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Abstract: In this paper, a system of two coupled damped Duffing resonators driven by two

van der Pol oscillators with delays is studied. Some sufficient conditions to ensure the periodic

and partial periodic oscillations for the system are established. Computer simulation is given to

demonstrate our result.
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1 Introduction

Recently, the study of nonlinear dynamics of micro-electro-mechanical systems (MEMS) and

nano-electro-mechanical systems (NEMS) has grown rapidly over the last decades. Analysis of

simple cases as the building blocks in MEMS or NEMS can gain insight into larger complicated

systems. In 2009, Karabalin et al. have discussed a system of two coupled nonlinear nano-electro-

mechanical resonators using a structure of doubly clamped beams with a shared mechanical

ledge. The authors modeled the behavior of the two strongly interacting nonlinear resonators

by a coupled equations of motion for the beam as follows [1]:






x′′1(t) + γ1x
′
1(t) + ω2

1x1(t) + α1x
3
1(t) +D(x1(t)− x2(t)) = gD1(t),

x′′2(t) + γ2x
′
2(t) + ω2

2x2(t) + α2x
3
2(t) +D(x2(t)− x1(t)) = gD2(t).

(1)

By using the standard methods of secular perturbation theory, the complex nonlinear behavior

of the system has been demonstrated. The nonlinear behavior of coupled equations can be

understood, controlled, and exploited. In order to understand the emergent behavior of complex

dynamical systems and develop novel NEMS devices, Leung et al. have discussed the following

damped Duffing resonator driven by a van der Pol oscillator [2]:






u′′1(t)− ε1u
′
1(t) + Ω2

1u1(t) + k1u
3
1(t)− kc(u2(t)− u1(t)) = 0,

u′′2(t)− ε2(u
2
2(t)− 1)u′2(t) + Ω2

2u2(t)− kc(u1(t)− u2(t)) = 0.
(2)
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By solving nonlinear algebraic equations, highly accurate bifurcation frequencies for various

parameters are provided. Rand and Wong have considered a system of four coupled phase-

only oscillators. The qualitative dynamics is depended upon a parameter representing coupling

strength. This work has been used to MEMS artificial intelligence decision-making devices [3].

It is known that time delay is ubiquitous in many physical systems, due to finite switching speeds

of amplifiers in electronic circuits, finite signal propagation times in networks and circuits, and

so on. Recently, many researchers have studied the dynamical behavior of various isolated and

coupled time delay systems [4-10]. Zhang and Gu have considered the existence of the Hopf

bifurcation for a coupled van der Pol system as follows [11]:







x′′1(t) + ε(x21(t)− 1)x
′

1(t) + (1 + α)x1(t) = αy
′

1(t− τ2),

y′′1(t) + ε(y21(t)− 1)y
′

1(t) + (1 + α)y1(t) = αx
′

1(t− τ1).
(3)

The stability and direction of the Hopf bifurcation were also determined by using the normal

form theory and the center manifold theorem. Zhang et al. have investigated three coupled van

der Pol oscillators with delay as follows [12]:



















x′′1 + x1 − ε1(1− x21)x
′
1 = k[x2(t− τ)− x1(t− τ)] + k[x3(t− τ)− x1(t− τ)],

x′′2 + x2 − ε1(1− x22)x
′
2 = k[x3(t− τ)− x2(t− τ)] + k[x1(t− τ)− x2(t− τ)],

x′′3 + x3 − ε1(1− x23)x
′
3 = k[x1(t− τ)− x3(t− τ)] + k[x2(t− τ)− x3(t− τ)].

