Hypersurface of special Finsler space

Suraj Kumar shukla ${ }^{1}$ and T.N.Pandey ${ }^{2}$
Department of Mathematics Digvijainath PG college civil line Gorakhpur-273001 ${ }^{1}$
Department of Mathematics and Statistics, D.D.U.Gorakhpur University, Gorakhpur-273009, India ${ }^{2}$

Abstract

In 1985 Matsumoto [1] discussed the properties of special hypersurface of Rander space with $b_{i}(x)$ being gradient of scalar function $b(x)$.He has considered a hypersurface which is given by $b(x)=$ constant. In 2009 Prasad and Shukla [2] have considered the hypersurface of generalized Matsumoto space with the same equation $b(x)=$ constant .

In this paper our study confines to the hypersurface of a Finsler space with special (α, β) metric
$\alpha \cosh \frac{\beta}{\alpha}+\beta$ given by $b(x)=$ constant. We will find out the conditions under which the hypersurface is a hyperplane of first or second kind have been obtained. This hyperplane is not a hyperplane of third kind.

I. Introduction

Let $F^{n}=\left(M^{n}, L\right)$ be an n dimensional Finsler space, where M^{n} is an n-dimensional differentiable Manifold and $\mathrm{L}(\mathrm{x}, \mathrm{y})$ is the fundamental function. The concept of an (α, β) metric was introduced in 1972 by Matsumoto [3]. A Finsler space $\mathrm{L}(\mathrm{x}, \mathrm{y})$ is called an (α, β) metric if L is positively homogeneous function of α and β of degree one, where $\alpha^{2}=a_{i j}(\mathrm{x}) y^{i} y^{i}$ and $\beta=b_{i}(\mathrm{x}) y^{i}$ is one form on M^{n}. We have some interesting examples of an (α, β) metric ,for instance $\mathrm{L}=\alpha+\beta$ (Randers metric)[4], $\mathrm{L}=\frac{\alpha^{2}}{\beta}$ (Kropina metric)[5]. In 1989 M.Matsumoto, while studying the slope of mountain, introduced a (α, β) metric, given by $L=\frac{\alpha^{2}}{\alpha-\beta}$ which has been called Matsumoto Space [4].

The purpose of the present paper is to study the properties of hypersurface of special Finsler space whose metric is given by

$$
\begin{equation*}
\mathrm{L}(\mathrm{x}, \mathrm{y})=\alpha \cosh \frac{\beta}{\alpha}+\beta \tag{1}
\end{equation*}
$$

Where

$$
\alpha^{2}=a_{i j}(\mathrm{x}) y^{i} y^{i} \quad \text { and } \quad \beta=b_{i}(\mathrm{x}) y^{i}
$$

II. Fundamental quantities of special Finsler space

The derivative of the metric (1) with respect to $\alpha \& \beta$ are given by

$$
\begin{align*}
& L_{\alpha}=\cosh \frac{\beta}{\alpha}-\frac{\beta}{\alpha} \sinh \frac{\beta}{\alpha} \tag{2.1}\\
& L_{\beta}=\sinh \frac{\beta}{\alpha}+1 \tag{2.2}
\end{align*}
$$

$$
\begin{align*}
& L_{\alpha \alpha}=\frac{\beta^{2}}{\alpha^{3}} \cosh \frac{\beta}{\alpha} \tag{2.3}\\
& L_{\beta \beta}=\frac{1}{\alpha} \cosh \frac{\beta}{\alpha} \tag{2.4}\\
& L_{\alpha \beta}=-\frac{\beta}{\alpha^{2}} \cosh \frac{\beta}{\alpha} \tag{2.5}
\end{align*}
$$

Where $\quad L_{\alpha}=\frac{\partial L}{\partial \alpha}, L_{\beta}=\frac{\partial L}{\partial \beta} \quad, L_{\alpha \alpha}=\frac{\partial^{2} L}{\partial \alpha^{2}} \quad, L_{\beta \beta}=\frac{\partial^{2} L}{\partial \beta^{2}} \quad$ and $L_{\alpha \beta}=\frac{\partial^{2} L}{\partial \alpha \partial \beta} \quad$.
The normalized element of support $l_{i}=\frac{\partial L}{\partial y^{i}}$ is given by [8]

$$
\begin{equation*}
l_{i}=\alpha^{-1} L_{\alpha} Y_{i}+L_{\beta} b_{i} \tag{2.6}
\end{equation*}
$$

$$
\text { Where } Y_{i}=a_{i j} y^{j}
$$

The angular metric tensor $h_{i j}=L \frac{\partial^{2} L}{\partial y^{i} \partial y^{j}}$ is given by [8]

$$
\begin{equation*}
h_{i j}=P a_{i j}+q_{0} b_{i} b_{j}+q_{-1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+q_{-2} Y_{i} Y_{j} \tag{2.7}
\end{equation*}
$$

