On Companion BN₁-algebra

Annisa Mursalima^{#1}, Sri Gemawati^{*2,} Syamsudhuha^{#3}

#Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau Bina Widya Campus, Pekanbaru, 28293, Indonesia

Abstract. BN-algebra is a non-empty set (X,*,0) satisfies the axioms (B1) x * x = 0, (B2) x * 0 = x and (BN) (x * y) * z = (0 * z) * (y * x) for all $x, y, z \in X$. BN₁-algebra is a BN-algebra that satisfies axiom (BN1) (x * y) * z = (0 * z) * (y * x). The operation \mathcal{O} is called a subcompanion when satisfies $((x \mathcal{O} y) * x) * y = 0$ in BN₁-algebra. The subcompanion operation \mathcal{O} is said to be a companion if (z * x) * y = 0, then $z * (x \mathcal{O} y) = 0$. In this paper, we develop the formula definition of companion BN₁-algebra. We also investigate the properties of of companion BN₁-algebra, such as being unique or singular and commutative with certain conditions.

Keywords— *B*-algebra, *BN*-algebra, *BN*₁-Algebra, Companion.

I. INTRODUCTION

In 1966 Y. Imai and K. Iseki introduced a new a subclass of Q-Algebra: BCK-algebra. Iseki also [15] constructed a general class of BCK-algebra which is called BCI-algebra. In 1985, the wide class of BCI-algebra, BCH-algebra, was introduced by Ping Hu and Xin Li [20]. Then in 2002, based on the properties of BCI, BCK and BCH-algebra, J. Neggers and H. S. Kim [13] found a new structure algebra: B-algebra. B-algebra is a set of non-empty (*X*, *0*) of type (2.0) which the binary operations * that satisfies the axioms (B1) x * x = 0, (B2) x * 0 = x and (B) (x * y) * z = x * (z * (0 * y)) [13].

Four years later, in 2006, C.B. Kim and H. S. Kim [2] introduced a new algebra, BG-algebra, which is a generalization of B-algebra. In 2008, they also introduced BM-algebra [3]. In 2013, they introduced a new algebra which is called BN-algebra by taking some properties of B-algebra [4]. BN-algebra is a non-empty set (X, 0) that satisfies the axioms (B1) and (B2) and (BN) (x * y) * z = (0 * z) * (y * x) for all $x, y, z \in X$.

Recently, L. D. Naingue and J. P. Vilela [16] developed the companion concept in B-algebra which called companion B-algebra. Based on companion B-algebra, we applies the companion concept in BN_1 -algebra and develop the formula definition of companion BN_1 -algebra. Furthermore, we also investigate its properties.

II. B-ALGEBRA, BN-ALGEBRA AND BN1-ALGEBRA

In this section, the definition and some properties of B-Algebra, BN-algebra and BN_1 -algebra are given. **Definition 1.1 (B-algebra)** A non-empty set (X, *, 0) is called B-algebra when it satisfies the following axioms

[13]:

```
(B1) x * x = 0,

(B2) x * 0 = x,

(B) (x * y) * z = x * (z * (0 * y)).

for all x, y, z \in X.
```

On B-algebra, the companion concept is given by [13]:

Definition 1.2 (Companion B-algebra) Let (X, *, 0) be a B-algebra and binary operation Θ . Define the binary operation Θ is called a subcompanion of X when satisfies axiom $((x \Theta y) * x) * y = 0$. A subcompanion operation Θ is said to be a companion of X if (z * x) * y = 0, then $z * (x \Theta y) = 0$ for any $x, y, z \in X$.

C.B Kim and H.S Kim [4] introduced a new structure algebra, BN-algebra, by using some properties of B-algebra in 2013.

Definition 1.3 (BN-algebra) A non-empty set (X, *, 0) with binary operation * is called BN-algebra when it satisfies the following axioms [13]:

(B1) x * x = 0, (B2) x * 0 = x, (BN) (x * y) * z = (0 * z) * (y * x), . for any $x, y, z \in X$.

TABLE 1 TA <u>BEL CAYLEY OF A BN-ALGEB</u> RA					
	*	0	1	2	
	0	0	1	2	
	1	1	0	1	
	2	2	1	0	

Example 1.1 Let X := 0, 1, 2 be a set with Cayley table as follows:

then is *X* a BN-algebra based on axioms on Definition 1.3 and Table 1.

Theorem 1.1 For any non-empty set (X, *, 0) BN-algebra with a binary operation * satisfying the following additional axioms:

```
(i) 0 * (0 * x) = 0,

(ii) y * x = (0 * x) * (0 * y),

(iii) (0 * x) * y = (0 * y) * x,

(iv) x * y = 0 \Rightarrow y * x = 0,

(v) 0 * x = 0 * y \Rightarrow x = y,

(vi) (x * z) * (y * z) = (z * y) * (z * x).
```

Proof. we can see in [4].

Sub-algebra of BN-algebra is defined as follows [4]:

Definition 1.4 Let (X, *, 0) be a BN-algebra and $\emptyset \neq S \subseteq X$. S is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$.

