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I. INTRODUCTION, PRELIMINARIES AND LEMMA
Let A denote the class of functions of the form
f(z)=z+> a:z"
k=2 )
which are analytic in the open unit disk U ={z:z e Cand |z| <1}

and normalized by the condition f(0)=0= f'(0)—1. Also let H € Abe the class of analytic

univalent function in U .a function f € A is called a starlike function denoted with S” if and only if
Re{ﬂ} >0
f(2) )
A function f e A which maps U onto a convex domain is called convex function denoted by K if
and only if

Re{l+m} >0, zeu
f'(2) 3)
Generally, S"(0)=S" and k(0) =k

A function f € H is called a close-to-convex in U if the range f(U) is close to convex and
this is the compliment of f(U) which is written as the union of non-intersecting half lines.
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Moreover, a function f € H is said to be close-to-convex with respect to a fixed Starlike
functions g (g not necessarily normalized) denoted by C,, if and only if

{Z;;(ZZ))}>0, zeU. 4)

The decompositional approach to matrix computation, one of the top ten algorithms of the
20™ century had severally been employed by many researchers particularly the Hankel and
Teoplitz determinants having numerous applications. For example, they provide a platform
on which a variety of scientific and engineering problems can be solved and furthermore,
they permit reasonably simple rounding-error analysis and afford high quality software
implementations. Hankel determinants play a vital role in different branches and have many
applications [13].

Moreover, it is interesting to note that a closer relation of the Hankel matrix (or determinant)
is the Teoplitz matrix (or determinant). In linear algebra, a Teoplitz matrix or diagonal-
constant matrix named after Otto Teoplitz is that in which each descending diagonal from left
to right is constant. A Teoplitz matrix can be thought of as an “upside down” Hankel matrix.
This is so because while Hankel matrix (or determinant) have constant entries along the
reverse diagonal, a Teoplitz matrix (or determinant) on the other hand have constant entries
along the diagonal.

The Hankel determinant of f for g>1 and n >1 was defined by Pommereke [13] and [14] as

an an+l a‘n+q—l
an+1 an+2 an+q
H,(m=] . : :
a‘n-¢—q—1 an-¢—q a'n+2q—2 (5)

while the symmetric Teoplitz determinant T, (n) for q>1and n>1 was defined as

n n+l n+q-1
a .. a
Tq (n) — n+1 :n n:+q (6)
an+q—1 a'n+q an
and in particular
a, a a, a % & &
2 3 3 4
T,(2)= . =] and T,2)=la, a, a ©)
3 2 4 3 a4 a3 ag

For a good summary of the applications of Teoplitz determinant to a wide range of areas of
pure and applied Mathematics; (see [18],[17] and [16] for detalils).
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A matrix equation of the form Ax = b is called a Teoplitz system if A is a Teoplitz matrix. If
A'is an nxn Teoplitz matrix, then the system has only 2n—1 degrees of freedom rather than
n’. We might therefore expect that the solution of a Teoplitz system would be easier, and
indeed that is the case. Moreover, Teoplitz matrices are subspaces of the vector spaces of
nxn matrices under matrix addition and scalar multiplication and Teoplitz matrices
commute asymptotically [19].

Since Noonan and Thomas in [7] began the study of Hankel determinant when they like
defined the qth Hankel determinant of the function in (1) as in (5); various researchers had
investigated the Hankel and Teoplitz determinants for different univalent and bi-univalent
functions, excluding generalized distribution function which is a new research area in the
field of geometric function theory. Beginning with Porwal in [15] who investigated the
geometric properties of generalized distribution associated with univalent functions, Oladipo
in [8] and [9] investigated bonds for probabilities of the generalized distribution
polylogarithm and generalized distribution associated with univalent functions in conical
domain respectively. In this work, we aim at filling the vacuum created by Porwal and
Oladipo thus finding the Teoplitz determinant for the generalized distribution involving
Jackson’s g- derivative operator.