Where

$$
\begin{align*}
& P=L L_{\alpha} \alpha^{-1}=\frac{L}{\alpha}\left[\cosh \frac{\beta}{\alpha}-\frac{\beta}{\alpha} \sinh \frac{\beta}{\alpha}\right] \tag{2.8}\\
& q_{0}=L L_{\beta \beta}=\frac{L}{\alpha} \cosh \frac{\beta}{\alpha} \tag{2.9}\\
& q_{-1}=L L_{\alpha \beta} \alpha^{-1}=-\frac{L \beta}{\alpha^{3}} \cosh \frac{\beta}{\alpha} \tag{2.10}\\
& q_{-2}=L \alpha^{-2}\left(L_{\alpha \alpha}-L_{\alpha} \alpha^{-1}\right)=\frac{L}{\alpha^{2}}\left[\frac{\beta^{2}}{\alpha^{3}} \cosh \frac{\beta}{\alpha}-\frac{1}{\alpha} \cosh \frac{\beta}{\alpha}+\frac{\beta}{\alpha^{2}} \sinh \frac{\beta}{\alpha}\right] \tag{2.11}
\end{align*}
$$

Now the fundamental metric tensor $\quad g_{i j}=\frac{1}{2} \frac{\partial^{2} L^{2}}{\partial y^{i} \partial y^{j}} \quad$ is given by $[8,9]$

$$
\begin{equation*}
g_{i j}=P a_{i j}+P_{0} b_{i} b_{j}+P_{-1}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)+P_{-2} Y_{i} Y_{j} \tag{2.12}
\end{equation*}
$$

Where

$$
\begin{gather*}
P_{0}=q_{0}+L_{\beta}^{2}=\frac{L}{\alpha} \cosh \frac{\beta}{\alpha}+\left[\sinh \frac{\beta}{\alpha}+1\right]^{2} \tag{2.13}\\
P_{-1}=q_{-1}+L^{-1} P L_{\beta}=-\frac{L \beta}{\alpha^{3}} \cosh \frac{\beta}{\alpha}+\frac{1}{\alpha}\left[\cosh \frac{\beta}{\alpha}-\frac{\beta}{\alpha} \sinh \frac{\beta}{\alpha}\right]\left[\sinh \frac{\beta}{\alpha}+1\right] \tag{2.14}\\
P_{-2}=q_{-2}+P^{2} L^{-2}=q_{-2}+\frac{1}{\alpha^{2}}\left[\cosh \frac{\beta}{\alpha}-\left(\frac{\beta}{\alpha}\right) \sinh \frac{\beta}{\alpha}\right]^{2} \tag{2.15}
\end{gather*}
$$

The reciprocal tensor $g^{i j}$ of $g_{i j}$ is given by [9]

$$
\begin{equation*}
g^{i j}=P^{-1} a^{i j}-s_{0} b^{i} b^{j}-s_{-1}\left(b^{i} y^{j}+b^{j} y^{i}\right)-s_{-2} y^{i} y^{j} \tag{2.16}
\end{equation*}
$$

Where

$$
\left\{\begin{array}{c}
b^{i}=a^{i j} b_{j} \quad \text { and } \quad b^{2}=a_{i j} b^{i} b^{j} \tag{2.17}\\
s_{0}=\frac{1}{\tau P}\left[P P_{0}+\left(P_{0} P_{-2}-P_{-1}^{2}\right) \alpha^{2}\right] \\
s_{-1}=\frac{1}{\tau P}\left[P P_{-1}+\left(P_{0} P_{-2}-P_{-1}^{2}\right) \beta\right] \\
s_{-2}=\frac{1}{\tau P}\left[P P_{-2}+\left(P_{0} P_{-2}-P_{-1}^{2}\right) b^{2}\right] \\
\tau=P\left(P+P_{0} b^{2}+P_{-1} \beta\right)+\left(P_{0} P_{-2}-P_{-1}^{2}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)
\end{array}\right\}
$$

The hv-torsion tensor $C_{i j k}=\frac{1}{2} \frac{\partial g_{i j}}{\partial y^{k}}$ is given by [10]

$$
\begin{equation*}
2 P C_{i j k}=P_{-1}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right)+\gamma_{1} m_{i} m_{j} m_{k} \tag{2.18}
\end{equation*}
$$

Where $\quad\left\{\gamma_{1}=P \frac{\partial P_{0}}{\partial \beta}-3 P_{-1} q_{0}\right.$ and $m_{i}=b_{i}-\alpha^{-2} \beta Y_{i}$
Obviously the covariant vector m_{i} is non-vanishing and orthogonal to the element of support y^{i}.
Let $\left\{\begin{array}{c}i \\ j\end{array}\right\}$ be the component of christoffel symbol of associated Riemannian space R^{n} and ∇_{k} denote the covariant differentiation with respect to x^{k} relative to christoffel symbol. We shall consider the following tensors:

$$
\begin{equation*}
2 E_{i j}=b_{i j}+b_{j i}, \quad 2 F_{i j}=b_{i j}-b_{j i} \tag{2.20}
\end{equation*}
$$