One of the subalgera of BN-algebra is BN_1 -algebra. It was introduced by C. B. Kim and H. S. Kim [4] and define by:

Definition 1.5 (BN₁-Algebra) A non-empty set (x, *, 0) of BN- algebra is said to be BN₁-algebra if satisfies (BN1) x = (x * y) * y for any $x, y \in X$.

Example 1.2 Let X := 0, 1, 2, 3 be a set with Cayley table as follows:

TABLE 2 TABEL CAYLEY OF A BN1-ALGEBRA						
	*	0	1	2	3	
	0	0	1	2	3	
	1	1	0	3	2	
	2	2	3	0	1	
	3	3	2	1	0	

Then X is a BN₁-algebra based on axioms on definition 1.3, definition 1.5 and and table 2.

Theorem 1.2 If (X, *, 0) be a BN₁-algebra with a binary operation *, then for any $x, y, z \in X$, we have

- (i) 0 * x = x,
- (ii) x * y = y * x.

Proof.

- (i) Let $x, y, z \in X$. By using (BN1) x = (x * y) * y and (B1) x * x = 0, for x = y, we have (x * y) * y = (x * x) * x = 0 * x = x.
- (ii) By theorem 1.1 (ii) and theorem, 1.2 (i), we have y * x = (0 * x) * (0 * y) = x * y.

Theorem 1.3 Let (X, *, 0) be a BN₁-algebra with a binary operation *. If x * y = 0, then x = y for any $x, y \in X$.

Proof. we can see in [4]

III. COMPANION BN1-ALGEBRA

In this section, we develop the formula definition of Companion BN_1 -algebra. We also investigate its properties such as unique and commutative with certain conditions.

Definition 1.6 (Companion BN₁-algebra) Let (X, *, 0) be a BN₁-algebra with binary operation \odot . Define the binary operation \odot is called a subcompanion of X when satisfies axiom (SC) $((x \odot y) * x) * y = 0$. A subcompanion operation \odot is said to be a companion of X if (C) (z * x) * y = 0, then $z * (x \odot y) = 0$ for any $x, y, z \in X$.

Companion BN₁-algebra ia unique or singular and can be stated as the following theorem:

Theorem 1.4 Let (X, *, 0) be a BN₁-algebra. If \odot is a companion operation in X, then it is unique.

Proof. Assume the binary operations \bigcirc_1 and \bigcirc_2 are companion operations in X. By using (SC) in \bigcirc_1 , we have $((x \bigcirc_1 y) * x) * y = 0$

and $z = x \odot_1 y$. By applying (C) in \odot_2 for (z * x) * y = 0, we have $z * (x \odot_2 y) = 0$.

Since $z = x \Theta_1 y$, so we have

$$(x \Theta_1 y) * (x \Theta_2 y) = 0.$$

By using theorem 1.3 (ii), we obtain

$$(x \bigcirc_1 y) = (x \oslash_2 y)$$
$$\bigcirc_1 = \bigcirc_2.$$

Hence the operation \odot is unique.

Example 1.2 Let X := 0, 1, 2, 3 be a BN₁.algebra with Cayley table as follows

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

\odot	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

By using definition 1.8, then $(X, *, \Theta, 0)$ is a companion BN₁-algebra.

Theorem 1.5 Let $(X, *, \Theta, 0)$ be a companion BN₁.algebra and \bullet is a binary operation on X such that satisfies, $(x * y) * z = x * (y \bullet z)$

for any $x, y, z \in X$. Then $(X, *, \bullet, 0)$ is a companion BN₁-algebra and \bullet is a exactly the operation Θ .

Proof. Assume $x, y, z \in X$ and $(x * y) * z = x * (y \bullet z)$. We can prove that \bullet is subcompanion by $((x \bullet y) * x) * y = 0$. From $(x * y) * z = x * (y \bullet z)$, we have

 $((x \bullet y) * x) * y = (x \bullet y) * (x \bullet y).$

By using (B1), we obtain

$$((x \bullet y) * x) * y = 0$$

statisfying (SC) which profing that • is subcompanion. Then we must to prove that • is a companion. Interchange x = z, y = x and z = y in (x * y) * z = x * (y • z), so we get

 $z \ast (x \bullet y) = (z \ast x) \ast y.$

If (z * x) * y = 0, then

 $z \ast (x \bullet y) = 0$

satisfying (C) which implies that • is a companion operation. Hence $(X, *, \bullet, 0)$ is a companion BN₁-algebra and • is a exactly the operation Θ

Theorem 1.6 If $(X, *, \bigcirc, 0)$ be a companion BN₁.algebra, then

(i) $x \odot 0 = x$, (ii) $0 \odot x = x$,

for any $x, y \in X$.

Proof.

