¢=1 at y=h, =1+acos2nx (19)

w:—%, y,~Ly, =-1, 0=-1, ¢=-1 at y=h,=-d-bcosmx+¢)  (20)

where L[= B}» j is the dimensional slip parameter.
A
In which q is the flux in the wave frame, B is the slip parameter and a, b, ¢ and d satisfy the relation

a’ +b”+2abcos ¢ < (1+d)* (1)

The flux at any axial station in the fixed frame is
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hy 8\|1
Qzﬂé;+@dy=m—hﬁq. 22)
The average volume flow rate over one period of the peristaltic wave is defined as
17 17
®=?den;fjm+h,—m)m=q+1+d (23)
0 0

The pressure gradient is obtained from the dimensionless momentum equation for the axial velocity as

3
o _ 1 a—“;—H(u+1)+Gt6+GC¢ (24)
ox 1+, oy

The non-dimensional expression for pressure rise per wavelength AP, is given as follows

2n
op
Ap, = || — |dx (25)
P, !(axj
The non-dimensional shear stress (14) at the upper wall of the channel is reduced to
1 0
= —— Y (26)
1+, oy
The Coefficient of heat transfer at the right wall is
oh, 00
Z=—>=1—" (27)
OX oy

I11. Method of solution

To have a solution for a system of equations (16-18) subjected to the boundary conditions (19-20), we assume

the following perturbation method for small geometric parameter (i.e., B, <<1) as:

V=, + By, + By, +... (28)
b=, +Br¢1+Bf¢2+--- (29)
0=0,+B,0,+B%0, +... (30)

Substituting equations (28-30) in equations (16-20) and collecting the coefficient of various powers
of B, on both sides, we obtain the following sets of equations:

Zeroth order equation:

4 2

%ﬁ%—H@+M)%¥O:4EOAXJ%%—GJMJﬁ%% (31)
2

%yezo +06,=0 (32)
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2 2
8 Ps
WO:%, %H_ 6;';0 —-1, 6,=1 ¢,=1 at y=h, (34)
2
vo=—3, %—La—"ﬁ):—l, 0,=-1 ¢,=-1 at y=h, (35)
2 oy oy
First order equation:
4 2
aa;'jl —H(1+xl)%;'§ :-Gt(1+xl)%—ec(1+xl)% (36)
2 2 2
iy%usr(aa)"/’;] +a0, =0 37)
2 2
aZ
v, =0, %+L%=O, 0,=0, ¢,=0 at y=h, (39)
62
v, =0, %—L%:Q 0,=0, ,=0 at y=h, (40)

Solving equations (31-33) and (36-38) together with the boundary conditions (34-35) and (39-40), we get the

stream functions, velocity, temperature and concentration of fluid as:

v, =E+Fy+A, coshB,y+B,sinhB,y+T,sinhB,y+T, coshB,y+ T,y (41)
U, =F+Ap,sinh B,y + BB, cosh B,y + Ty, cosh B,y + T,B, sinh B,y + 2T,y (42)
6, = AcoshB,y+Bsinh B,y (43)
¢, =Cy+D+T,coshB,y+T,sinhB,y (44)

v, =A, +B,y+coshB,y (A, +Tyy)+sinh B,y (B, + T,y ) +cosh By (Tg, + Ty ) +
T, sinh 28,y + Ty, cosh 2B,y + T, cosh 2B,y + T, sinh(B, +B,)y + Tgg cosh(B, —B,)y (45)
+T,,y° + Ty, sinh B,y + S, sinh 2B,y
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u, = B4 +sinh Bzy(A5B2 + T92 + T91B2y) +cosh B2Y(Bsﬁz + T91 + T92B2Y) +
sinh Bly(T83Bl + T89B1y) + 2T84[32 cosh ZBzy + 2T85E’2 sinh 2B2y + 2T86Bl sinh 2B1y +