Where $\quad b_{i j}=\nabla_{j} b_{i}$
If we denote the Cartan's connection $\mathrm{C} \Gamma$ as $\left(\Gamma_{j k}^{* i}, \Gamma_{0 k}^{* i}, C_{j k}^{i}\right)$ then the difference tensor $D_{j k}^{i}=\Gamma_{j k}^{* i}-\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ Of special Finsler space with (α, β) metric $\mathrm{L}=\alpha \cosh \frac{\beta}{\alpha}+\beta$ is given by $D_{j k}^{i}=B^{i} E_{j k}+F_{j}^{i} B_{k}+F_{k}^{i} B_{j}+B_{j}^{i} b_{0 k}+B_{k}^{i} b_{o j}-b_{0 m} g^{i m} B_{j k}-C_{j m}^{i} A_{k}^{m}-C_{k m}^{i} A_{j}^{m}+C_{j k m} A_{s}^{m} g^{i s}+$ $\lambda^{s}\left(C_{j k}^{i} C_{s k}^{m}+C_{k m}^{i} C_{S j}^{m}-C_{m s}^{i} C_{k j}^{m}\right)$

Where

$$
\left\{\begin{array}{c}
B_{k}=P_{0} b_{k}+P_{-1} Y_{k} \tag{2.21}\\
B^{i}=g^{i j} B_{j} \\
F_{i}^{k}=g^{k j} F_{j i} \\
B_{i j}=\frac{\left\{P_{-1}\left(a_{i j}-\alpha^{-2} Y_{i} Y_{j}\right)+\frac{\partial P_{0}}{\partial \beta} m_{i} m_{j}\right\}}{2} \\
B_{i}^{k}=g^{k j} B_{j i} \\
A_{k}^{m}=B_{k}^{m} E_{00}+B^{m} E_{k 0}+B_{k} F_{0}^{m}+B_{0} F_{k}^{m} \\
\lambda^{m}=B^{m} E_{00}+2 B_{0} F_{0}^{m}, B_{0}=B_{i} y^{i}
\end{array}\right\}
$$

Where ' 0 ' denote the contraction with y^{i} except for the quantities $P_{0}, q_{0} \& s_{0}$.

III. Induced Cartan connection

Let $\mathrm{F}^{\mathrm{n}-1}$ be a hypersurface of F^{n}, given by the equation $x^{i}=x^{i}\left(u^{\alpha}\right), \alpha=1,2 \ldots \mathrm{n}-1$.
Suppose that the matrix of projection factor $B_{\alpha}^{i}=\frac{\partial x^{i}}{\partial u^{\alpha}}$ is of rank ($\mathrm{n}-1$). Then $B_{\alpha}^{i}(u)$ may be regarded as ($\mathrm{n}-$ 1) linearly independent vectors tangential to $\mathrm{F}^{\mathrm{n-1}}$ at the point $\left(u^{\alpha}\right)$ and the vector X^{i} tangential to $\mathrm{F}^{\mathrm{n-1}}$ at the point may be expressed in the form of

$$
X^{i}=B_{\alpha}^{i} X^{\alpha}
$$

Where X^{α} are the components of vector with respect to co-ordinate system $\left(u^{\alpha}\right)$. The element of support y^{i} of F^{n} is taken to tangential to F^{n-1},
i.e. $\quad y^{i}=B_{\alpha}^{i}(u) v^{\alpha}$

Thus v^{α} is the element of support of F^{n-1} at the point $\left(u^{\alpha}\right)$.
The metric tensor $g_{\alpha \beta}$ and hv-torsion tensor $C_{\alpha \beta \gamma}$ of F^{n-1} is given by
$g_{\alpha \beta}=g_{i j} B_{\alpha}^{i} B_{\beta}^{J}, \quad=C_{i j k} B_{\alpha}^{i} B_{\beta}^{j} B_{\gamma}^{k}$
At each point $\left(u^{\alpha}\right)$ of F^{n-1}, the unit normal vector $N^{i}(\mathrm{u}, \mathrm{v})$ is defined by
$\left.g_{i j}(x(u), y(u, v)) B_{\alpha}^{i} N^{j}=0\right\}$
$\left.g_{i j}(x(u), y(u, v)) N^{i} N^{j}=1\right\}$
As for the angular metric tensor
$h_{i j}=g_{i j}-l_{i} l_{j}, \quad$ we have $\quad h_{\alpha \beta}=h_{i j}-B_{\alpha}^{i} B_{\beta}^{j}$
$h_{i j} B_{\alpha}^{i} N^{j}=0 \quad, \quad h_{i j} N^{i} N^{j}=1$
If $\left(B_{\alpha}^{i}, N_{i}\right)$ is the inverse of matrix of $\left(B_{\alpha}^{i}, N^{i}\right)$, we have,

$$
\left.\begin{array}{ccc}
B_{i}^{\alpha}=g^{\alpha \beta} g_{i j} B_{\beta}^{j}, & B_{\alpha}^{i} B_{i}^{\beta}=\delta_{\alpha}^{\beta}, \quad B_{\alpha}^{i} N_{i}=0 . \tag{3.5}\\
N^{i} N_{j}=1 & \text { and } & B_{\alpha}^{i} B_{j}^{\alpha}+N^{i} N_{j}=\delta_{j}^{i}
\end{array}\right\}
$$

