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ABSTRACT 

There is currently no approved, recognized and acceptable vaccine or medicine for the treatment of the novel 

corona virus disease, COVID-19. Thus, non-pharmaceutical interventions such as contact tracing and quarantine 

are used to control the spread of the infectious disease. Contact tracing and quarantine promptly help to detect new 

COVID-19 infected persons early before they develop the symptoms and these also help to prevent secondary 

transmission of the virus in the community. This research study considered a deterministic model for COVI-19 with 

contact tracing and quarantine as control measure in the dynamics of the COVID-19. The model is developed for 

the existence of the disease-free equilibrium state. The model shows to be asymptotically stable is less than one and 

unstable when greater than one. It is then concluded that COVID-19 can be eradicated when contact tracing and 

quarantine are implemented together. 
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I. INTRODUCTION 

Mathematical and Statistical techniques have been used to understand, forecast, and control the spread of infectious 

diseases like influenza and viral diseases. Some of the techniques have been newly developed, whereas others build 

upon existing methods from diverse fields which include dynamical systems, stochastic processes, statistical 

physics, graph theory, statistical inference, probability theory, experimental design methods, operations research, 

and high performance computing. Mathematically inclined models can be useful in the area of infectious control for 

two reasons. Firstly, they can be used to predict quantitatively the course of an epidemic, predicting its total size, 

peak; and time to peak and the impact of infection control interventions including nonlinear interactions that occur 

when multiple interventions are undertaken. Secondly, they can inform the design of trials and structure statistical 

analyses to avoid assumptions of serial independence and difficulties with interval censoring and unknown numbers 

of infectious cases. 

 

It is known very well that mathematical and statistical modeling offers a valuable tool to comprehensively analyze 

the dynamics of infectious diseases, which reflect population behavior, the availability of public healthcare 

resources and effectiveness of public health interventions (such as social distancing) [Kiskowski M, Chowell, 

(2016)]. In the early stages of a new infectious disease outbreak, the transmission dynamics of the infection should 

be fundamentally understood. The transmission dynamics could offer an insight into the developments in various 

countries and could determine whether or not the outbreak control measures are exerting a significant effect. 

However, there are several challenges to such analyses: a delay in symptomatic presentation resulting from the 

incubation period, the high proportion of unreported cases resulting from limited detection and testing capacity. 

Furthermore, according to Kucharski et al (2020), data sources might be biased, incomplete or only capture certain 

aspects of the outbreak dynamics. 

 

Epidemic curves are time series data of the number of infected patients per unit time. They are an essential 

indication for the seriousness of an epidemic as a function of time. During the preliminary growth phase, the 

cumulative cases follow on a logarithmic-linear scale an approximately linear relationship with time. Consequently, 

in the linear range, the number of deaths grows exponentially with time. The number of deaths per unit time is 

described in the mortality curve and reveals a similar pattern with an approximately exponential growth during the 
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initial phase of the outbreak, as defined by Ma J (2020). The meaning, on the other hand, is different from the 

logistic function parameters. The logistical model has been widely used to describe the growth of a population. 

Similarly, an infectious outbreak can be seen as the growth of a pathogenic agent. Thus, a logistic model seems 

reasonable since the spread of an infection will stop in the near future [Malato (2020)]. 

 

However, several days after the beginning of the disease outbreak, the logistic curve better fitted the description of 

an infection. The number of persons infected before the end increases, the maximum numbers of new infections 

often occur on the current or the next day. Although the logistic model appears to be the most sensible one, the 

shape of the curve would probably shift due to external influences, such as government lockdown actions. 

Therefore, the prediction models will start to become useful only within a few weeks, presumably after the infection 

peak as observed by Malato (2020). The ability to understand the effectiveness of lockdown measures in different 

settings will be crucial in comprehending the dynamics of the epidemic, and increase the likelihood of containing or 

effectively mitigating the transmission of infectious diseases like SARS-Cov-2. 

 

In December 2019, news emerged about a new flu-like virus affecting people in the city of Wuhan (China). 

Unfortunately, the virus quickly spread with an exponential increase in the number of confirmed cases in just a few 

weeks. Despite the strong efforts to contain the virus in Wuhan, it quickly spread to other regions of China, and 

soon, to other countries in Asia. In January 2020, the World Health Organization (WHO) officially renamed the 

virus as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease as Coronavirus disease 

2019 (COVID-19).  

 

Although many mathematical models have been developed and used in investigating the impact and control of the 

dynamics of COVID-19, none have considered the combined effects of quarantine and contact tracing. These 

models have been proved to be helpful in controlling some diseases, specifically Tuberculosis, Severe Acute 

Respiratory Syndrome (SARS), and Human Immunodeficiency Virus (HIV) [Mubayi et al (2010), Hsieh et al (2010) 

and Begun et al (2013)]. Hence, this research study considers a mathematical model with contact tracing and 

quarantine as control measures in the dynamics of COVID-19. 