Let the series Zak,ak >0,ne N be convergent and its sum is denoted by S such that
k=0

s=3a, ®)

k=0
We now introduce the generalized discrete probability distribution whose probability mass

function is p(k)= a—sk,k =012 (9)

Obviously, p(k) is a probability mass function because p(k)>0and > p, >1

We then introduce a power series whose coefficients are probabilities of the generalized
distribution, that is

G,(2)= z+iak—_12k (10)

k=2 S

Applying the g-derivative [k], operator as defined in (12) on (10) we

D,G,(2)= z+i[k]q akT_lz" (11)
k=2

In the field of Geometric function theory, various subclasses of the normalized analytic
function class A have been studied from different points of view. The g-calculus as well as
the fractional g-calculus such as fractional g-integral and fractional g-derivative operators are
used to investigate several subclasses of analytic functions [Details are found in [2], [1], [10]

ISSN: 2231-5373 http://www.ijmttjournal.org Page 131




International Journal of Mathematics Trends and Technology (IIMTT) — Volume 66 Issue 6 — June 2020

and [12]. The application of g-calculus which plays vital role in the theory of hyper-
geometric series, quantum physics and operator theory was initiated by Jackson [5]. He was
the first Mathematician who developed g-derivative and g-integral in a systematic way. Both
operators play crucial role in the theory of relativity, usually encompasses two theories by
Einstein, one in special relativity and the other in general relativity. While special relativity
applies to the elementary particles and their interactions, general relativity on the other hand
applies to the cosmological and astrophysical realm including astronomy. Of interest is the
fact that special relativity theory had rapidly become a significant and necessary tool for
theorists and experimentalists in the new fields of atomic physics, nuclear physics and
guantum mechanics.

In the present paper, we consider the symmetric Teoplitz determinants and obtain the
estimates of those determinants and whose elements are the coefficients of a, of g-derivative

k

operator [k], =11_—q

, for keNon feT'(9,1) a subclass of generalized distribution

function by the method of surbodination principle on Chebyshev polynomials. Specifically,
we obtain the coefficient bounds for the symmetric Teoplitz determinants T, (2), T,(3), T;(2)

and T,(1).

Definition 1.1 Let g € (0,1) and define

k

_1-qg
[k], = .

, for ke N (12)

Definition 1.2 The Jackson’s g-derivative of a function f € A, 0<q<1 is defined as
follows:

qu(z):{f(z)_ f(gz), for z=0
(), for z=0
and
D" f(2) =444, (2) (13)

We note that Limq%l_ (qu(z)): f'(z) iff is differentiable at z.

From (12) and (1) we deduce that

D, f(2) =1+ 3 [K] 2,2 (14)
k=2
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Definition 1.3 The symmetric g-derivative Aqf of a function f given by (1) is defined as
follows:

f(qz)- f(q(2))
Dot (2)= (q—q‘l)z for z#0 (15)

f'(0) for z=0

From (14), we deduce that 5qzk = [|-<“]q z** and a power series of

D,f is D, f(z) =1+ > [k] a2
k=2

when f has the form (1) and the symbol (k), denotes the number [IZ]q =

Chebyshev polynomials have become increasingly important in numerical analysis from both
the theoretical and practical points of view. They are sequences of orthogonal polynomials
which are practically related to De-Moivres formular and which are defined recursively.
There exists four kinds though, the first and second kinds T, (x) and U, (x) are well known

having more results, uses and applications [3] and [6]. In this work we shall limit ourselves to
the second kind given as

Uuo—ﬂ%gi?g e(-11) (16)

where k denotes the degree of the polynomial and t = cos «

The Chebyshev polynomials of the second kind U, (t);t € (—1, 1) have the generating function
of the form

1 = sin(k+ e,
Hzt)=— =14 R8T D,lt| <1
1) 1-2tz + 22 +k§‘ sina - (Ze < )

Note that t =cosa, o € (?ﬁ 5] then

H(z.t)= 1 Z sin(k+Da
1-2cosoz +2° =  sina 17)

Thus,

H(z,t) =1+ 2cos oz +(3cos® a —sin® aJz? +.... (18)