T87 (B1 + Bz) COSh(Bl + Bz)y + T88 (Bl - Bz) Sinh(Bl - Bz)y +cosh B1Y(T89 + T94B1)
+ 2T,y + 254, cosh 2B,y

(46)

0, = A, coshB,y +sinhB,y(B, + T,sy)+ T, cosh 2B,y + T, sinh 2B,y +
T, sinh 2B,y +T,q cosh(B, +P,)y + Ty, cosh(B, —B,)y + C3)
T, coshB,y+T, +S,cosh 2B,y

¢, = A, + B,y +cosh [31y(T59 +T,, ) +sinh [31y(T60 + T66y) +T,, cosh 2B,y +
Te, sinh 2B,y + Tgg sinh 2B,y + Tg, cosh(B, +B,)y + Tes sinh(B, —B,)y + (48)
T, cosh B,y +S, cosh 28,y
MZ
1+m?

where B, =v—ot,B, = \[H(1+2,) , H=

Results and discussion: In order to identify the quantitative variations of emerging parameters the graphical

results are presented. The effects of magnetic parameter (M), slip parameter (3 ), Hall parameter (m,),

geometric parameter (a), Material parameter (A,), phase angle (¢ ) and Grashof number (G, ) on the axial

velocity are plotted in Fig.2. In order to show the effects of slip parameter and the magnetic parameter M, we
have prepared Fig. 2a. It reveals that the fluid velocity decreases with an increase in magnetic parameter M,
which means that, when M increases, it creates the Lorentz force, which opposes the flow and leads to enhanced
deceleration of the flow (as noted in Ref.[10]). From the same figure, we observe that an increase in slip

velocity tends to decrease fluid velocity because the slip condition at the boundary slows down the fluid velocity.
Fig.2b depicts the variation of fluid velocity with Hall parameter (M, ) in presence of a wall slip. It shows that

velocity profile increases with increase in Hall parameter. The reason behind such discrepancy in results may be
due to increase in Hall parameter, which reduces the magnetic damping force on the velocity. The effect of
geometric parameter ‘a’ on velocity distribution is depicted in Fig. 2c. It is shown that as ‘a’ increases the
velocity profiles become perfect parabolic and also the profiles move slowly from left to the centre of the
channel whereas there is no significant variation in magnitude of the velocity with increase in the parameter ‘a’.
Such an effect may be expected, because an increase in Grashof number physically means increase in buoyancy

force, which supports the flow.
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Fig. 3 describes the influences of m;,A,, M on dimensionless pressure gradient dp/dx over one

wavelength X €[0, 1] . Through Figs. 3(a)-3(c), we can see that dp/dx is decreasing function on m;, A, with
fixed values of all other parameters. Further, from the same figure, we can notice that dp/dx increases with
increasing M significantly. Moreover, in the wider part of the channel 0< X <0.2 and 0.8<x <1, the
pressure gradient is relatively smaller i.e. flow can easily pass without the imposition of large pressure gradient

where the reverse trend can be seen in narrower part of channel 0.2 <x<0.8.

Fig. 2 Velocity distribution

(b=0.4,d=1, Re=1, S =1,¢=1, p=7/2 =2, P.=071,B, =0.01)
(@) () M=0.1, (*) M=2, (0) M=4, (") M=6, M, =05,a=03, G, =5, A, =0.5
(b) () M, =0, () M, =1,(0) M, =2, (") M, =5, M=2, G, =5, a=03, A, =0.5
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(©) (1) a=0.3, (*) a=0.4, (0) a=05, (") a=0.6, M, =0.5,M=2, G, =5, A, =0.5

40

30|

dp/dx

i'i\'f\é‘gv;. 2408 12004,
02 04 X 06 08 1 0 02 04 X 06 08 1

Fig. 3 Pressure gradient

(@=03,b=05,d=12, P =0.71, S =1, G, =1, 9=-3, Re=1, B, =0.001, 0 =1)
@ ()M, =0,(*» M, =05, () M, =1, (") M, =15, A, =05, M=2, 3 =0.1, @ =0
(0) () Ay =0, () A, =05, (0) Ay =1, (") A;=15,M, =05 M=2, $ =01, ¢ =0
© O M=01, () M=2, (0) M=4, (") M=6, A,=0.5 M, =05, B =01, @=0