(4)

By using a symmetric Hopf bifurcation theory, the Hopf bifurcations at zero point appear as the

delay increases and the existence of multiple periodic solutions are also established. For various

Duffing oscillators, van der Pol oscillators or van der Pol-Duffing oscillators, many results have

been appeared in the literature [13-20]. Recently, Feng and Akujuobi have discussed the following

two damped Duffing resonators driven by a van der Pol oscillator [21]:



















x′′1 + ε1x
′
1 +Ω2

1x1 + k1x
3
1 = p1[x2(t− τ̃2)− x1(t− τ̃1)] + q1[x3(t− τ̃3)− x1(t− τ̃1)],

x′′2 + ε2x
′
2 +Ω2

2x2 + k2x
3
2 = p2[x3(t− τ̃3)− x2(t− τ̃2)] + q2[x1(t− τ̃1)− x2(t− τ̃2)],

x′′3 + ε3(x
2
3 − 1)x′3 +Ω2

3x3 = p3[x1(t− τ̃1)− x3(t− τ̃3)] + q3[x2(t− τ̃2)− x3(t− τ̃3)].

(5)

In system (5), the first two Duffing oscillators are coupled and driven by a van der Pol oscillator,

in which the system appeared a partial oscillation under some restrictive conditions. Motivated

by the above models, in this paper we extend model (5) to the following system of two damped
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Duffing resonator driven by two van der Pol oscillators.











































































x′′1 + ε1x
′
1 +Ω2

1x1 + k1x
3
1 = p1[x2(t− τ̃2)− x1(t− τ̃1)] + q1[x3(t− τ̃3)

−x1(t− τ̃1)] + r1[x4(t− τ̃4)− x1(t− τ̃1)],

x′′2 + ε2x
′
2 +Ω2

2x2 + k2x
3
2 = p2[x3(t− τ̃3)− x2(t− τ̃2)] + q2[x1(t− τ̃1)

−x2(t− τ̃2)] + r2[x4(t− τ̃4)− x2(t− τ̃2)],

x′′3 + ε3(x
2
3 − 1)x′3 +Ω2

3x3 = p3[x1(t− τ̃1)− x3(t− τ̃3)] + q3[x2(t− τ̃2)

−x3(t− τ̃3)] + r3[x4(t− τ̃4)− x3(t− τ̃3)],

x′′4 + ε4(x
2
4 − 1)x′4 +Ω2

4x4 = p4[x1(t− τ̃1)− x4(t− τ̃4)] + q3[x2(t− τ̃2)

−x4(t− τ̃4)] + r4[x3(t− τ̃4)− x4(t− τ̃4)].

(6)

where xi = xi(t) represents coordinate, εi,Ωi(i = 1, 2, 3, 4), kj (j = 1, 2) are the damping coeffi-

cient, linear frequency and nonlinear stiffness of the Duffing resonator respectively. pi, qi, ri(i =

1, 2, 3, 4) are the coupling linear stiffness between the four resonators. By means of mathematical

analysis method, some sufficient conditions to ensure the periodic and partial periodic oscilla-

tions of system (6) were obtained. Numerical simulation is provided to support our result. It

should be emphasized that if the constants εi,Ωi, pi, qi, riτ̃i(i = 1, 2, 3, 4), kj (j = 1, 2) are differ-

ent values, then the method of Hopf bifurcation is very hard to deal with system (6). This is

due to the complexity of finding the bifurcating parameter.

2 Preliminaries

Let τ1 = τ̃1, τ3 = τ̃2, τ5 = τ̃3, τ7 = τ̃4. It is convenient to write (6) as an equivalent eight-

dimensional first order system:



























































































































u′1 = u2,

u′2 = −ε1u2 − Ω2
1u1 − k1u

3
1 + p1[u3(t− τ3)− u1(t− τ1)]

+q1[u5(t− τ5)− u1(t− τ1)] + r1[u7(t− τ7)− u1(t− τ1)],

u′3 = u4,

u′4 = −ε2u4 − Ω2
2u3 − k2u

3
3 + p2[u5(t− τ5)− u3(t− τ3)]

+q2[u1(t− τ1)− u3(t− τ3)] + r2[u7(t− τ7)− u3(t− τ3)],

u′5 = u6,

u′6 = −ε3(u
2
5 − 1)u6 − Ω2

3u5 + p3[u1(t− τ1)− u5(t− τ5)]

+q3[u3(t− τ3)− u5(t− τ5)] + r3[u7(t− τ7)− u5(t− τ5)],

u′7 = u8,

u′8 = −ε4(u
2
7 − 1)u8 − Ω2

4u7 + p4[u1(t− τ1)− u7(t− τ7)]

+q4[u3(t− τ3)− u7(t− τ7)] + r4[u5(t− τ5)− u7(t− τ7)].