Following the relationship in Fadipe et al [4], we have
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H(z,t)=1+u,(t)z +u,(t)z* +..... (19)

sin(k cos )

\1-t2

are the Chebyshev polynomials of the second kind. It is known that

where U, , = keN

u k (t) =2tU k-1 (t) -U k-2 (t)
So that

U,(t)=2t,, U,(t)=4t> -1 and U,(t) =8t°> — 4t (20)

Definition 1.4 If f(z)and g(z) are analytic in U, we say that f(z) is subordinate to g(z)
written symbolically as f < gor f(z) <g(z), z €U if there exists a Schwarz function w(z)
3333333which by definition is analytic in U such that

f(2) = g(w(2))

Definition 1.5 The Convolution (or Hadamard product) of two series

f(z) = Zaolakzk and g(z) = ibkzk is defined by
k=0 k=0

f*g(z)=> ab,z"
k=0

A Set of Lemmas:

For this study, the following existing lemmas are established:
Let P be the class of functions p(z) with positive real part consisting of all analytic function
p:U — C satisfying the following conditions

p(0)=1and R(p(z))>0

Lemma 1.1 “Reference [11] shows that if the function pe P is defined by
p(z) =1+c,z+c,z° +c,2° +...

then [c,|<2 neN={123..}«

Lemma 1.2 [11]: If the function p € P is defined by
c(z)=1+c,,z+¢C,,2° +C5,2° +...
then
2 2
2c, =cC, +x(4—(:1 )
and
4c, =c’ +2c1(4—c12)><—c1<4—012)x2 +2(4—clle—|x|2)z
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for some values of z, |z]<1

Il. MAIN RESULTS

Definition 2.1 A function feA is said to be

in class G,(6, u, H(z,t)) if
Re{(l—H)G z(Z) 160G, (2) + 142G, (z)} <H(z,1)

(21)
where 0<9<1, x>1and H (z,t) is the Chebyshev polynomial
Remark 2.2. if =0, we have
Re{G (2) +12G, (z)} < H(z,t)
z (22)
Remark 2.3. if =1 we have
Re{Gd (2) + 12G, (z)}< H(z,t) 23)
Theorem 1: Let feG,(0, 1, H(z,1))  the generalized distribution which satisfies the
subordination principle. Then
a‘ S
S| (+0+2u)2], (24)
a, 2t -1
S|” (@+20+6u)3], (25)
| at(ar-1)
S|” (1+30+12u)4], (26)

Proof:

Let feG, (b, 1, H(z,t)). Then there exists a Chebyshev polynomial H(u(z),t) such that

R%@—@G;n+9G(D+mG a%<Hman)

(27)
where H(z,t)zljt%ul(t)clzJr[ul(t)CZ BCAUY +U2(t)c12]22
2 4 4
+(U1(t)cs _Ul(t)ClCZ +Ul(t)cl3 +U2(t)ClC2 _Uz(t)C13 +U3(t)C13J23+
2 2 8 2 4 8 (29)
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Next, we define the function p e P by

1+u@) _q, p,Z+ P,z° +....

PO=1"0 - 2

In the following, we can derive u(z) =
p(z)+1

From (27) we have

1-6) (1+Z[k] L “]+0[1+Zk[k] —t “j iyk(k—n[k]q%zk-l

k=2

— l+(lU (t))CZ+ Ul(t)cz _Ul(t)cl +U2(t)cl 72
2o 2 4 4

+[U1<t)c3 _Uitee,  Uie’ | Upac, Us@e” | us(t)cszg .
(31)