The induced Cartans ${ }^{\text {s }}$ connection IC $\Gamma=\left(\Gamma_{j k}^{* i}, \Gamma_{0 k}^{* i}, C_{j k}^{i}\right)$ is given by [1]

$$
\begin{align*}
& \Gamma_{\beta \gamma}^{* \alpha}=B_{i}^{\alpha}\left(B_{\beta \gamma}^{i}+\Gamma_{j k}^{* i} B_{\beta}^{j} B_{\gamma}^{k}\right)+M_{\beta}^{\alpha} H_{\gamma} \tag{3.6}\\
& G_{\beta}^{\alpha}=B_{i}^{\alpha}\left(B_{0 \beta}^{i}+\Gamma_{0 j}^{* i} B_{\beta}^{j}\right) \tag{3.7}\\
& \quad C_{\beta \gamma}^{\alpha}=B_{i}^{\alpha} C_{j k}^{i} B_{\beta}^{j} B_{\gamma}^{k} \tag{3.8}
\end{align*}
$$

Where

$$
\begin{align*}
M_{\alpha \beta} & =N_{i} C_{j k}^{i} B_{\alpha}^{j} B_{\beta}^{k}, \quad M_{\beta}^{\alpha}=M_{\gamma \beta} g^{\alpha \gamma} \tag{3.9}\\
H_{\alpha} & =N_{i}\left(B_{0 \alpha}^{i}+\Gamma_{0 j}^{* i} B_{\alpha}^{j}\right) \tag{3.10}
\end{align*}
$$

$$
\begin{equation*}
B_{\alpha \beta}^{i}=\frac{\partial B_{\alpha}^{i}}{\partial u^{\beta}}, \quad B_{0 \beta}^{i}=B_{\alpha \beta}^{i} v^{\alpha} \tag{3.11}
\end{equation*}
$$

The quantities $M_{\alpha \beta} \& H_{\alpha}$ are called second fundamental v-tensor and normal curvature vector respectively [1]. The second fundamental h-tensor $H_{\alpha \beta}$ is defined as [1]

$$
\begin{equation*}
H_{\alpha \beta}=N_{k}\left(B_{\alpha \beta}^{k}+\Gamma_{i j}^{* k} B_{\alpha}^{i} B_{\beta}^{j}\right)+M_{\alpha} H_{\beta} \tag{3.12}
\end{equation*}
$$

Where

$$
\begin{equation*}
M_{\beta}=N_{i} C_{j k}^{i} B_{\beta}^{j} N^{k} \tag{3.13}
\end{equation*}
$$

The relative h -and v - covariant derivatives of projection factor B_{α}^{i} with respect to IC Γ are given by

$$
\begin{equation*}
B_{\alpha \mid \beta}^{i}=H_{\alpha \beta} N^{i},\left.\quad B_{\alpha}^{i}\right|_{\beta}=M_{\alpha \beta} N^{i} \tag{3.14}
\end{equation*}
$$

From (3.12) it is clear that the second fundamental h-tensor $H_{\alpha \beta}$ is not symmetric and

$$
\begin{equation*}
H_{\alpha \beta}-H_{\beta \alpha}=M_{\alpha} M_{\beta}-M_{\beta} M_{\alpha} . \tag{3.15}
\end{equation*}
$$

From (3.10), (3.12) and (3.13) it is clear that

$$
\begin{equation*}
H_{0 \alpha}=H_{\alpha} \quad, H_{\alpha 0}=H_{\alpha}+M_{\alpha} H_{0} . \tag{3.16}
\end{equation*}
$$

We quote the following lemmas due to Matsumoto [1].
Lemma 1:- The normal curvature $H_{0}=H_{\alpha} v^{\alpha}$ vanishes iff the normal curvature vector H_{α} vanishes.
Lemma 2:- A hypersurface $\mathrm{F}^{\mathrm{n}-1}$ is a hyper plane of first kind iff $H_{\alpha}=0$.
Lemma 3:- A hypersurface $\mathrm{F}^{\mathrm{n-1}}$ is a hyperplane of second kind iff $H_{\alpha}=0$ and $H_{\alpha \beta}=0$.
Lemma 4:- A hypersurface $\mathrm{F}^{\mathrm{n}-1}$ is a hyperplane of third kind with respect to connection $\mathrm{C} \Gamma$ iff $H_{\alpha}=$ $0, M_{\alpha \beta}=0$ and $H_{\alpha \beta}=0$.

