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Abstract

In 1985 Matsumoto [1] discussed the properties of special hypersurface of Rander space with b;(x) being
gradient of scalar function b(x).He has considered a hypersurface which is given by b(x)=constant. In
2009 Prasad and Shukla [2] have considered the hypersurface of generalized Matsumoto space with the
same equation b(x) =constant.

In this paper our study confines to the hypersurface of a Finsler space with special (a, 5) metric

a coshs + B given by b(x) =constant. We will find out the conditions under which the hypersurface is a
hyperplane of first or second kind have been obtained. This hyperplane is not a hyperplane of third kind.

I. Introduction

Let F'= (M", L) be an n dimensional Finsler space, where M" is an n-dimensional differentiable Manifold
and L(x, y) is the fundamental function. The concept of an (o, B) metric was introduced in 1972 by
Matsumoto [3]. A Finsler space L(X, y) is called an (a, ) metric if L is positively homogeneous function

of a and B of degree one, where a’=a;;(X)y‘y’ and B=b;(x)y’ is one form onM™. We have some
2

interesting examples of an ( o, ) metric ,for instance L=a+p (Randers metric)[4] , L= % (Kropina

metric)[5]. In 1989 M.Matsumoto, while studying the slope of mountain, introduced a (a, ) metric, given

by L = % which has been called Matsumoto Space [4].

The purpose of the present paper is to study the properties of hypersurface of special Finsler space whose
metric is given by

Lx,y)=«a coshg +p (1)
Where o’=a; j X)yiyt  and  P=h;(X)y"
Il. Fundamental quantities of special Finsler space

The derivative of the metric (1) with respect to o & B are given by

_ B_Bginnf
Ly, = cosha asmha (2.1)

Lg = sinhZ 41
a
(2.2)
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B? B
Loo = ;cosh; (2.3)
_1 B
Lgg = - cosh - (2.4)
—_E B
Lop = pe cosh " (2.5)
oL _ oL _ 9% 9%L 92L

Where Lo =5, Lp =55 +laa =5z les=5p adlas =55,

JdL

The normalized element of support [; = 3 is given by [8]
li = a'_lLaYi + Lﬁbi (26)
Where Y, = Clijyj
. %L . .
The angular metric tensor h;; = LW is given by [8]
hij = Pag; + qobibj + q_1(bY; + b;Y;) + q_2 VY, (2.7)
_ -1_1L B_BnB
Where P=LLya™" = " [cosh b sinh a] (2.8)
L
qo = LLgp = . cosh§ (2.9)
q-1 = LLgga™" = —Z—fcoshg (2.10)
2
G-z = La " ?(Lgq — Lga™) =£ [% cosh g - %coshg + %sinh g] (2.11)
he fundamental metri =12 s givenby [8, 9
Now the fundamental metric tensor  g;; = 23,8, Isgivenby [8, 9]
2 _ L B B 11’
Where Py=qo+L; = Ecosh; + [sinh; + 1] (2.13)

Py =q 1+ L 'PLg = —Z—fcoshg + %[coshg — B sinn g] [sinhg +1] (2.14)

«
_ 1 :
P,=q,+PL2=q_,+ ﬁ[coshg — (g) smhg]2 (2.15)

The reciprocal tensor g/ of g;; is given by [9]

g =P7al = sob'b) —s_1 (b'y’ + bIy') —s_py'y’ (2.16)
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Where
( b' =ab; and b* = a;;b'b’
so = =[PPy + (PoP_, — P?))a?]
< 51 = = [PP_y + (PoP_ — P%,)] > (217)
sz = = [PP_y + (PoP_ — P%,)b?]

kT = P(P + P0b2 + P—lﬁ) + (P()P_z —P_Zl)(azbz _ﬁz)J

agij .
%ﬁ is given by [10]

The hv —torsion tensor C;j; =
ZPCijk = P_1(hl-jmk + hjkml- + hkimj) + ylmimjmk (218)
Where {rn= P‘;i[; —3P_,q, and m; = b, — a~2BY, (2.19)

Obviously the covariant vector m; is non-vanishing and orthogonal to the element of support y*.