(7)
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where ui = ui(t)(i = 1, 2, · · · , 8). The matrix form of system (7) is as follows:

U ′(t) = AU(t) +BU(t− τ) + f(U(t)) (8)

where U(t) = [u1(t), u2(t), u3(t), u4(t), u5(t), u6(t), , u7(t), u8(t)]
T , U(t−τ) = [u1(t−τ1), 0, u3(t−

τ3), 0, u5(t− τ5), 0, u7(t− τ7), 0]
T ,

A = (aij)8×8 =

































0 1 0 0 0 0 0 0

−Ω2

1
−ε1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −Ω2

2
−ε2 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −Ω2

3
ε3 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0− Ω2

4
ε8

































,

B = (bij)8×8 =

































0 0 0 0 0 0 0 0

l1 0 p1 0 q1 0 r1 0

0 0 0 0 0 0 0 0

q2 0 l2 0 p2 0 r2 0

0 0 0 0 0 0 0 0

p3 0 q3 0 l3 0 r3 0

0 0 0 0 0 0 0 0

p4 0 q4 0 r4 0 l4 0

































, f(U(t)) =

































0

−k1u
3

1

0

−k2u
3

3

0

−ε3u
2

5
u6

0

−ε4u
2

7
u8

































.

where li = −pi − qi − ri(i = 1, 2, 3, 4). Obviously, the linearized system of (8) is the following:

U ′(t) = AU(t) +BU(t− τ) (9)

Definition 1 A solution of system (7) is called oscillatory if the solution is neither eventually

positive nor eventually negative.

Definition 2 An oscillatory solution of system (7) is called partial oscillation if there is at

least one component of the solution is non-oscillatory.

Lemma 1 Assume that system (7) has a unique equilibrium point and all solutions are

bounded. If the unique equilibrium point of system (7) is unstable, then system (7) gener-

ates a limit cycle. In other words, there exists a periodic oscillatory solution of system (7).

Proof See [22] and the appendix of [23].

Lemma 2 For selected parameter values Ωi, pi, qi, ri(i = 1, 2, 3, 4), ifM is a nonsingular matrix,
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then system (7) has a unique equilibrium point. where

M = (mij)4×4 =













m11 −p1 −q1 −r1

−q2 m22 −p2 −r2

−p3 −q3 m33 −r3

−p4 −q4 −r4 m44













.

with mii = −Ω2
i + pi + qi + ri(i = 1, 2, 3, 4).

Proof An equilibrium point u∗ = (u∗1, u
∗
2, u

∗
3, u

∗
4, u

∗
5, u

∗
6)

T of system (7) is a constant solution of

the following algebraic equation











































































u∗2 = 0,

−ε1u
∗
2 − Ω2

1u
∗
1 − k1(u

∗
1)

3 − p1[u
∗
3 − u∗1]− q1[u

∗
5 − u∗1]− r1[u

∗
7 − u∗1] = 0,

u∗4 = 0,

−ε2u
∗
4 − Ω2

2u
∗
3 − k2(u

∗
3)

3 − p2[u
∗
5 − u∗3]− q2[u

∗
1 − u∗3]− r2[u

∗
7 − u∗3] = 0,

u∗6 = 0,

−ε3[(u
∗
5)

2 − 1]u∗6 − Ω2
3u

∗
5 − p3[u

∗
1 − u∗5]− q3[u

∗
3 − u∗5]− r3[u

∗
7 − u∗5] = 0,

u∗8 = 0,

−ε4[(u
∗
7)

2 − 1]u∗8 − Ω2
4u

∗
7 − p4[u

∗
1 − u∗7]− q4[u

∗
3 − u∗7]− r4[u

∗
5 − u∗7] = 0.