IV. Hypersurface $\mathbf{F}^{\mathrm{n}-1}(\mathbf{c})$ of special Finsler space $\mathrm{L}=\alpha \boldsymbol{\operatorname { c o s h }} \frac{\beta}{\alpha}+\boldsymbol{\beta}$

Let us consider a special Finsler space with metric $\mathrm{L}=\alpha \cosh \frac{\beta}{\alpha}+\beta$ with a gradient $b_{i}(x)=\frac{\partial b}{\partial x^{i}}$, for a scalar function $\mathrm{b}(\mathrm{x})=\mathrm{c}$ (constant), from parametric equations $x^{i}=x^{i}\left(u^{\alpha}\right)$ of $\mathrm{F}^{\mathrm{n}-1}$ we get $\frac{\partial b(x(u))}{\partial u^{\alpha}}=$ 0 ,which implies that $b_{i} B_{\alpha}^{i}=0$.This shows that $b_{i}(\mathrm{x})$ are covariant component of a normal vector field of $\mathrm{F}^{\mathrm{n}-1}(\mathrm{c})$. Therefore along $\mathrm{F}^{\mathrm{n}-1}(\mathrm{c})$, we have

$$
\begin{equation*}
b_{i} B_{\alpha}^{i}=0 \quad \text { and } \quad b_{i} y^{i}=0 \tag{4.1}
\end{equation*}
$$

The induced metric $\mathrm{L}(\mathrm{u}, \mathrm{v})$ of $\mathrm{F}^{\mathrm{n}-1}(\mathrm{c})$ is given by

$$
\begin{equation*}
L(u, v)=\sqrt{a_{\alpha \beta}(u) v^{\alpha} v^{\beta}} \quad, \quad a_{\alpha \beta}=a_{i j} B_{\alpha}^{i} B_{\beta}^{j} \tag{4.2}
\end{equation*}
$$

Which is a Riemannian metric.
At the points of F^{n-1} (c), the quantities given in (2.8), (2.9), (2.10) and (2.11) become

$$
\begin{equation*}
\mathrm{P}=1, \quad q_{0}=1, \quad q_{-1}=0, \quad q_{-2}=\frac{1}{\alpha^{2}} \tag{4.3}
\end{equation*}
$$

The quantities in the equations (2.13), (2.14) and (2.15) reduces to
$P_{0}=2 \quad p_{-1}=\frac{1}{\alpha} \quad, \quad P_{-2}=0$
Whereas (2.17) reduces to

$$
\left.\begin{array}{rl}
\tau=1+b^{2}, & s_{0}=\frac{1}{1+b^{2}} \tag{4.5}\\
s_{-1}=\frac{1}{\alpha\left(1+b^{2}\right)} \quad, \quad & s_{-2}=-\frac{b^{2}}{\alpha^{2}\left(1+b^{2}\right)}
\end{array}\right\}
$$

Therefore equation (2.16) becomes.

$$
\begin{equation*}
g^{i j}=a^{i j}-\frac{1}{1+b^{2}} b^{i} b^{j}-\frac{1}{\alpha\left(1+b^{2}\right)}\left(b^{i} y^{j}+b^{j} y^{i}\right)+\frac{b^{2}}{\alpha^{2}\left(1+b^{2}\right)} y^{i} y^{j} \tag{4.6}
\end{equation*}
$$

Thus along $\mathrm{F}^{\mathrm{n}-1}(\mathrm{c})$, (4.1) and (4.6) gives

$$
\begin{equation*}
g^{i j} b_{i} b_{j}=\frac{b^{2}}{1+b^{2}} \tag{4.7}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
b_{i}(x(u))=N_{i} \sqrt{\frac{b^{2}}{1+b^{2}}} \tag{4.8}
\end{equation*}
$$

Where $\quad b^{2}=a^{i j} b_{i} b_{j} \quad$ and b is the length of the vector b^{i}.
Again from (4.6) and (4.8) we have $b^{i}=a^{i j} b_{j}$

$$
\begin{equation*}
b^{i}=\sqrt{b^{2}\left(1+b^{2}\right)} N^{i}+\frac{b^{2}}{\alpha} y^{i} \tag{4.9}
\end{equation*}
$$

Theorem 4.1: Let $\mathrm{F}^{\mathrm{n}}=\left(\mathrm{M}^{\mathrm{n}}, \mathrm{L}\right)$ be special Finsler space with metric $\mathrm{L}=\alpha \cosh \frac{\beta}{\alpha}+\beta$ with gradient $b_{i}(x)=\frac{\partial b}{\partial x^{i}}$ and let $F^{n-1}(c)$ be a hypersurface of F^{n} given by $\mathrm{b}(\mathrm{x})=$ constant. Suppose that the Riemannian metric $a_{i j}(x) d x^{i} d x^{j}$ is positive definite and b_{i} are component of a non-zero vector field, then the induced metric on $F^{n-1}(c)$ is a Riemannian metric given by (4.2) and the relations (4.8) and (4.9) hold.