(i) Let $x, y \in X$ and y = 0. By using (SC), (B1) and theorem 1.3, we have

$$((x \odot y) * x) * y = 0$$
$$((x \odot 0) * x) * 0 = 0$$
$$(x \odot 0) * x = 0$$
$$x \odot 0 = x$$

(ii) By applying theorem 1.3 (ii) in theorem 1.6 i), we get

$$\begin{array}{ccc} x & \bigodot & 0 = x \\ 0 & \bigodot & 0 = x. \end{array}$$

Theorem 1.7 Let $(x, *, \bigcirc, 0)$ be a companion BN₁-algebra. If (x * y) * z = (x * y) * z, then

- (i) $x \odot y = x * y$,
- (ii) $x = (x \odot y) * y$,
- (iii) Ois comutative,

for any $x, y, z \in X$. **Proof.**

(i) Let $x, y, z \in X$ and (x * y) * z = (x * y) * z. By using (SC) and theorem 1.3, we have

$$((x \bigcirc y) * x) * y = 0$$
$$((x \odot 0) * (x * y) = 0$$
$$(x \odot 0) * x = 0$$
$$x \odot y = x * y$$

(iv) From (BN1) and (i), we get

```
x = (x * y) * yx = (x • y) * y.
```

(ii) By applying (i) and theorem 1.2 (ii), we obtain $x \odot y = x * y = y * x = y \odot x$.

IV.CONCLUSIONS

The companion concept can be applied to BN-algebra and it is called Companion BN₁-algebra. Let (x, *, 0) be a BN₁-algebra and the binary operation \odot is called a subcompanion when satisfies $((x \odot y) * x) * y = 0$. A subcompanion operation \odot is said to be a companion if (z * x) * y = 0, then $z * (x \odot y) = 0$ for any $x, y, z \in X$. Companion BN₁-algebra has several properties. First, it is single or unique. If there is another binary operation, \bullet , on Companion BN₁-algebra that fulfils $(x * y) * z = x * (y \bullet z)$, then the operation is a companion. Companion BN₁-algebra is also commutative if (x * y) * z = (x * y) * z for any $x, y, z \in X$.

REFERENCES

- H. A. S. Abujabal dan N. O. Al-Shehri , On Left Derivations Of BCIalgebras, Soochow Journal Of Mathematics, 33(2007), 435–444.
- [2] H. A. S. Abujabal dan N. O. Al-Shehri, Some Results On Derivations Of BCI-algebras, PK ISSN 0022-2941 CODEN JNSMAC, 46 (2006), 13–19.
- [3] [N. O. Al-shehrie, Derivation of B-algebras, JKAU: Sci, 22 (2010), 71-82.
- [4] N. O. Al-shehrie, Derivations of MV-algebras, International Journal of Mathematics and Mathematical Sciences, (2010), 1–7.
- [5] D. S. Dummit dan R. M. Foote, Abstract Algebra, 3rd Edition, New Jersey: Prentice Hall, Inc, 2003.
- [6] J. S. Durbin, Modern Algebra: An Introduction, 3rd Edition, New Jersey: John Wiley & Sons, 1992.
- [7] G. Dymek dan A. Walendziak, (Fuzzy) Ideals of BN-Algebras, Scientific World Journal, (2015), 1–9.
- [8] J. C. Endam dan J. P. VilelaThe, Second Isomorphism Theorem for Balgebras, Applied Mathematical Sciences, 8(2014), 1865–1872.
- [9] E. Fitria, S. Gemawati dan A. Hadi, On Derivasi BN-Algebra, preprint, 2019.
- [10] E. Fitria, S. Gemawati dan Kartini, Prime Ideals in B-Algebras, International Journal of Algebra, 11(2017), 30–309.
- [11] S. Ilbira, A. Firat, dan Y. B. Jun, On symmetric bi-derivations of BCI- algebras, Applied Mathematical Sciences, 5 (2011), 2957-2966.
- [12] K. Iseki, On BCI-algebras, Math. Seminar Notes, 8(1980), 125–130.
- [13] Y. B. Jun dan X. L. Xin, On derivations of BCI-algebras, Inform. Sci., 159(2004), 167–176.
- [14] C. B. Kim and H. S. Kim, On BG-algebras, Demo. Math., 41(2008), 497–505.
- [15] C. B. Kim and H. S. Kim, On BM-algebras, Sci.Math. Japonicae 63(2006), 421-427.
- [16] C. B. Kim dan H. S. Kim, On BN-algebras, Kyungpook Math, 53 (2013),175–184.
- [17] L. D. Naingue dan J. P. Vilela, On Companion B-algebra, EJPAM, 12(2019), 1248-1259.
- [18] J. Neggers dan H. S. Kim, On B-algebras, Mate. Vesnik, 54(2002), 21-29.
- [19] M. A. Ozturk, Y. Ceven, dan Y. B. Jun, Generalized derivations of BCI- algebras, Honam Mathematical Journal, 31 (2009), 601-609.
- [20] Qing Ping Hu and Xin Li, On proper BCH-algebras, Math. Japonica, 30 (1985), 659-661.
- [21] C. Prabpayak dan U. Leerawat, On Derivations of BCC-algebras, Kasetsart J. (Nat. Sci.), 43(2009), 398– 401.
- [22] A. Walendziak, Some Results On BN1-algebras, Scientiae Mathematicae Japonicae 78, 3 (2015), 335– 342.