(10)

Since u∗2 = 0, u∗4 = 0, u∗6 = 0, u∗8 = 0, from (10) we have



























(−Ω2
1 + p1 + q1 + r1)u

∗
1 − p1u

∗
3 − q1u

∗
5 − r1u

∗
7 = k1(u

∗
1)

3,

−q2u
∗
1 + (−Ω2

2 + p2 + q2 + r2)u
∗
3 − p2u

∗
5 − r2u

∗
7 = k2(u

∗
3)

3,

−p3u
∗
1 − q3u

∗
3 + (−Ω2

3 + p3 + q3 + r3)u
∗
5 − r3u

∗
7 = 0,

−p4u
∗
1 − q4u

∗
3 − r4u

∗
5 + (−Ω2

4 + p4 + q4 + r4)u
∗
7 = 0.

(11)

We first consider the homogeneous system associated with system (11) as follows:



























(−Ω2
1 + p1 + q1 + r1)u

∗
1 − p1u

∗
3 − q1u

∗
5 − r1u

∗
7 = 0,

−q2u
∗
1 + (−Ω2

2 + p2 + q2 + r2)u
∗
3 − p2u

∗
5 − r2u

∗
7 = 0,

−p3u
∗
1 − q3u

∗
3 + (−Ω2

3 + p3 + q3 + r3)u
∗
5 − r3u

∗
7 = 0,

−p4u
∗
1 − q4u

∗
3 − r4u

∗
5 + (−Ω2

4 + p4 + q4 + r4)u
∗
7 = 0.

(12)

Since M is a non-singular matrix, the determinant of the coefficient matrix of system (12) does

not equal to zero. According to the linear algebraic basic theorem, system (12) implies that

u∗1 = 0, u∗3 = 0, u∗5 = 0 and u∗7 = 0. In other words, system (12) has a unique trivial solu-

tion. We see that the third equation and the fourth equation of system (11) are the same as

the third equation and the fourth equation of system (12). Noting that g(u∗1) = k1(u
∗
1)

3 and

h(u∗3) = k2(u
∗
3)

3 both are monotone functions, and only g(0) = h(0) = 0. This implies that

u∗ = (0, 0, 0, 0, 0, 0, 0, 0)T is the unique equilibrium point of system (7). The proof is completed.
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For a matrix D = (dij)8×8, we adopt the following norms of the matrix ‖D‖ and the measure of

matrix µ(D) [24]: ‖D‖ = max1≤j≤8
∑8

i=1 |dij |, and µ(D) = max1≤j≤8(djj +
∑8

i=1,i 6=j |dij |).

Lemma 3 Assume that 0 < εi(i = 3, 4), kj > 0(j = 1, 2), then all solutions of system (7) are

bounded.

Proof Note that time delay affects the stability of the solutions, it does not affect the bound-

edness of the solutions. To avoid unnecessary complexity, consider a special case of system (7)

as τ1 = τ3 = τ5 = τ7 = 0. Consider a Lyapunov function

V (t, u(·)) =
8

∑

i=1

1

2
u2i (t) (13)

Calculating the upper right derivative D+V of V along the solution of (7), we derive that

D+V (t, u(·))|(7) =
8

∑

i=1

ui(t)u
′
i(t)

= u1u2 − ε1u
2
2 − Ω2

1u1u2 − k1u
3
1u2 + p1(u3u2 − u1u2) + q1(u5u2 − u1u2)

+r1(u7u2 − u1u2) + u3u4 − ε2u
2
4 − Ω2

2u3u4 − k2u
3
3u4 + · · ·

−ε3u
2
5u

2
6 + · · · − ε4u

2
7u

2
8 + · · ·+ r4(u5u8 − u7u8) (14)

Obviously, when ui → ∞(1 ≤ i ≤ 8), u31u2, u
3
3u4u

2
5u

2
6, u

2
7u

2
8 are higher order infinity than u2i , uiuj,

respectively. Since 0 < εi(i = 3, 4), kj > 0(j = 1, 2), therefore, there exists suitably large L > 0

such that V ′(t)|(7) < 0 as ui > L. This means that all solutions of system (7) are bounded.