Using (4.3) in (2.7) we get angular metric tensor along $F^{n-1}(c)$, given by
$h_{i j}=a_{i j}+b_{i} b_{j}-\frac{1}{\alpha^{2}} Y_{i} Y_{j}$
Again using (4.3) and (4.4) in (2.12) we get metric tensor along $F^{n-1}(c)$ given by
$g_{i j}=a_{i j}+2 b_{i} b_{j}+\frac{1}{\alpha}\left(b_{i} Y_{j}+b_{j} Y_{i}\right)$
If $h_{\alpha \beta}^{(a)}$ denote the angular metric tensor of the Riemannian $a_{i j}(x)$,then using (4.1) in (4.10), we have along $F^{n-1}(c) \quad h_{\alpha \beta}=h_{\alpha \beta}^{(a)}$

From (2.13), we have $\quad \frac{\partial P_{0}}{\partial \beta}=\frac{2}{\alpha} \quad$ (along $F^{n-1}(c)$)
Therefore (2.19) gives

$$
\begin{equation*}
\gamma_{1}=-\frac{1}{\alpha} \quad \text { and } \quad m_{i}=b_{i} \tag{4.14}
\end{equation*}
$$

In view of (4.13) and (4.14) the hv -torsion tensor given by (2.18)

$$
\begin{equation*}
C_{i j k}=\frac{1}{2 \alpha}\left[h_{i j} b_{k}+h_{j k} b_{i}+h_{k i} b_{j}-b_{i} b_{j} b_{k}\right] \tag{4.15}
\end{equation*}
$$

Hence from (3.9), (4.1), (4.8) and (4.15) we have
$M_{\alpha \beta}=\frac{1}{2 \alpha} \sqrt{\frac{b^{2}}{1+b^{2}}} h_{\alpha \beta}$
And from (3.4), (3.13), (4.1) and (4.15) we have
$M_{\alpha}=0$
On using (4.17) in (3.15) we have
$H_{\alpha \beta}=H_{\beta \alpha}$
Theorem (4.1): - The second fundamental v-tensor $M_{\alpha \beta}$ of $F^{n-1}(c)$ is given by (4.16) and the second fundamental h-tensor $h_{\alpha \beta}$ is symmetric.

Now from (4.1) we get

$$
b_{i \mid \beta} b_{\alpha}^{i}+b_{i} B_{\alpha \mid \beta}^{i}=0
$$

Using (3.14) and the fact that

$$
\begin{align*}
& b_{i \mid \beta}=b_{i \mid j} B_{\beta}^{j}+\left.b_{i}\right|_{j} N^{j} H_{\beta} \text {, we have } \\
& \qquad \quad\left[b_{i \mid j} B_{\beta}^{j}+\left.b_{i}\right|_{j} N^{j} H_{\beta}\right] B_{\alpha}^{i}+b_{i} H_{\alpha \beta} N^{i}=0 . \tag{4.19}
\end{align*}
$$

Since $\left.\quad b_{i}\right|_{j}=-b_{h} C_{i j}^{h}$,
From (3.13), (4.8) and (4.17) we have

$$
\begin{equation*}
b_{i \mid j} B_{\alpha}^{i} B_{\beta}^{j}+H_{\alpha \beta} \sqrt{\frac{b^{2}}{1+b^{2}}}=0 \tag{4.20}
\end{equation*}
$$

Since $b_{i \mid j}$ is symmetric tensor,
Contracting (4.20) with respect to v^{β} and using (3.16), we get

$$
\begin{equation*}
b_{i \mid j} B_{\alpha}^{i} y^{j}+H_{\alpha} \sqrt{\frac{b^{2}}{1+b^{2}}}=0 \tag{4.21}
\end{equation*}
$$

Further contracting (4.21) with v^{α}, we get

$$
\begin{equation*}
b_{i \mid j} y^{i} y^{j}+H_{0} \sqrt{\frac{b^{2}}{1+b^{2}}}=0 \tag{4.22}
\end{equation*}
$$

From lemma (1) and (2), it is clear that hypersurface $F^{n-1}(c)$ is a hypersurface of first kind iff $H_{0}=0$.
Thus from (4.22), it is obvious that hypersurface $F^{n-1}(c)$ is a hypersurface of first kind iff $b_{i \mid j} y^{i} y^{j}=0$.
This $b_{i \mid j}$ being covariant derivative with respect to $\mathrm{C} \Gamma$ of F^{n}, may depend on y^{i}. But $b_{i j}=\nabla_{j} b_{i}$ is covariant derivative with respect to Riemannian connection $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$, constructed from $a_{i j}(x)$. Hence $b_{i j}$ does not depend on y^{i}.