CONCLUSIONS: In this paper, we have analyzed MHD heat and mass transfer peristaltic flow of a Jeffery
fluid in a vertical channel in the presence of Hall current and wall slip condition. The momentum and energy
equations have been linearized under long-wavelength approximation. Expressions for velocity and temperature
have been obtained. The influences of pertinent parameters on flow, heat and mass transfer characteristics are
analyzed through graphs and discussed in detail. The main findings are summarized as follows:
e The fluid velocity decreases with an increase in magnetic parameter M, which means that, when M
increases, it creates the Lorentz force, which opposes the flow and leads to enhanced deceleration of the

flow.

e The influences of m;, A, M on dimensionless pressure gradient dp/dx over one wavelength X € [0, 1].

APPENDIX

T T
:_SchA; T, :_SchB; T3 = B_; ; T4 - B_g ) Ts :[_GIA](1+;\‘1)61;
1 1

T, =[-G,B](1+ 4 )By; T, (B _TB 7 J

T : qd_ T .
T, = (Bl — [632[31 J T, = > — T, sinhB,h, =T, cosh B;h;;

T,= —%—TS sinh B,h, — T, cosh B;h,;
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T, =(h, +h,)[coshB,h, —coshB,h,]—(h, —h,)[cosh B,h, +coshB,h, ];
T, =(h, +h,)[sinhB,h, —sinhB,h,]—(h, —h,)[sinh B,h, +sinhB,h,];
T15:(T11 12)(h +h ) ( 11+T12)( );

= LBZ; Ty =(-LTeBF = TeB, )i Top = (—LTB7 — T, ); Tyo =—1;
= (—LTB +TB, ) Ty = (—LTB; + T, ) T, =1,
=T,sinhB,h, +T18coshB1h +Tq; T, =T,psinh B0, +T,, coshB,h, +T,,;
=T, (coshB,h, —cosh B,h, )+, (sinh B,h, +sinhB,h,);
T, = Tm(sth2 —sinhB,h, )+B, (coshB,h, +coshB,h, );
(coshB,h, +coshB,h, )+B, (sinh B,h, —sinh B,h,)
T, = Ty (Sinh B,h, +sinh B,h, )+B, (cosh B,h, —coshB,h,);
T,y =2(coshp,h, —coshB,h,)—(h,—h,) Ty;
Ty, = 2(sinh B,h, —sinhB,h, ) —(h, —h,) T,

Ty =2(Ty—Ty)~(h =, ) (T~ T,.); T{_B(%+%ﬂ
i 2A 31[32 2p27].

Ty = I -B, ( 2 j} 34 = [ B, TsT. [31] I:_BrBlTsﬁzﬁl :|1

Ty = I:BrBlTBBEBf:I; Ty = |:_Br (4T9T10612 ):|’ Ty = |:_Br (4A1T10B§ )]’

i _A2p4 2n4 24 24
T39: Br( A21Bz +812B2 +T82B1 _T92B1 _4T1%j}

_ B TR 1+ | T [ Ta

Sl - |:_Br (T‘FTJ}, T40 [4[_32 Bl j T41 [4[52 Bl j

2 = (T_&;j; Ty = ( L= J Ty = ( T362 > }
3B1 (B1 +B2) B1 (Bl_Bz) _Bl

T45:(_T37J;T46 [ T j'TM:(_-I;ggj;Sz:[S_lzj;
2 Bz Bl B; 3[31

. | T,,cosh 2B,h, +T,,sinh 2B,h, + T, sinhB,h, + T, cosh (B, +B,)h, + |
© | T,,cosh(B, —B,)h, + Th, sinhB,h, +T,, coshB,h, + T, +S, cosh 2B,h,

o

[ T,,cosh 2B,h, +T,,sinh 2B,h, + T, sinhB,h, + T, cosh (B, +B,)h, + |
| T,y cosh(B, —B,)h, +Th, sinhB,h, +T,, coshB,h, +T,, +S, cosh 2B,h,