3 Periodic and partial periodic oscillations

Note that k1, k2 and ε3, ε4 are constants, u31, u
3
3, u

2
5 and u27 are high order infinitesimal as

u1, u3, u5, and u7 tend toward to zero respectively. So, the unique equilibrium point which

is exactly the zero point of system (7) and system (9), have the same instability. The oscillatory

behavior of the solution of system (9) implied that the solution of system (7) is also oscillatory.

Assume that εi > 0(i = 1, 2, 3, 4) and all solutions of system (7) are bounded. We first point out

that the component ui(i = 5, 6, 7, 8) of the trivial solution of system (7) is unstable. Consider

the subsystem constructing by the fifth, sixth, seventh and eighth equations of system (7) as
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follows (u1 = u3 = 0):



















































u′5 = u6,

u′6 = −ε3(u
2
5 − 1)u6 −Ω2

3u5 − p3u5(t− τ5)− q3u5(t− τ5)

+r3[u7(t− τ7)− u5(t− τ5)],

u′7 = u8,

u′8 = −ε4(u
2
7 − 1)u8 −Ω2

4u7 − p4u7(t− τ7)− q3u7(t− τ7)

+r3[u5(t− τ5)− u7(t− τ7)].

(15)

For simplify, let u5 = u7 = 0 in system (15), then we get







u′5 = u6, u′6 = ε3u6,

u′7 = u8, u′8 = ε4u8.
(16)

We see that u5 = 1
ε3
eε3t, u6 = eε3t, u7 = 1

ε4
eε4t, u8 = eε4t are solutions of system (16). Since

ε3 > 0, ε4 > 0, implying that ui(t) (i = 5, 6, 7, 8) of the trivial solution in system (16) are

unstable. Thus, the components ui(i = 5, 6, 7, 8) of the trivial solution in system (15) are also

unstable. Therefore, model (7), if the components u1, u2, u3, and u4 of the trivial solution are

globally asymptotically stable, then the system generates a partial periodic oscillation. Now we

investigate the subsystem constructed by the first four equations of system (9) (u5(t) = 0) since

u31, u
3
3 are high order infinitesimal as u1, u3 tend toward to zero respectively:



























u′1 = u2,

u′2 = −ε1u2 − Ω2
1u1 + p1[u3(t− τ3)− u1(t− τ1)]− (q1 + r1)u1(t− τ1),

u′3 = u4,

u′4 = −ε2u4 − Ω2
2u3 − (p2 + r2)u3(t− τ3) + q2[u1(t− τ1)− u3(t− τ3)]

(17)

For convenience, we make the change of variables as y1(t) = u1(t −
τ1−τ3

2 ), y2(t) = u2(t −
τ1−τ3

2 ), y3(t) = u3(t), y4(t) = u4(t) if τ1 > τ3, or y1(t) = u1(t−
τ3−τ1

2 ), y2(t) = u2(t−
τ3−τ1

2 ), y3(t) =

u3(t), y4(t) = u4(t) if τ1 < τ3 [11]. We can then rewrite system (17) as the following equivalent

system



























y′1 = y2,

y′2 = −ε1y2 − Ω2
1y1 + p1[y3(t− τ̄)− y1(t− τ̄)]− (q1 + r1)y1(t− τ̄),

y′3 = y4,

y′4 = −ε2y4 − Ω2
2y3 − (p2 + r2)y3(t− τ̄) + q2[y1(t− τ̄)− y3(t− τ̄)]

(18)

where τ̄ = τ1+τ3
2 . The matrix form of (18) is as follows:

Y ′(t) = A1Y (t) +B1Y (t− τ̄) (19)
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where Y (t) = (y1(t), · · · , y4(t))
T , Y (t− τ̄) = (y1(t− τ̄), 0, y3(t− τ̄ ), 0)T .

