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I. INTRODUCTION, PRELIMINARIES AND LEMMA 

Let A denote the class of functions of the form 
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which are analytic in the open unit disk }1:{  zandCzzU      

and normalized by the condition 1)0(0)0(  ff . Also let AH  be the class of analytic 

univalent function in U .a function Af    is called a starlike function denoted with 
*S if and only if  
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A function Af   which maps U  onto a convex domain is called convex function denoted by K  if 

and only if  
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 Generally, 
** )0( SS   and kk )0(  

A function Hf   is called a close-to-convex in U if the range )(Uf  is close to convex and 

this is the compliment of )(Uf   which is written as the union of non-intersecting half lines. 
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Moreover, a function Hf   is said to be close-to-convex with respect to a fixed Starlike 

functions g (g not necessarily normalized) denoted by ,gC if and only if 
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The decompositional approach to matrix computation, one of the top ten algorithms of the 

20
th
 century had severally been employed by many researchers particularly the Hankel and 

Teoplitz determinants having numerous applications. For example, they provide a platform 

on which a variety of scientific and engineering problems can be solved and furthermore, 

they permit reasonably simple rounding-error analysis and afford high quality software 

implementations. Hankel determinants play a vital role in different branches and have many 

applications [13].  

Moreover, it is interesting to note that a closer relation of the Hankel matrix (or determinant) 

is the Teoplitz matrix (or determinant). In linear algebra, a Teoplitz matrix or diagonal-

constant matrix named after Otto Teoplitz is that in which each descending diagonal from left 

to right is constant. A Teoplitz matrix can be thought of as an “upside down” Hankel matrix. 

This is so because while Hankel matrix (or determinant) have constant entries along the 

reverse diagonal, a Teoplitz matrix (or determinant) on the other hand have constant entries 

along the diagonal. 

The Hankel determinant of f for 1q  and 1n  was defined by Pommereke [13] and [14] as 
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while the symmetric Teoplitz determinant )(nTq  
for  1q  and 1n  was defined as  
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and in particular  
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For a good summary of the applications of Teoplitz determinant to a wide range of areas of 

pure and applied Mathematics; (see [18],[17] and [16] for details). 
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A matrix equation of the form Ax = b is called a Teoplitz system if A is a Teoplitz matrix. If 

A is an nn  Teoplitz matrix, then the system has only 12 n  degrees of freedom rather than
2n . We might therefore expect that the solution of a Teoplitz system would be easier, and 

indeed that is the case. Moreover, Teoplitz matrices are subspaces of the vector spaces of 

nn  matrices under matrix addition and scalar multiplication and Teoplitz matrices 

commute asymptotically [19]. 

Since Noonan and Thomas in [7] began the study of Hankel determinant when they like 

defined the qth Hankel determinant of the function in (1) as in (5); various researchers had 

investigated the Hankel and Teoplitz determinants for different univalent and bi-univalent 

functions, excluding generalized distribution function which is a new research area in the 

field of geometric function theory.  Beginning with Porwal in [15] who investigated the 

geometric properties of generalized distribution associated with univalent functions, Oladipo 

in [8] and [9] investigated bonds for probabilities of the generalized distribution 

polylogarithm and generalized distribution associated with univalent functions in conical 

domain respectively. In this work, we aim at filling the vacuum created by Porwal and 

Oladipo thus finding the Teoplitz determinant for the generalized distribution involving 

Jackson’s q- derivative operator. 

Let the series 
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k

kk Nnaa  be convergent and its sum is denoted by S such that     
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We now introduce the generalized discrete probability distribution whose probability mass 

function is   2,1,0,  k
s

a
kp k

         (9) 

Obviously,  kp  is a probability mass function because   0kp and 1k kp    

We then introduce a power series whose coefficients are probabilities of the generalized 

distribution, that is 
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Applying the q-derivative qk][  operator as defined in (12) on (10) we 
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In the field of Geometric function theory, various subclasses of the normalized analytic 

function class A have been studied from different points of view. The q-calculus as well as 

the fractional q-calculus such as fractional q-integral and fractional q-derivative operators are 

used to investigate several subclasses of analytic functions [Details are found in [2], [1], [10] 
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and [12]. The application of q-calculus which plays vital role in the theory of hyper-

geometric series, quantum physics and operator theory was initiated by Jackson [5]. He was 

the first Mathematician who developed q-derivative and q-integral in a systematic way. Both 

operators play crucial role in the theory of relativity, usually encompasses two theories by 

Einstein, one in special relativity and the other in general relativity.  While special relativity 

applies to the elementary particles and their interactions, general relativity on the other hand 

applies to the cosmological and astrophysical realm including astronomy. Of interest is the 

fact that special relativity theory had rapidly become a significant and necessary tool for 

theorists and experimentalists in the new fields of atomic physics, nuclear physics and 

quantum mechanics.  