2 2 8 2 4 8
Expanding and equating the coefficients of z, z°and z* in both sides of (31) gives:
L+ 0+ 20020, 3 =30, (0, (32)
a, U,()c, U, ()’ U,()c,’
1+20+6u)3], 2 =—122 1 23/ 33
(1+20+6u)3], < 5 R (33)
a, U,()c, U, (t)c,c, U, (e’
1+30+12 4 -3 _ "1 3 1 1>2 1 1
(1+30+124]41, 5 Sy
LUsMac, U,)e’ | Us(e”
2 4 8 (34)
which yields:
a__ Ug (35)
S 20+0+2u)2],
3, UMc,  Ubc] U,(t)c,’
22 _ + (36)
S 20+20+6u)3], 41+20+6u)3], 4L+20+6u)3],
a_ U@  UMee, | Uide
S 2(1+30+12u)f4], 20+30+12u)4], 8(1+30+12u)4], (37)
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Applying lemmas 1.1 and 1.2 and (20) on (35), (36) and (37) together with triangle inequality
we have:

ﬁ‘< 2t
S| (+0+2u)2],

3, _ 2t? -1

S| [1+20+6u)3l,
| at(ar-1)

S|™ (1+30+12u)4],
which ends the proof.

Remarks: With special choices of parameters involved in theorem 1, various interesting
results could be derived.

Theorem 2:  Let f eT'(6,4), the Teoplitz determinant for the generalized distribution
which satisfies the subordination principle. Then

(4?1 2_(&)2
<= v (38)

where M =(1+60+2u)[2], and V =(1+ 26 + 6] 3],

Proof:

T a a ) . . .
Substituting the values of ?1 ?2 as obtained in (35), and (36) in theorem | with Lemmas 1.1

and 1.2, we have

aal|  u'E-cH x| uwil)e
s s*| 16(1+20+6u)°[3],° 16(1+20+6u)°[3],"
LuOuO@-ce’x w0

8(L+20+6u)[3]," 41+06+2u)[2]] (39)

LetR=4-c’ and W = (1—|x|2)z

Then % _&|_  uwW@ORX  u()c
2 2 2 2 2 2
s s*| 16(1+20+6u)[3]," 16(1+20+6u)°[3],
u (u, R e’x  u(M)c”

8(L+20+6u)[3]," 4l+0+2u)[2],
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By Lemma 3.1, we have [c,|<2, 0 € {,2,3,...}. For convenience of notation we take
c, =C and we may assume without loss of generality that c €[0,2]. Applying the triangle

inequality with R=4—c,. Then

a; af|_ u,’(t)R? x? . u,’(t) ¢’
s* s’ 16(1+20+6u)[3],° 16(1+20+6u)[3],°
q q
u, (t) u (RS u,’(t) c? —¢Qx|)
2 2 2 2
8(1+20+6u)°[3]," 4(+0+2u)[2], (40)
Trivially, we can show that this expression has a maximum value
2
ﬁ_i{ u, () } _{ u, (t) }
2 21
s? s (1+260+6u)3], L+0+2u)2], @)

on [0,2] when c=2.
Applying (20) on (41) gives the results

& _a [a -1 H
|V M
where M =(1+60+2u)[2],and V =(1+20 +6.) 3],

Thus =|— s
which completes the proof.

S S

Corollary 2.1: Let f eT'(o, ) in theorem 2. Then

{ 4% —1 T{ 2t T
Cl@+6u)8l, || @+2u)2],

Corollary 2.2 Let feTt(,y ). Then

4t* — i
1+ Z,u [3]q 1+,u [2],
(

a, a

s? §?

a, 8|
s? 52

Corollary 2.3: Let f €T'(6,1). Then

< 4t* —1
(7+20)3], 3], 3+9 [2]
Corollary 2. 4: Let f eT? (G,y).Then

i
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Theorem 3: Let f eT‘(H, ,u) satisfying the subordination principle. Then
3 2 2 2
£[8t —4t} _{4t —1}
Y \Y 42)

where V = (1+ 26+ 6) 3], and Y = (1+30+12)[4], .

a; 3,

s s

Proof:

Substituting ﬁ, & from (36) and (37) in theorem 1 and Lemmas 1.1 and 1.2, we have
s s

a_§_a_§= UZZ(t)(4_012)2C12X2 + ulz(t)(4_clz)zclzx4 + Usz(t)cle
s s*| 16(1+3¢0+12u)°[4]1,° 64(1+30+12u)'[4]," 16(1+30+12u)[4],°