Theorem 1 Suppose that there exists a unique equilibrium point and all solutions of system (7)

are bounded. Let εi > 0(i = 1, 2), γ1, γ2, γ3, γ4 be the eigenvalues of matrix A1+B1, which has a

negative real part, namely, Reγi < 0(i = 1, 2, 3, 4). Setting γ = min{|Reγ1|, |Reγ2|, |Reγ3|, |Reγ4|}

. Assume that there exists a suitably small positive constant α(α < γ) such that

‖B1‖ ·
‖A1‖+ ‖B1‖e

ατ̄

α(γ − α)
(eατ̄ − 1) ≤ 1. (20)

Then system (7) has a partial periodic oscillation.

Proof Since εi > 0(i = 1, 2), and all solutions of system (7) are bounded, according to the

above analysis, the component u5, u6, u7 and u8 are unstable. Therefore, we only need to show

that the components ui or yi(i = 1, · · · , 4) are stable. Then system (7) generates a partial

periodic oscillation. Consider system (19) for t ≥ τ̄ we have

Y ′(t) = (A1 +B1)Y (t)−B1

∫ t

t−τ̄
Y ′(s)ds

= (A1 +B1)Y (t)−B1

∫ t

t−τ̄
[A1Y (s) +B1Y (s − τ̄)]ds (21)

By variation of parameter, we have

Y (t) = e(A1+B1)(t−τ̄ )Y (τ̄ ))

−

∫ t

τ̄
e(A1+B1)(t−s)ds

∫ s

s−τ̄
B1[A1Y (σ) +B1Y (σ − τ̄)]dσ (22)

and hence

‖Y (t)‖ ≤ ‖Y ‖τ̄e
−γ(t−τ̄ )

+‖B1‖

∫ t

τ̄
e−γ(t−s)ds

∫ s

s−τ̄
(‖A1‖‖Y (σ)‖+ ‖B1‖‖Y (σ − τ̄)‖)dσ (23)

where ‖Y ‖τ̄ = supt∈[−τ̄ ,τ̄ ] ‖Y (t)‖. From condition (20), we will show that

Y (t) ≤ ‖Y ‖τ̄e
−α(t−τ̄ ), t > τ̄ (24)

Indeed,

‖Y ‖τ̄ e
−γ(t−τ̄ ) + ‖B1‖

∫ t

τ̄
e−γ(t−s)ds

∫ s

s−τ̄
(‖A1‖‖Y (σ)‖+ ‖B1‖‖Y (σ − τ̄)‖)dσ

≤ ‖Y ‖τ̄ e
−γ(t−τ̄ ) + ‖Y ‖τ̄‖B1‖

∫ t

τ̄
e−γ(t−s)ds

∫ s

s−τ̄
(‖A1‖e

−α(σ−τ̄ ) + ‖B1‖e
−α(σ−2τ̄ ))dσ

= ‖Y ‖τ̄ e
−γ(t−τ̄ ) + ‖Y ‖τ̄‖B1‖ ·

‖A1‖e
ατ̄ + ‖B1‖e

2ατ̄

−α

∫ t

τ̄
e−γ(t−s)(e−αs − e−αs+ατ̄ )ds

= ‖Y ‖τ̄ e
−γ(t−τ̄ ) + ‖Y ‖τ̄‖B1‖ ·

‖A1‖e
ατ̄ + ‖B1‖e

2ατ̄

−α(γ − α)
(1− eατ̄ )e−γt(e(γ−α)t − e(γ−α)τ̄ )

= ‖Y ‖τ̄ e
−γ(t−τ̄ ) + ‖Y ‖τ̄‖B1‖ ·

‖A1‖+ ‖B1‖e
ατ̄

α(γ − α)
(eατ̄ − 1)(e−α(t−τ̄ ) − e−γ(t−τ̄ ))