In the present paper, we consider the symmetric Teoplitz determinants and obtain the 

estimates of those determinants and whose elements are the coefficients of na  of q-derivative 

operator ,
1

1
][

q

q
k

k

q



  for k   on   ,tTf  , 

a subclass of generalized distribution 

function by the method of surbodination principle on Chebyshev polynomials. Specifically, 

we obtain the coefficient bounds for the symmetric Teoplitz determinants )2(),3(),2( 322 TTT
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Definition 1.1 Let )1,0(q and define 
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Definition 1.2 The Jackson’s q-derivative of a function ,Af  10  q  is defined as 

follows: 
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 if f  is differentiable at z. 

From (12) and (1) we deduce that 
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Definition 1.3 The symmetric q-derivative fq  of a function f  given by (1) is defined as 

follows:  
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when f  has the form (1) and the symbol  qk  denotes the number   
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Chebyshev polynomials have become increasingly important in numerical analysis from both 

the theoretical and practical points of view. They are sequences of orthogonal polynomials 

which are practically related to De-Moivres formular and which are defined recursively. 

There exists four kinds though, the first and second kinds )(xTn  and )(xU n  are well known 

having more results, uses and applications [3] and [6]. In this work we shall limit ourselves to 

the second kind given as 
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where k denotes the degree of the polynomial and cost  

The Chebyshev polynomials of the second kind  1,1);( ttU k  have the generating function 

of the form 
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Thus, 

     .....sincos3cos21, 222  zztzH       (18)  

Following the relationship in Fadipe et al [4], we have 
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are the Chebyshev polynomials of the second kind. It is known that  
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Definition 1.4  If )(zf and )(zg  are analytic in U , we say that )(zf  is subordinate to )(zg  

written symbolically as gf  or )()( zgzf  , Uz if there exists a Schwarz function )(zw  

3333333which by definition is analytic in U  such that 
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Definition 1.5  The Convolution (or Hadamard product) of two series  
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A Set of Lemmas: 

For this study, the following existing lemmas are established: 

Let P be the class of functions p(z) with positive real part consisting of all analytic function 

CUp :  satisfying the following conditions                                                                                                     

1)0( p  and   0)( zpR  

Lemma 1.1 “Reference [11] shows that  if the function Pp  is defined by 
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Lemma 1.2 [11]: If the function Pp  is defined by 
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for some values of 1, zz
 

 

II. MAIN RESULTS 

Definition 2.1  A function Af   is said to be in class )),(,,( tzHGd   if 
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where ,10   1  and  tzH ,  is the Chebyshev polynomial  

Remark 2.2. if 0 , we have 

 tzHzzG
z

zG
d

d ,)(
)(

Re 






 

 

          (22)

 

Remark 2.3. if 1 , we  have 
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Theorem 1: Let )),(,,( tzHGf d  , the generalized distribution which satisfies the 

subordination principle. Then
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Proof: 

Let  )),(,,( tzHGf d  .  Then there exists a Chebyshev polynomial  tzuH ),(  such that 
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Next, we define the function Pp  by 
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In the following, we can derive 
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From (27) we have 
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Expanding and equating the coefficients of  z , 
2z and 

3z  in both sides of (31) gives: 
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Applying lemmas 1.1 and 1.2 and (20) on (35), (36) and (37) together with triangle inequality 

we have: 
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which ends the proof. 

 

Remarks: With special choices of parameters involved in theorem 1, various interesting 

results could be derived. 

Theorem 2: Let   ,tTf  , the Teoplitz determinant for the generalized distribution 

which satisfies the subordination principle. Then
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where   qM ]2[21    and   qV ]3[621     
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By Lemma 3.1, we have ,2nc       ...,3,2,1 . For convenience of notation we take 

ccn   and we may assume without loss of generality that ]2,0[c . Applying the triangle 

inequality with 
2

14 cR  . Then 
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Trivially, we can show that this expression has a maximum value 
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on [0,2] when c=2. 

Applying (20) on (41) gives the results 
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which completes the proof. 