 

II. MODEL FORMULATION 

The deterministic model of corona virus disease (COVID-19) with contact tracing and quarantine  is considered. The 

model is based on the following assumptions: 

i. The population is homogeneous 

ii. Immigrants from COVID-19 affected population are quarantined for a period of time equivalent to the 

incubation period of the virus 

iii. Treated individuals may become susceptible again when they recover since COVID-19 is not known to confer 

permanent immunity 

iv. Individuals who died of the disease are immediately cremated/buried, thus preventing transmission after death 

v. Exposed class of individuals is ignored since incubation period of the disease is short 

vi. A natural death rate is assumed in all classes of the model except the quarantined class in which the death rate is 

assumed a smaller value since quarantined individuals have short stay in the quarantine, that is fourteen days 

 

Table 1: Model variables and parameters 

Variable/Parameter Variable/Parameter Description 

𝑆(𝑡) Total number of susceptible individuals at t 

𝑄(𝑡) Total number of quarantined individuals at t 

𝐼(𝑡) Total number of infected individuals at t 

𝑇(𝑡) Total number of treated individuals at t 

𝛽 Disease transmission rate 

𝑐1 Contact tracing rate for susceptible that are exposed individuals 

𝑐2 Contact tracing rate for infected individuals 

𝑑1 Corona Virus Disease induced death rate for infected class 

𝛾 Human recruitment rate 
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𝜎 

Transfer rate from quarantined class to susceptible class after incubation period without 

developing symptoms 

∅ Rate at which treated individuals recover and become susceptible again 

𝜖 Immigration rate from Corona Virus Disease affected area 

𝜇 Natural death rate for susceptible, infected and treated classes 

𝜇1 Death rate for quarantined class 

𝜑 Treatment rate of quarantined persons 

𝛼 Treatment rate of individuals other than the quarantined persons 

 

In view of the assumptions of the models stated above, the model equations are derived as follows: 
𝑑𝑆

𝑑𝑡
=  𝛾 − 

𝛽𝑆𝐼

𝑁
+  𝜎𝑄 +  ∅𝑇 −  𝜇𝑆 − 𝑐1𝑆 , 𝑆(0) = 𝑆0      (1) 

𝑑𝑄

𝑑𝑡
=  𝜖 + 𝑐1𝑆 −  𝜎𝑄 −  𝜑𝑄 − 𝜇1𝑄  , 𝑄(0) = 𝑄0      (2) 

𝑑𝐼

𝑑𝑡
= 

𝛽𝑆𝐼

𝑁
− (𝜇 +  𝛼 + 𝑑1)𝐼 − 𝑐2𝐼 , 𝐼(0) = 𝐼0       (3) 

𝑑𝑇

𝑑𝑡
=  𝛼𝐼 −  𝜑𝑄 +  𝑐2𝐼 −  𝜇𝑇 −  ∅𝑇, 𝑇(0) = 𝑇       (4) 

where 𝑆0, 𝑄0, 𝐼0 𝑎𝑛𝑑 𝑇0 are assumed to be non-negative 

 

III. MODEL ANALYSIS 

A. Invariant Rgion 

Every solution of the models (1, 2, 3 and 4) with initial conditions in ℝ+
4  remain or enter the region Ω at all time t. 

This is essential in the proof of stability analysis of the model. The following lemma is hereby stated. 

 

Lemma:  The models (1, 2, 3 and 4) have solutions which are contained in the feasible region 

Ω =  {(𝑆, 𝑄, 𝐼, 𝑇)𝜖ℝ+
4 : 𝑁 ≤ 𝜖+𝛾

𝜇
} 

 

Proof: The proof is done that the population of humans at time 𝑡, 𝑁(𝑡) satisfies the inequality 𝑁(𝑡) ≤ 𝜖+𝛾

𝜇
. Adding 

the right sides of the models (1, 2, 3 and 4), 
𝑑𝑁

𝑑𝑡
=  𝜀 +  𝛾 −  𝜇(𝑆 + 𝐼 + 𝑇) − 𝜇1𝑄 − 𝑑1𝐼       (5) 

and this gives 
𝑑𝑁

𝑑𝑡
≤  𝜀 +  𝛾 −  𝜇(𝑆 + 𝐼 + 𝑇) − 𝜇1𝑄        (6) 

Since  𝜇1 ≥ 𝜇, equation (6) can be rewritten as: 
𝑑𝑁

𝑑𝑡
+  𝜇𝑁 ≤  𝜀 +  𝛾          (7) 

Using the method of integrating factor to solve equation (7) and applying the initial condition 𝑁(0) = 𝑁0, this 

results in: 