Lu’O (a-c2)a- | f 22 Cu®u0B-ct e u,0u06B-c)'x
16(1+360 +124)°[4],° 16(1+30+12u)f4],"  16(1+30+12u)°[4],"

" ul(t)uz(t) (4_C12 )(1_|X|2)C1XZ _ ul(t) us(t) (4_012 ):14)(2 _ ul2 (t) (4_012 )2 (1_|X|2)C1XZZ

8(1+30 +12u)°[4],* 32(1+30 +12u)°[4],° 16(1+30 +12u)°[4],°
ACINC (- - |x? ez O R O 1
16(1+30 +12u)°[4],° 16(1+20 +64)°[3],° 16(1+20+6u)°[3],"
Cu()u, () (4 - clz)clzx
8(1+20+6u)[3],” 43)

Let (4—c12)= R and (1—|x|2)z =W. Then

a; a;|  u,(t)R%c’ X’ u,’(t) Re,*x*
s s*| 16(1+30+12u)[4]1,° 64(1+30+124)°[4],°
u32(t) C16 U12 (t)RWz

64(1+30+12u)°[4],°  16(1+30+124)°[4],]

Cout)u ) Re X uy(t) ug(t) Rey'x
16(1+30+124)°[4]1,° 64(1+30 +12u)°[4],°

u (t)u,(t) Rwex  u(®)us(t) Re' x> u’(t) R*Wc x®
8(1+30+12u)°[4]," 32(1+3¢0+12u)°[4]1,° 16(1+30+12u)°[4],°
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u,(t) us(t) Rwe,” u,’(t)R?x?
16(1+30+124)°[41,° 16(1+20+6u)°[3],"

e ul)u)Re'x a
16(1+20+64)[3]," 8(L+20+6u)[3],

By Lemma 3.1, we have [c,|<2, e {,2,3,...}. For convenience of notation we take
c, =C and we may assume without loss of generality that c €[0,2]. Applying the triangle

inequality with R=4—c,. Then

a; aj|_ u;” (t)c® T LN
s s®| 64(1+3¢0+12u)°[41,° 16(1+20+6u)°[3],"
u,”(t)R? c?x? N u,*(t)Re?x* u,’(t) RW?

16(1+30+124)°[4]1,°  64(L+30 +12u)°[4],° 16(L+30 +12u) [41,*

u®u, R U, Mus)Re x g (t)u,(t) RWex
16(1+30+124)°[41,° 16(1+30+12u)°[4]," 8(1+30+12u)°[4],°

O uu®Re*x*u’(t) RWex® N u, (t)u, (t)RWc?
32(1+30+12u)[41,° 16(1+30+124)°[4]1,° 16(1+30+12u)°[4],”

_16(1u12(t)R2xz . u, (t) Uz(t)RZCZX —=¢(x)
+20+6u) 3], 8(L+20+6u)[3], (45)

Trivially, we can show that this expression has a maximum value

< Us t) —~ u, (1) on [0, 2] when ¢ = 2.
(1+30+12u)[4], (1+20+6u)3],

and applying (20) we obtained the results

LR N

a, a,
s?  g?

2 2
4 3
2 2

S S Y \Y

where V = (1+ 26+ 6) 3], and Y = (1+30+12)[4], .

and this ends the proof.

Corollary 3.1: Let f eT'(0, ). Then
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a2t —1) (a2 -1) T
(L+124)[4], @+ 6;1)[3]

(

(

2 2
a2

S?_

Corollary 3.2: Let f eT'(L, z). Then
2
| 4l )T [ (-
AL+ 3u)4], 3(1+2u) [3]

,1 Then

a, _a,
5%

s?  s?