Since b_{i} is gradient vector, from (2.20) we have
$E_{i j}=b_{i j}, F_{i j}=0 \quad$ And $F_{j}^{i}=0$
Using (4.23) in (2.21) we get $D_{j k}^{i}=B^{i} b_{j k}+B_{j}^{i} b_{0 k}+B_{k}^{i} b_{0 j}-b_{0 m} g^{i m} B_{j k}-C_{j m}^{i} A_{k}^{m}-C_{j k m} A_{s}^{m} g^{i s}+$ $\lambda^{s}\left(C_{j m}^{i} C_{s k}^{m}+C_{k m}^{i} C_{s j}^{m}-C_{m s}^{i} C_{k j}^{m}\right)$

Now using (4.3), (4.4) and (4.6) in (2.22) we have

$$
\left.\begin{array}{c}
B_{i}=2 b_{i}+\alpha^{-1} Y_{i} \\
B^{i}=g^{i j} B_{j}=\frac{1}{1+b^{2}} b^{i}+\frac{1}{\alpha\left(1+b^{2}\right)} y^{i} \tag{4.25}\\
B_{i j}=\frac{1}{2 \alpha}\left(a_{i j}-\frac{1}{\alpha^{2}} Y_{i} Y_{j}\right)+\frac{1}{\alpha} b_{i} b_{j} \\
B_{j}^{i}=\frac{1}{2 \alpha}\left(\delta_{j}^{i}-\frac{y^{i} Y^{j}}{\alpha^{2}}\right)+\frac{1}{2 \alpha\left(1+b^{2}\right)} b^{i} b^{j}-\frac{b^{2}}{\alpha^{2}\left(1+b^{2}\right)} b_{j} y^{i} \\
\lambda^{m}=B^{m} b_{00} \quad \text { and } \quad A_{i}^{r}=B_{i}^{r} b_{00}+B^{r} b_{i 0}
\end{array}\right\}
$$

In the view of (4.1) we have $B_{0}^{i}=0$, which on using (4.25) gives $A_{i}^{r}=B^{r} b_{00}$.therefore the contraction of (4.24) with y^{k} gives

$$
\begin{equation*}
D_{j 0}^{i}=B^{i} b_{j 0}+B_{j}^{i} b_{00}-B^{r} C_{j r}^{i} b_{00} \tag{4.26}
\end{equation*}
$$

Again contracting (4.26) with y^{j}, we get

$$
\begin{align*}
& \quad D_{00}^{i}=B^{i} b_{00} \\
& \text { i.e. } \quad D_{00}^{i}=\left[\frac{1}{1+b^{2}} b^{i}+\frac{1}{\alpha\left(1+b^{2}\right)} y^{i}\right] b_{00} \tag{4.27}
\end{align*}
$$

Paying attention to (4.1), along $F^{n-1}(c)$ we finally get

$$
\begin{equation*}
b_{i} D_{j 0}^{i}=\frac{b^{2}}{1+b^{2}} b_{j 0}+\frac{\left(1+2 b^{2}\right)}{2 \alpha\left(1+b^{2}\right)} b_{j} b_{00}-\frac{1}{1+b^{2}} b_{i} b^{m} b_{00} C_{j m}^{i} \tag{4.28}
\end{equation*}
$$

On contracting by y^{j} we have

$$
\begin{equation*}
b_{i} D_{00}^{i}=\frac{b^{2}}{1+b^{2}} b_{00} \tag{4.29}
\end{equation*}
$$

From (3.9), (4.8), (4.9), (4.16) and (4.17) we have

$$
b_{i} b^{m} C_{j m}^{i} B_{\alpha}^{j}=b^{2} M_{\alpha}=0
$$

Thus the relation $b_{i \mid j}=b_{i j}-b_{r} D_{i j}^{r}$ and the equations (4.28) and (4.29) give

$$
\begin{equation*}
b_{i \mid j} y^{i} y^{j}=\frac{1}{1+b^{2}} b_{00} \tag{4.30}
\end{equation*}
$$

Hence (4.21) and (4.22) respectively becomes

$$
\begin{gather*}
\sqrt{\frac{b^{2}}{1+b^{2}}} H_{\alpha}+\frac{1}{1+b^{2}} b_{i 0} B_{\alpha}^{i}=0 \tag{4.31}\\
\sqrt{\frac{b^{2}}{1+b^{2}}} H_{0}+\frac{1}{1+b^{2}} b_{00}=0 \tag{4.32}
\end{gather*}
$$

From equation (4.32) and lemmas 1 and 2, it is clear that the necessary and sufficient condition for $F^{n-1}(c)$ to be hyperplane of first kind is that $b_{00}=0$.

Since $b_{i j}$ does not depend on y^{i} satisfying (4.1), this condition may be written as

$$
\begin{equation*}
b_{i j} y^{i} y^{j}=\left(b_{i} y^{i}\right)\left(c_{j} y^{j}\right)=0, \quad \text { for some } C_{j}(x) \tag{4.33}
\end{equation*}
$$

Therefore $\quad 2 b_{i j}=b_{i} C_{j}+b_{j} C_{i}$
From (4.1) and (4.33) it follows that

$$
\begin{equation*}
b_{00}=0, \quad b_{i j} B_{\alpha}^{i} B_{\beta}^{j}=0 \quad, \quad b_{i j} B_{\alpha}^{i} y^{j}=0 \tag{4.34}
\end{equation*}
$$