Let {’.lk} be the component of christoffel symbol of associated Riemannian space R" and V,, denote the

covariant differentiation with respect to x* relative to christoffel symbol. We shall consider the following
tensors:

2E;j =Dbij +bj,  2F; =Db;j— Dby (2.20)
Where bl} = ijl
If we denote the Cartan’s connection CI" as (I},’;i, Iy, jik)then the difference tensor

jik = I}-*i - {,.lk} Of special Finsler space with (o, ) metric L= « coshg + [ is given by

D}, = B'Ejy + F{By + FiB; + B/boy + Bkboj — bomg ™ Bjic — Cin AR — Chn A" + Cin AT g™ +

A5 (G C + Gl 3} — Cs G

2.21)
( By, :I_Jobk‘_"_P—1Yk )
Bl = giB,
Ff=g"F;
Where 1 By = {P‘l(“"f_“_zyziyf)ﬁa%mimi} \ (2.22)

B = g/ Bj;
7]? = Bl‘,(nEOO + BmEkO + BkF(;n + BoF,:n
\ A™ = B™Ey, + 2BoF", By = B;y!

Where ‘0’ denote the contraction with y‘except for the quantities Py, qo & So.
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I11. Induced Cartan connection
Let F™ be a hypersurface of F", given by the equation x! = x!(u%), o=1, 2...n-1.

Suppose that the matrix of projection factor B(i:% is of rank (n-1). Then BL (u) may be regarded as (n-

1) linearly independent vectors tangential to F™* at the point (u®) and the vector X' tangential to F"" at
the point may be expressed in the form of

X'=BLXx“,

Where X% are the components of vector with respect to co-ordinate system (u®). The element of support
y'of F™ is taken to tangential to F™~1,

i.e. y' = BL(w)v® (3.1)
Thus v¥ is the element of support of F~1at the point (u%).

The metric tensor g,gand hv-torsion tensor C,g,0f F"~tis given by

9ap = 9ijBLB}, = CijxBLB)B} (3.2)

At each point (u®)of F™~1 the unit normal vector N(u, v) is defined by

9ij (x(W), y(u, v))BeN = O} (3.3)
gij(x@), y(w,v))N'N/ = 1 :
As for the angular metric tensor
hij =9ij — lilj, we have hocﬁ = hU — BéBB’
hijBENT =0 ) hijN'NJ =1 (3.4)
If (BL, N;) is the inverse of matrix of (Bé, Ni),we have,
a_ qaf g gl ipBP _ B iN. —

Bl =49 gl]Bﬁl BaBi = Sa' BaNL = 0. (3 5)
NN; =1 and BLBf + N'N; = &/ :
The induced Cartan’® connection ICI'= (I},’gi, Iy, ka) is given by [1]

Iy = BE (BY, + ;BB ) + MEH, (3.6)

GE = BY (Biy +15iB)), (3.7)

Cgy = BY' jikBéB)l/(

(3.8)
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Where Mgp = N;CiBJB | Mg = Myzg® (3.9)
Ho = Ni(Bbq + I5} B2) (3.10)

. aBi . .
B = Juf Bog = Bgv® . (3.12)

The quantities M,z & H, are called second fundamental v-tensor and normal curvature vector
respectively [1]. The second fundamental h-tensor H, is defined as [1]

Hop = Nic (BE, + I;j*BLB)) + M, Hy (3.12)
Where Mg = N;Cj BJN* (3.13)

The relative h-and v- covariant derivatives of projection factor B, with respect to ICT are given by

By g = HapN', Bhlg = MggN' (3.14)

al
From (3.12) it is clear that the second fundamental h-tensor H,z is not symmetric and

Hop — Hpy = MM — MgM,,. (3.15)
From (3.10), (3.12) and (3.13) it is clear that

Hoq = Hy ,Hqo = Hy + My H,. (3.16)
We quote the following lemmas due to Matsumoto [1].
Lemma 1:- The normal curvature H, = H,v%® vanishes iff the normal curvature vector H, vanishes .
Lemma 2:- A hypersurface F™ is a hyper plane of first kind iff H, = 0.

Lemma 3:- A hypersurface F™ is a hyperplane of second kind iff H, = 0 and Hgp = 0.

Lemma 4:- A hypersurface F"" is a hyperplane of third kind with respect to connection CI" iff H, =
0, Ma'ﬁ = 0 and Ha'ﬁ =0.