T =S, (Blez + 2T4551); Ts =S, (BfBZ); Ty = (4|32 40) 53 (4B§T41);
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T54 =-S (4B1 42) -S T43 (Bl +B2) ) 56 ScT44 (Bl _Bz )2 ;
T = _ScT45B1; 58 — _ScT4eB2; S; =-S5, (451282);
B B 4B; 4B,
Tes = T542 j; Teq _[ s 7 |+ Tes = ( L }
4B, (B, +B,) (B, —B,)’
Tes = T—SZ} Ter :[_21_57 J; Tee :(T_Sfj; S, :[S—sz}
B B B> 4B,
' T, cosh B,h, + T, sinh B,h, + T, cosh 2B,h, + T, sinh 2B,h, +
Teo = —| TezSinh 2B,h, + T, cosh (B, +B, ) h, + Teg sinh (B, —B, ) h, +
| TeshysinhB,h, + T, cosh B h, + T, cosh B,h, +S, cosh 23, h,
| T,, cosh B,h, + T, sinh B,h, + T, cosh 2B,h, + T, sinh 2B,h, +
T, =—| Tegsinh 2B,h, + T, cosh (B, +B, ) h, + Tegsinh (B, —B, ) h, +
_T66h2 sinhB,h, + T, coshB,h, + T, coshB,h, +S, cosh 2f3,h,
T :[ ( G APy +G, T45):'
T, =[-(1+1 )(G B,B,) s Tos =[ —(1+4,)(G,T,,28,) |:
T2 :I: (1 )(G T41252 :I Tos —I: (1+)\’1)(GtT42251):|’
Tog :[ (1 )(G Ta B1+B2 )]
T :[ (1 )(G Tas Bl )] Tog :[_(1"'7\' )(G T45B1):|;
Too =[~(1+%,) (G, T,eB,) |: Ss =[ 2(1+1,)(GS,B,) [;
Tg = Tn j Tgs = ( Tz j
By — BB B — B2B1
Tg = T734j; Ts :[T—744); T :[ Loe zj’
128, 12, 168, —4B3B;
T T .
T87 = 88 — > 2 5 ,
BBy [(Bu By P2 ] ) | (Bempa) [ (Be—Pa) —B)
T, = - T J Ty = - _22T78 —~— 2T > i T, = [Bzng J;
Bl (Bl Bz) '31 (Bl _Bz) Bl (Blz —B;) 262
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SS
SG: 16 4_4 2n2
B —4B:iB;

J; T94 :[Tsz +T90];

_T83 coshB,h, + Ty, sinh 2B,h, + T, cosh 2B,h, + T, cosh 2B,h, +
Tos =—| Tg; sinh (B, +B, ) h, + Tz cosh (B, —B, ) h, + T h, cosh B,h, + ;
| Ty;h, coshB,h, + Ty,h, sinh B,h, + T;h? + T, sinh B,h, + S, sinh 2,h,

[ T,, coshB,h, +T,, sinh 2B,h, + T, cosh 2B,h, + T, cosh 2B,h,, +
Tos =—| Tgz Sinh (B, +B, ) h, + Tys cosh (B, —B, ) h, + Tyeh, cosh B h, +

| Ty.h, coshB,h, + Ty,h, sinh B,h, + T;h3 + T, sinh B,h, ++S; sinh 2B, h,
Ty = (hy +1,)(Tes = Tog ) —(hy =, ) (Tes + T ); Tog =(LBS coshB,h, +B, sinhp,h, );
T, =(LB3sinhB,h, +B, coshB,h, );

Ty = COSh By, (LTyaBl + Ty + Ty By ) +5inh 28,0, (LT, B2 + 2T,eB, );