Corollary 2.1:  Let  ,oTf t  in theorem 2. Then 
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Theorem 3: Let   ,tTf   satisfying the subordination principle. Then 
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where   qV ]3[621    and   qY ]4[1231   . 

Proof: 
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    22

6

1

2

3

22

42

1

22

1

2

1

22

22

1

22

1

2

2

2

2

2

2

2

3

]4[123116

)(

]4[123164

4)(

]4[123116

4)(

qqq

ctuxcctuxcctu

s

a

s

a

 










  

  
 

 
 

 
  22

4

1

2

132

2

32

1

2

121

22

2
222

1

2

1

]4[123116

4)()(

]4[123116

4)()(

]4[123116

14)(

qqq

xcctutuxcctutuzxctu

 












  

  
 

 
 

   
  22

2

1

222

1

2

1

22

24

1

2

131

22

1

22

121

]4[123116

14)(

]4[123132

4)()(

]4[12318

14)()(

qqq

zxcxctuxcctutuxzcxctutu

 














 

  
 

 
    22

4

1

2

2

22

2
22

1

2

2

22

3

1

22

131

]3[62116

)(

]3[62116

4)(

]4[123116

14)()(

qqq

ctuxctuzcxctutu

 










  

 
  22

2

1

2

121

]3[6218

4)()(

q

xcctutu

 




        (43)

 

Let  
2

14 c  R and  zx
2

1 =W. Then 

 

 

 

 

  22

42

1

2

1

22

22

1

22

2

2

2

2

2

2

3

]4[123164]4[123116 qq

xcRtuxcRtu

s

a

s

a

 



  

 

 

 

  22

22

1

22

6

1

2

3

]4[123116]4[123164 qq

RWtuctu

 





 

   

 

   

  22

4

132

22

32

121

]4[123164]4[123116 qq

xcRtutuxcRtutu

 



  

   

 

   

 

 

  22

2

1

22

1

22

24

131

22

121

]4[123116]4[123132]4[12318 qqq

xcWRtuxcRtutuxRWctutu

 






  



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 66 Issue 6 – June 2020 

 

ISSN: 2231-5373                                   http://www.ijmttjournal.org                            Page 140 

   

 

 

  22

222

1

22

3

131

]3[62116]4[123116 qq

xRtuRWctutu

 





 

 
 

   
  22

2

121

22

4

1

2

2

]3[6218]3[62116 qq

xcRtutuctu

 



     (44) 
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on [0, 2] when c = 2.  

and applying (20)  we obtained the results 
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where   qV ]3[621    and   qY ]4[1231   . 

and this ends the proof. 

 

Corollary 3.1:  Let  ,oTf t . Then 
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Corollary 3.2:  Let  ,1tTf  . Then 
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Corollary 3.3:  Let  1,tTf  . Then 
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Corollary 3. 4:  Let   ,2

1

Tf  . Then 
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Theorem 4: Let   ,tTf   satisfying the subordination principle. Then 
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where 

 

  qM ]2[21   ,   qV ]3[621    and   qY ]4[1231    

 

 

 

Proof: 

Substituting for the values of 
s

a1
,  

s

a2
, and 

s

a3  as in (35), (36) and (37) in theorem 1, 

together with Lemmas 1.1 and 1.2, we have 
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By Lemma 3.1, we have ,2nc       ...,3,2,1 . For convenience of notation we take 

ccn   and we may assume without loss of generality that ]2,0[c . Applying the triangle 

inequality with 
2

14 cR  . Then 
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Trivially, we can show that this expression has a maximum value 
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on [0,2] when c=2 and substituting for (20) in (50) results into 
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where 

 

  qM ]2[21   ,   qV ]3[621    and   qY ]4[1231    
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Thus the proof ends. 

 

Corollary 4.1:  Let  ,oTf t  in theorem 4.  Then 
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Corollary 4.2:  Let  ,1tTf   in theorem 4.  Then 
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Corollary 4.3:  Let  1,tTf   in theorem 4.  Then 
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Corollary 4.4:  Let   ,2

1

Tf    in theorem 4.  Then 
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Theorem 5. Let   ,tTf   satisfying the subordination principle. Then 
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where 

 

  qM ]2[21   ,   qV ]3[621    and   qY ]4[1231    

Proof:

 
The proof follows from the earlier theorems and the Lemmas. 

Remarks: With special choices of parameters tand ,  involved in theorem 5, various 

interesting results could be derived as corollaries. 
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