IV. Hypersurface F"(c) of special Finsler space L= a coshg +B

Let us consider a special Finsler space with metric L=« coshg + B with a gradient b;(x) = %, for a

scalar function b(x) = ¢ (constant) ,from parametric equations x! = x!(u%) of F"* we get ab;i?)) =
0 ,which implies that b;BL = 0.This shows that b;(x) are covariant component of a normal vector field

of F"*(c) . Therefore along F™(c), we have

b;BL =0 and byt =0 4.2)

The induced metric L (u, v) of F™}(c) is given by
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L(u,v) = /aaﬁ(u)vavﬁ , Aap = aijBéBé'

Which is a Riemannian metric.

At the points of F*~1(c), the quantities given in (2.8), (2.9), (2.10) and (2.11) become

1
P=1, qo=1, q-1 =0, qd-2=

a?

The quantities in the equations (2.13), (2.14) and (2.15) reduces to

Whereas (2.17) reduces to

=1 2 =—
T +b , So 1+D2
1 b?
S_1 = ———7 S_»=——F""7>T
17 4(1+b2) ’ 2 aZ(1+b?)

Therefore equation (2.16) becomes.

1 opipi_ 1 iy 4 piyi b2 iy
1+b2b b a(1+b?) o'y’ +b y)+a2(1+b2)yy

gij =q¥ —

Thus along F™*(c), (4.1) and (4.6) gives

gYb;b; = _b*_

1+b2

bZ
Hence we have b(x(w)) = N; —

Where b* = ab;b; and b is the length of the vector b'.

Again from (4.6) and (4.8) we have  b' = a'b;

. . 2,
bt = \Jb2(1 + b2N'+=-y

(4.9)

4.2)

(4.3)

(4.4)

(4.5)

(4.6)

4.7)

(4.8)

Theorem 4.1: Let F'= (M", L) be special Finsler space with metric L=acosh§+ﬂ with gradient

b;(x) =% and let F""1(c)be a hypersurface of F™ given by b(x) =constant. Suppose that the

4

Riemannian metric a;;(x) dx'dx/ is positive definite and b;are component of a non-zero vector field, then
the induced metric on F*~1(¢) is a Riemannian metric given by (4.2) and the relations (4.8) and (4.9)

hold.

Using (4.3) in (2.7) we get angular metric tensor along F™~1(¢), given by
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1
hij = aij + blbj - ;YLY] (410)
Again using (4.3) and (4.4) in (2.12) we get metric tensor along F™~1(c) given by
1
9ij = @ij + 2b;b; + —(b;Y; + b;Y)) (4.11)

If hfz‘g denote the angular metric tensor of the Riemannian a;;(x) ,then using (4.1) in (4.10), we have

along F™~1(c) hap = hSy (4.12)
From (2.13), we have ‘;i[; =2 (along F™1(c)) (4.13)

Therefore (2.19) gives

yi=—= and  m;=b (4.14)
In view of (4.13) and (4.14) the hv —torsion tensor given by (2.18)
Cijk = i [hljbk + hjkbi + hkibj - blb]bk] (415)
Hence from (3.9), (4.1), (4.8) and (4.15) we have

1 b2

Map = o | 1oz Nap (4.16)
And from (3.4), (3.13), (4.1) and (4.15) we have

M, =0 (4.17)
On using (4.17) in (3.15) we have

Hyp = Hpq (4.18)

Theorem (4.1): - The second fundamental v-tensor Mg of F™"1(¢) is given by (4.16) and the second
fundamental h-tensor hg is symmetric.

Now from (4.1) we get bygbl + biByg = 0
Using (3.14) and the fact that
big = biljB;g + b;| N’ Hg, we have
[by Bl;' + by|jN'Hg]BL + b;HggN' = 0. (4.19)
Since bil; = —byC},

From (3.13), (4.8) and (4.17) we have
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. i b2
bluBéBﬁj + Haﬁ ’m =0 (420)

Since b;) jis symmetric tensor,

Contracting (4.20) with respect to v# and using (3.16), we get

o ’ b2
bi|jB§,yJ +H, m =0 (4.21)

Further contracting (4.21) with v%, we get
i . b2
bin yf + H, o2 =0 (422)

From lemma (1) and (2), it is clear that hypersurface F"~1(c) is a hypersurface of first kind iff H, = 0.

Thus from (4.22), it is obvious that hypersurface F™~*(c) is a hypersurface of first kind iff b;;y'y/=0.

This b;; being covariant derivative with respect to CI' of F"*, may depend onyt. But bij = V;bis

covariant derivative with respect to Riemannian connectionL.lk}, constructed from a;;(x). Hence

b; ; does not depend on y* .