Corollary 3.3: Let f eT'(0
2
< 4t 2t - 4t -
13+36’ [4] 7+ 29 [3]
Corollary 3. 4: Let f eT? (G,y).Then
2
ia
Y
Theorem 4: Let f eT‘(@, ,u) satisfying the subordination principle. Then
2 2 2 2 2
fa_a)[al e aa &W _aflar 1)
s s)|s* s* ss| M|V M| V

NS —4t)[2}2 RS —4t)[g}2 NS —4t){2(4t2 —1)}2

a;, a,
s?  g?

2 2
8 3

s? 2

Y M Y \ Y \

M Y (46)
where M =(1+0+2u)[2],, V =1+20+6u)3], and Y =(1+30+12x)[4],
Proof:
I a, a, a, : .
Substituting for the values of < S and < as in (35), (36) and (37) in theorem 1,

together with Lemmas 1.1 and 1.2, we have
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2 2

4 _HllA _,H 4l
2 2

s s )|s s? s s

_[ul(t)c1 LU t)<4—clz)clx2 B ul(t)(4—c12)(1—|x|2)z B u,_,(t)(4—c12)clx _ug(t) cf]
8Y

2M 8Y 4y 8Y

0= ) u@u0b-o e | ubuc
16MY SMY 16MY “7)

Let R= (4— clz) and W = (1—|x|2)z and expand, we have

T.((2) = ul3 (t)C13 _ ul3 (t)chlxz _ ul(t)vzz(t)cls _ u12 (t)uz(t)Rcl3X _ u13 (t) RC13X2
? 8MV 2 16MV 2 16MV 2 8MV 2 32M %Y
. u,’(t)Rwc, . u,’(t)u, (t)Re,*x . u,” (t)u, (t)c,’ . u’ (HRe,’x*  u’(t)R%e,x*
32M?Y 16M %Y 32M 2y 32V2Y 64V Y
Cu(u,” MRe X U (Mu, ()R e’x u(t) RP ¢! . u,’(t) R? c,wx?
64V Y 32V %Y 128MY ? 128MY ?
. u,’(t)u, (t)R%c,’x* . u;” (us(t)Re," x> u’(t) Rwe,” . u,’(t) R® wx?
64MY * 128MY ? 32V %Y 64V Y
. u, (t)u,’ (t)Rwe,* . u,’(t)u, (t)R? we,*x . u’(t) R®we,"x* u(t) R®w?
64V 2Y 32V 2y 128MY ? 128MY ?
U (Mu, OR?we,x up(H)ug(t)Rwe,* u(t)u, (t)Re,’x . u,’(t)u, ) R®c,x*
64MY * 128MY 2 16V %Y 32V 2y
. u,’(t)Re,’ . u, (t)u,’(t)R?c,*x? . u,” (H)u, R ¢.°x°  u,”(t)u, (t) RPwe,x
32V 16V %Y 64MY 2 64MY *
_ ul(t)U22 (t)R2C13X2 _ ul(t)uz(t)us(t)RC15X _ ulz (t)us(t) C15 n u12 (t)us(t) RZClsx2
32MY ? 64MY * 32V 64V Y
LU @use” | wMu,Mus @ Rx uHus@c xR u,’(Hus (D) Rwe,’
64V Y 32V°2Y 128MY ? 128MY ?
Uy (t)u, (Hus ) Re,’x uy(thy” (e,
64MY 2 128MY 2 48)

By Lemma 3.1, we have [c,|<2, (1€ {1,2,3,...}. For convenience of notation we take
c, =C and we may assume without loss of generality that c €[0,2]. Applying the triangle

inequality with R=4—c,. Then
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Ty (@ = | — (4, — 2 + 2,)c® + (4 — 45)c7| - = (HOR*cx® _u ()u, (O Re’