Hence (4.32) gives $H_{0}=0$. Again from (4.33), (4.24) and (4.25) we have
$\left.\begin{array}{c}b_{i 0} b^{i}=\frac{1}{2} c_{0} b^{2} \quad, \quad \lambda^{r}=0 \\ A_{j}^{i} B_{\beta}^{j}=0, \quad B_{i j} B_{\alpha}^{i} B_{\beta}^{j}=\frac{1}{2 \alpha} h_{\alpha \beta}\end{array}\right\}$
Thus from (4.23) we have
$b_{r} D_{i j}^{r} B_{\alpha}^{i} B_{\beta}^{j}=-\frac{1}{4 \alpha}\left(b_{r} b_{s} g^{r s}\right) C_{0} h_{\alpha \beta}+b_{r} C_{i j m} A_{s}^{m} g^{r s} B_{\alpha}^{i} B_{\beta}^{j}$
Also from (4.6) we find

$$
\begin{equation*}
b_{r} b_{s} g^{r s}=\frac{b^{2}}{1+b^{2}} \tag{4.37}
\end{equation*}
$$

With the help of (3.9),(4.9),(4.16),(4.24) and (4.25) we get
$b_{r} C_{i j m} A_{s}^{m} g^{r s} B_{\alpha}^{i} B_{\beta}^{j}=\left(b_{r} b_{s} g^{r s}\right) \frac{1}{4 \alpha} \frac{C_{0} b^{2}}{1+b^{2}} h_{\alpha \beta}$
Substituting (4.37) and (4.38) in (4.36), we get

$$
\begin{equation*}
b_{r} D_{i j}^{r} B_{\alpha}^{i} B_{\beta}^{j}=-\frac{1}{4 \alpha} \frac{c_{0} b^{2}}{\left(1+b^{2}\right)^{2}} h_{\alpha \beta} . \tag{4.39}
\end{equation*}
$$

Therefore (4.20) reduces to

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{1+b^{2}}} H_{\alpha \beta}+\frac{c_{0} b^{2}}{4 \alpha\left(1+b^{2}\right)^{2}} h_{\alpha \beta}=0 \tag{4.40}
\end{equation*}
$$

Hence the hyprsurface $F^{n-1}(c)$ is Umbilic.
Theorem4.3: The necessary and sufficient condition for hypersurface $F^{n-1}(c)$ to be a hyperplane of the first kind is (4.33) and in this case the second fundamental tensor is proposnal to its angular metric tensor.

Now from lemma (3), the hypersurface $F^{n-1}(c)$ is a hyperplane of second kind iff $H_{\alpha}=0$ and $H_{\alpha \beta}=$ 0.Thus (4.40) gives $C_{0}=C_{i}(x) y^{i}=0$. Therefore there exist a function $\eta(x)$ such that

$$
\begin{equation*}
C_{i}(x)=\eta(x) b_{i}(x) \tag{4.41}
\end{equation*}
$$

Hence (4.33) reduces to $\quad b_{i j}=\eta b_{i} b_{j}$.
Theorem 4.4: The necessary and sufficient condition for hypersurface $F^{n-1}(c)$ to be a hyperplane of second kind is $b_{i j}=\eta b_{i} b_{j}$.

Again lemma (4) together with (4.16) and (4.17) shows that $F^{n-1}(c)$ does not become a hyperplane of third kind.

Theorem 4.5: The hypersurface $F^{n-1}(c)$ is not a hyperplane of third kind.

References

[1] M.Matsumoto, The induced and intrinsic connection of a hyperplane and Finslerian projective geometry, J.Math.Kyoto univ, 25(1985) 107-144.
[2] B.N .Prasad, H.S.Shukla and A.P. Tiwari, Hypersurface of a Generalized Matsumoto space, Journal of international academy of physical sciences, vol. 13 No. 1 (2009) pp-25-38.
[3] M.Matsumoto, on C-reducible Finsler spaces, Tensor, N.S. 24 (1972) 29-37.
[4] M.Matsumoto, On Finsler space with Rander metric and special form of important tensors, J.Math.Kyoto Univ., 14(1974)477-498.
[5] C. Shibata, On Finsler space with Kropina metric, Reports on Mathematical physics, 13(1978) 117-128.
[6] G.S.Asanov, C-reducible Finsler spaces. Finsler spaces with Rander metric and Kropina metric, (Russian). Problem of geom. 11 (1980), 65-88. English trans. J. sov.Math. 17 (1981) 1610-1624.
[7] C, .Shibata, On Finsler spaces with (α, β) - metric, J. Hokkaido univ of Education, 35 (1) (1984) 1-16.
[8] M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep.on Math, phys. 31(1992), 43-83.
[9] M.Matsumoto, Foundation of Finsler geometry and special Finsler spaces, Kaiseisha Press, Otsu, 520, Japan, (1986).
[10] U.P.Singh and Bindu kumari, on a hypersurface of a Matsumoto space, Indian J. Pure and Appl.Math. 32-4 (2001) 521-531.