(25)
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Noting that when α is suitably small we have eατ̄ ∼ 1. Thus one can select α suitably small

such that ‖B1‖ ·
‖A1‖+‖B1‖eατ̄

α(γ−α) (eατ̄ − 1) ≤ 1. Therefore, we have

‖Y (t)‖ ≤ ‖Y ‖τ̄ e
−γ(t−τ̄ ) + ‖B1‖

∫ t

τ̄
e−γ(t−s)ds

∫ s

s−τ̄
(‖A1‖‖Y (σ)‖+ ‖B1‖‖Y (σ − τ̄)‖)dσ

≤ ‖Y ‖τ̄ e
−γ(t−τ̄ ) + ‖Y ‖τ̄ (e

−α(t−τ̄ ) − e−γ(t−τ̄ ))

= ‖Y ‖τ̄ e
−α(t−τ̄ ) (26)

Since e−α(t−τ̄ ) → 0 as t → ∞. Inequality (26) implies the global asymptotic stability of the

trivial solution of system (19). This suggests that the equilibrium point of system (19) is

globally asymptotically stable. So system (7) has a partial periodic oscillation.

Theorem 2 Suppose that system (7) has a unique equilibrium point and all solutions of system

(7) are bounded. If A1 +B1 > 0, then system (7) generates a periodic oscillation.

Proof According to the Lemma 1 we only need to show that the equilibrium point of subsystem

(19) is unstable since the components u5, u6, u7, and u8 of the equilibrium point of system (9)

are unstable. The characteristic equation associated with system (19) is given by:

λ = A1 +B1e
−λτ̄ (27)

Noting that (27) is a transcendental equation and λ may be a complex number. We prove

that there exists a positive eigenvalue of (19) under the condition A1 + B1 > 0. If we set

f(λ) = λ − A1 − B1e
−λτ̄ , then f(λ) is a continuous function of λ. Since A1 + B1 > 0, then

f(0) = −A1 − B1 = −(A1 + B1) < 0. When λ is sufficiently large, say λ = λ∗ > 0, e−λ∗ τ̄ is

sufficiently small, and f(λ∗) = λ∗ − A1 − B1e
−λ∗ τ̄ > 0, thus there exists a λ = λ̃, λ̃ ∈ (0, λ∗)

such that f(λ̃) = 0 by the Intermediate Value Theorem. This means that there is a positive

eigenvalue of the characteristic equation (19) for any time delay τ̄ , implying that the equilibrium

point of system (7) is unstable for arbitrary time delays τ1 and τ3, and system (7) generates a

periodic oscillation. The proof is completed.

Theorem 3 Suppose that system (7) has a unique equilibrium point and all solutions of system

(7) are bounded. If matrix A1 has a positive eigenvalue, then system (7) generates a periodic

oscillation.

Proof We shall show that the equilibrium point of subsystem (19) is unstable since the compo-

nents u5, u6, u7, and u8 of the equilibrium point of system (9) are unstable. The same as Theorem

2, The characteristic equation associated with system (19) is given by (27). Let θ1, θ2, θ3, and

θ4 are eigenvalues of matrix A1, while ω1, ω2, ω3 and ω4 are eigenvalues of matrix B1. Then we

have immediately that

Π4
i=1[λ− θi − ωie

−λτ̄ ] = 0 (28)
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Since there is a positive eigenvalue of θi, without loss of generality, assume that θ1 > 0. Noting

that there are two row entries are zeros of matrix B1, implying that there are at least one

eigenvalue is zero of matrix B1. Suppose that ω1 = 0 and therefore we get

λ− θ1 − ω1e
−λτ̄ = λ− θ1 = 0 (29)

Thus, λ = θ1. In other words, θ1 is a positive eigenvalue of system (19). This means that the

equilibrium point of system (7) is unstable, and system (7) generates a periodic oscillation. The

proof is completed.