16MV ? 8MV ?
NOLRS . u,’(t)Rwe . u,’(t)u, (t) Rex . u’()Re®x®  u,’(t)R%ex*
32M %Y 32M %Y 16M 2Y 32V 2y 64V 2Y
U (u, MR u(Hu, (R X U’ ()R X! . u,’ (t)R%cwx?
64V %Y 32V2Y 128MY 2 128MY 2
. u,’(t)u, t)R%c*x® . u,” (t)us(t)Re®x*  u,’(t) Rwe? . u,’(t) R3wx?
64MY * 128MY 2 32VeY 64V %Y
. u, (t)u,” (t)Rwe* .\ u,’(t)u, (t)R? we?x .\ u’ ()R> we?x?  u,’ ()R w2
64V %Y 32V 128MY ? 128MY ?
U (Hu, ORwe’x u(Hug(t)Rwe® u® (tu, () Rex . u,’(t)u, (t) R%c x®
64MY ? 128MY ? 16V %Y 32V
. u,’(t)Rc® . u, (t)u,’(t)R?c3x? . u,” ()u, R Xy’ (t)u, (1) R*wex
32V %Y 16V %Y 64MY ? 64MY *
Uy (tu, R SPX® uy(t)u, (t)uy (HReX . u,” (t)u, (t) R%c*x?
32MY? 64MY * 64V Y
. u, (t)u, (t)u, (t) c®Rx . U (Hug () ®X°R U, (t)ug () Rwe®  u, (t)u, (t)us (t) Rex
32V2Y 128MY ? 128MY ? 64MY ?
- ¢QX|) (49)
Trivially, we can show that this expression has a maximum value
3 2 2
et 02000, 20w
MV MV M Y
_U (Ous(t) | 4u," Ous(t) () ug”(0)
vy vy MY 2 (50)

on [0,2] when c=2 and substituting for (20) in (50) results into
2 2 2 2
n)=f2 [y aa ] aral el -y
s s J|s? s2 s s M|V M Vv

e —4t)‘gT @_«)H

Y |M Y |V

(B —a)l2(a’ —1)}2 2t {(8t3——4t)}2

Yy | v | M| Y

where M =(1+0+2u)[2],, V =1+20+6u)3], and Y =(1+30+12x)[4],
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Thus the proof ends.

Corollary 4.1: Let f eT'(0, «) intheorem4. Then

r@)<. 2 { 2t T 4t {(4t2—1) T
T 212, | @+6u)3], | (@24)120, | (2+60)I3],

(t>-at) [ 2t }2((8t34t) {( 2t
1

T2, | @202, | e 12p)ial, | @i, |

2

Bt —at) [ 2(4t>-1) T 2t { (Bt° - 4t)
; .
(L+124)[4], | @+6)I31, | (L+24)[2], | L+124)[4], |

Corollary 4.2: Let f eT"(L, u) intheorem 4. Then

t 2 | 2t (at? -1)
T,(2) < =
O i 2L | o S
Lt [ }2_ r-a)[ 2 T
(L+3u)[4], | 20+ w2, | [+ 3u)4], | 32+ 24)03], |

2

(2t°—t) [ 2(ar®-1) T t [ (et®-at)
+ —
(L+3u)[4], | 3@+ 24)[3], (L+ w)[2], | 41+3u)[4],

Corollary 4.3: Let f €T'(6,1) in theorem 4. Then

.o o | 4t (@2 -1) T
T, (2) > (3+ 9)[2]q |:(7 + 29)[3]q :| - (3+ 6)[2]q |:(7 + 29)[3]q :|

L (e —at) 2 | Br-a) 2 |
(13+30)[4], | B+0o)[2], | (13+30)[4], | (7+20)[3],

2t [ (8t° —4t) }
~(3+0)[21, | @3 +30)[4],

1

Corollary 4.4: Let feTE(é’,y) in theorem 4. Then

-] 40
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Theorem 5. Let f eT'(6, 1) satisfying the subordination principle. Then

Ty (1) =

4t

2 2
1+2a_12_ i_l +£ £1+8(L_) L
s? S s? Y M

> [(a? 1))’

_8l | -

M

where

Proof:

Vv
M=Q1+60+2u)2],, V=0+20+6u)3], and Y = (1+30+12.)[4],

(51)

The proof follows from the earlier theorems and the Lemmas.

Remarks: With special choices of parameters 6, ¢zand t involved in theorem 5, various
interesting results could be derived as corollaries.
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