T, =€0sh 2B,h, (4L T, +2T,,B, )+ cosh 2B,h, (4L T,B; +2SB, );

Tigz = Sinh (B, +B, )y (LTy; (B, +B,)" )+ cosh (B, B, ) (LT (B, -8, )°);

Toos =C0sh (B, +B, ), Tz (B, +B, ) +sinh (B, —B, ) h, (Tee (B, —B>) );

T,y =h, coshBih, (LT,gB7 ) +sinhBh, (2L TR, + LT,,B; + Ty );

Tyos =, COShB,h, (LT,,B3 +Ty,B, ) +sinhB,h, (2LTyB, + Ty, )

Tyos =y sinh B,h, (T,B, ) +cosh,h, (Ty, );

T,y =SiNh 2,0, (2T,eB, +4LSB; ) +h, sinh B,h, (TB, );

T,0s = (LB; coshB,h, —B, sinhB,h, ); Ty, =(LB3sinhB,h, —B, coshB,h, );

Ty = COSh By, (LBI Ty — Tog — TouBy ) +5inN 28,0, (ALRT,, — 2T B, );

Ty, =c0sh 2B,h, (4LP Ty, — 2T, B, )+ Cosh 2B,h, (4LB; Ty, — 2SB, );

Tip =sinh (B, +B, )h, LTy, (B, +B,)° )+ cosh (B, ~B, ), (LT (B, ~B.)°):

T3 =cosh (B, +B,)h, (=T (B, +B,)) +sinh (B, —B, ), (~Tee (B, —B,));

T,1s =h, coshB,h, (LT, ) +sinh Bih, (2LT, B, + LTe,B: — T, )

Tyys =h, coshB,h, (LTg B — T, B, ) +sinhB,h, (2LT,B, - Ty, );

Tyys =h,sinh B h, (LTy,B — T,,B, ) +coshB,h, (2LT,,B, — Ty, );

T,1, =sinh 28,1, (4LS,B; — 2TyeB, ) +h, sinh Bih, (~T,B, )

-rllS == [-rlOO + TlOl + T102 + T103 + T104 + T105 + TlOG + T107 ] ;
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119 [Tllo + T111 + T112 + T113 + T114 + T115 + T116 + T117]
T, = 2(coshB,h, —coshB,h, )—(h, —h, ) (Tes — Tge );
T, = 2(sinhB,h, —sinhB,h, ) —(h, —h, )(Tes — Ty )
) 1-Bsinhf;h
= 2T =T )=( =, (T =T ); A2
_ (Tlls + T ) -B; (T99 +T109) ‘B= coshB;h, +coshp,h;
® (Tog + Tioe) sinh B, (h, —h,)
2-T,(coshB;h, —coshf;h, )T, (sinhB,h, —sinhph, )
(hl _hz) ’
T.+T,)-BT T, (T,.+T,,)-T,T.
D:1_Ch1_T3COShBlh1_T4SinhBlhl, A]_:( 23+ 24) 1728 : 81: 29( 23+ 24) 27 31;
T27 T28T29 _T27T30
T,.—B,sinhB,h )
, =2 coszh BlhlBl L. E=T,—Fh,—A coshf,h, —B,sinhB,h;;

F=

A,

B, =

[1]
[2]

(31
[4]
[5]
6]

[7]
(8]

[°]

[10]
[11]
[12]
[13]

[14]

_ Tcoshp,h, — T, coshBh, A AT +BT -Ty . g _ Teo—Too .

(T,,—T,)—A,(coshp,h, —coshB,h,)—B, (sinhB,h, —sinhB,h,)

(hl_hz)

sinhg, (h,—h,) " 2(h,—h,) " ° (h,—h,)
=T120 (T118+T119)_T122 (T98+T108).
T120 (T99 +T109)_T121(T98+T108)

=Tgo — Bshl; B;

T, —A, — A, cosh B,h, — B, sinh B,h,
hl
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