4 Computer simulation result

This simulation is based on system (7), we select ε1 = 0.00125, ε2 = 0.00145, ε3 = 0.00185, ε4 =

0.00165;Ω2
1 = 0.035,Ω2

2 = 0.025,Ω2
3 = 0.015,Ω2

4 = 0.024; k1 = 195, k2 = 185; p1 = 0.12, p2 =

0.18, p3 = 0.24, p4 = 0.15, q1 = 0.0042, q2 = 0.0025, q3 = 0.0032, q4 = 0.0015; r1 = 0.042, r2 =

0.038, r3 = 0.054, r4 = 0.055. Thus ‖A1‖ = 1.00145, ‖B1‖ = 0.02305. The eigenvalues of matrix

A1 + B1 are −0.0175 ± 0.4239i, −0.1250 ± 0.4630i, and γ = 0.0175. It is easy to check that

the conditions of Lemma 2 and Lemma 3 hold. When α is selected by 0.01, time delays are

selected as τ1 = 0.0125, τ2 = 0.0145, τ3 = 0.0185, τ4 = 0.0165, then τ̄ = 0.0155 and ‖B1‖ ·
‖A1‖+‖B1‖eατ̄

α(γ−α) (eατ̄−1) = 0.2305(1.00145+0.2305(exp(0.00155)))
0.01(0.0175−0.01) = 0.1218 < 1. The conditions of Theorem

1 are satisfied, system (7) has a partial oscillation (see Fig 1 and Fig 2). When we select

ε1 = 0.000135, ε2 = 0.000125, ε3 = 0.000245, ε4 = 0.000225;Ω2
1 = 0.0132,Ω2

2 = 0.0125,Ω2
3 =

0.0124,Ω2
4 = 0.0115; k1 = 100, k2 = 120; p1 = 0.078, p2 = −0.18, p3 = −0.024, p4 = −0.15, q1 =

−0.42, q2 = −0.25, q3 = −0.32, q4 = −0.15; r1 = 0.42, r2 = 0.38, r3 = −0.54, r4 = 0.55. Time

delays are selected as τ1 = 0.0065, τ2 = 0.0075, τ3 = 0.0045τ4 = 0.0025, then the eigenvalues of

matrix A1 are 0.2235, 0.8660,−0.2237,−0.8661. The conditions of Theorem 3 are satisfied. We

see that system (7) has an oscillatory solution (see Fig 3). In order to see the effects of time

delays, we increase time delays to τ1 = 0.65, τ2 = 0.75, τ3 = 0.45, τ4 = 0.25, we see that the

oscillations are maintained, but the oscillatory frequency and amplitude have been changed (see

Fig 4).

5 Conclusion

This paper discussed a system of two coupled damped Duffing oscillators driven by two van

der Pol oscillators with delays. Some sufficient conditions to ensure the periodic and partial

periodic oscillations for the system are established. Our simple restrict conditions are very easy
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to check. The computer simulation indicates that time delay affects the oscillatory frequency

and amplitude. The partial periodic oscillation is induced by unbalance damped oscillators.
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Fig 1 . Partial oscillation of the solutions, delays: 0.0125, 0.0145, 0.0185, 0.0165.

(a) Solid line: u
1
(t), dotted line: u

2
(t).

0 10 20 30 40 50 60 70 80
−10

−5

0

5

10

(b) Solid line: u
3
(t), dotted line: u

4
(t).

0 50 100 150 200
−3

−2

−1

0

1

2

3

(c) Solid line: u
5
(t), dotted line: u

6
(t).

Partial oscillation of the solutions, delays: 0.0125, 0.0145, 0.0185, 0.0165.

0 50 100 150 200
−4

−2

0

2

4

(d) Solid line:u
7
(t), dotted line: u

8
(t).

13

vts-1
Text Box
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 66 Issue 6 - June 2020

vts-1
Text Box
ISSN: 2231-5373                                   http://www.ijmttjournal.org                                Page 180



0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

(b) Solid line: u
3
(t), dotted line: u

4
(t).

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

(a) Solid line: u
1
(t), dotted line: u

2
(t).

Fig 2. Partial oscillation of the solutions, delays: 0.25, 0.35, 0.45, 0.42.
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Fig 3. Oscillation of the solutions, delays: 0.0065, 0.0075, 0.0045, 0.0025.
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