Since b; is gradient vector, from (2.20) we have

Eij = bl} , Fij=0 And F}-i = (423)

Using (4.23) in (2.21) we get Dj, = B'by, + B/box + Biboj — bomg ™ Bji — Cin Al — CiemAT g™ +
2 (Gin Csk + Ciem G5} — CimsCi)

(4.24)

Now using (4.3), (4.4) and (4.6) in (2.22) we have

Bi = Zbl + a‘lYi A
i ijp — L i 1 i
B =g"B; = 1+b2b a2
1 1 1
Bij =+ (aij - pYin) + - bib; > (4.25)
i_ 1 (e Yy 1 ipj__ b® i
Bj T 2a (61 a? ) + 2a(1+b2)b b a2(1+b?) bjy
/1m = meoo and A‘: = Bi‘rboo + Brbioj

In the view of (4.1) we have BY =0 , which on using (4.25) gives A7 = B"h,, .therefore the
contraction of (4.24) with y* gives
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D}y = B'bjo + B} boo — B" C}boo. (4.26)

Again contracting (4.26) withy’, we get

D(i)o = Biboo
. ; 1 ; 1 ;
l.e. D(l)o = [1+b2 bl + a(1+b2)yl]b00 (427)

Paying attention to (4.1), along F"~1(c) we finally get

b? (1+2b?)

. . ,
biDjo = 155z bjo + 2a(1+h?) bjboo — 1557 bib™ booCjm (4.28)
On contracting by y/ we have
i b?
biDoo = 757 boo (4.29)

From (3.9), (4.8), (4.9), (4.16) and (4.17) we have
bib™CL,B) = b*M, =0
Thus the relation  b;; = b;; — b,.D;; and the equations (4.28) and (4.29) give

biy'y! = = boo (4.30)
Hence (4.21) and (4.22) respectively becomes

’ b2 1 i
1+b2 Ha + 1+b2 blOBCll = 0 (431)

b2 1
Ho +—
1+p2 0 T 14p2

From equation (4.32) and lemmas 1 and 2, it is clear that the necessary and sufficient condition for
F™"1(¢) to be hyperplane of first kind is that by, = 0

Since b;; does not depend on y' satisfying (4.1), this condition may be written as
bijy'y) = (biyi)(cjyf) =0, for some C;(x)
Therefore 2b;; = b;C; + b;C; (4.33)
From (4.1) and (4.33) it follows that
boo=0 , byBiBj=0 bijBLy’ =0 (4.34)
Hence (4.32) gives H, = 0. Again from (4.33), (4.24) and (4.25) we have
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bb' =Zcob? , AT=0

inl _ ipl — (4.35)
AjBj =0, BijBLB] = - hag
Thus from (4.23) we have
byD[BLB} = — = (bybsg™)Cohap + brCijm AT g™ BLB) (4.36)
Also from (4.6) we find
by bsg™ = "y (4.37)
With the help of (3.9),(4.9),(4.16),(4.24) and (4.25) we get
1 Cob
byCijm AT g™ By, B’ (bybsg™)— " 111;2 B (4.38)
Substituting (4.37) and (4.38) in (4.36), we get
i pJ Cob?
b,D};BLB) = —i—(lsz)z hag. (4.39)

Therefore (4.20) reduces to

b? Cob? _
NEETE Hap + 4a(1+b2)? hap =0 (4.40)

Hence the hyprsurface F™~1(c) is Umbilic.

Theorem4.3: The necessary and sufficient condition for hypersurface F™1(c) to be a hyperplane of the
first kind is (4.33) and in this case the second fundamental tensor is proposnal to its angular metric tensor.

Now from lemma (3), the hypersurface F"~1(¢) is a hyperplane of second kind iff H, = 0 and Hep =
0.Thus (4.40) gives C, = C;(x)y' =0.Therefore there exist a function 1(x) such that

Ci(x) = n(x)b;(x) (4.41)
Hence (4.33) reduces to  b;; = nb;b;

Theorem 4.4: The necessary and sufficient condition for hypersurface F"~1(c) to be a hyperplane of
second kind is  b;; = nb;b;

Again lemma (4) together with (4.16) and (4.17) shows that F™~1(c) does not become a hyperplane of
third kind.
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Theorem 4.5: The hypersurface F*~1(¢) is not a hyperplane of third kind.
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