𝑁(𝑡) =  𝜖+𝛾

𝜇
+ [𝑁0 − 𝜖+𝛾

𝜇
] 𝑒−𝜇𝑡         (8) 

 

The population size, 𝑁(𝑡) →  𝜖+𝛾

𝜇
, as 𝑡 → ∞ in equation (8), which implies that 0 ≤  𝑁(𝑡) ≤ 𝜖+𝛾

𝜇
.  If  𝑁0 < 𝜖+𝛾

𝜇
 then 

as 𝑡 → ∞, the trajectories approach  𝜖+𝛾

𝜇
. If 𝑁0 > 𝜖+𝛾

𝜇
,  the solution N(t) decreases to 𝜖+𝛾

𝜇
 as 𝑡 → ∞. In either case, the 

solution approaches 𝑁(𝑡) =  𝜖+𝛾

𝜇
 as 𝑡 → ∞. Hence, the feasible solution set of the models (1, 2, 3 and 4) enter the 

region Ω =  {(𝑆, 𝑄, 𝐼, 𝑇)𝜖ℝ+
4 : 𝑁 ≤ 𝜖+𝛾

𝜇
}, which is a positive invariant set. According to Hethcote (2000), the models 

(1, 2, 3 and 4) are biologically meaningful and epidemiologically well posed in the region Ω. Therefore, it is 

sufficient to consider the stability analysis of the models (1, 2, 3 and 4). 

 

B. The Disease Free Equilibrium State And Its Stability 

The disease-free equilibrium (DFE), 𝐸0, is a steady state solution where there is no corona virus disease in the 

population. This is calculated by setting the right hand side of the models (1, 2, 3 and 4) to zero. This gives the 

following: 

𝛾 − 
𝛽𝑆𝐼

𝑁
+  𝜎𝑄 +  ∅𝑇 −  𝜇𝑆 − 𝑐1𝑆 = 0        (9) 
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𝜖 + 𝑐1𝑆 −  𝜎𝑄 −  𝜑𝑄 − 𝜇1𝑄 = 0        (10) 
𝛽𝑆𝐼

𝑁
− (𝜇 +  𝛼 + 𝑑1)𝐼 −  𝑐2𝐼 = 0        (11) 

𝛼𝐼 −  𝜑𝑄 +  𝑐2𝐼 −  𝜇𝑇 −  ∅𝑇 = 0        (12) 

Solving models (9, 10, 11 and 12) simultaneously and simplifying, we have: 

𝐸0 = [
𝛾𝑓𝑔+𝑔𝜎𝜖+ ∅𝜑𝜖

𝜇𝑔𝑓+ 𝑐1𝜑𝜇+𝑔𝑐1𝜇1
,

𝛾𝑔𝑐1+𝑔𝑐1𝜖+ 𝑔𝜇𝜖

𝜇𝑔𝑓+ 𝑐1𝜑𝜇+𝑔𝑐1𝜇1
, 0,

𝛾𝜑𝑐1+𝜑𝑐1𝜖+ 𝜇𝜑𝜖

𝜇𝑔𝑓+ 𝑐1𝜑𝜇+𝑔𝑐1𝜇1
] `   (13) 

where 𝑓 =  𝜎 + 𝜑 + 𝜇1, 𝑔 = ∅ + 𝜇, ℎ = 𝜇 + 𝛼 + 𝑑1 + 𝑐2 

 

In order to examine the stability of the DFE, the effective reproduction number 𝑅𝑒 is first computed. The effective 

number is defined in the presence of a control measure whereas the basic reproduction number denoted by 𝑅0 is 

defined as the absence of controls. The basic reproduction number is the average number of secondary infections 

produced when one infected person is introduced into a host population where everyone is susceptible; this is as 

stated by Benyah (2007). 𝑅0 determines whether or not an infectious disease will spread in a given population. If 

𝑅0 < 1, the disease will die out and when 𝑅0 > 1, the disease will become endemic in the population. In the same 

vein, the effective reproduction number, 𝑅𝑒 as defined by Shaban and Mofi (2014) is the average number of new 

infections generated by a typical infectious individual introduced in a population where contact tracing and 

quarantine are introduced as measure controls. It is a threshold parameter that governs the spread of disease in a 

population where control measures are in place. When 𝑅𝑒 < 1, it means COVID-19 can be eliminated from the 

population in the presence of contact tracing and quarantine. However, when 𝑅𝑒 > 1, it implies that COVID-19 will 

persist in the population where contact tracing and quarantine are implemented. 𝑅𝑒 is computed using next 

generation method described by Driessche and Watmough (2002). Based on the notations in Driessche and 

Watmough (2002), the effective reproduction number is given by 𝑅𝑒 =  𝜌(𝐶𝑈−1), where 𝜌 is the spectral radius of 

the matrix 𝐶𝑈−1. 

 

From the model equations (1 to 4), 𝐹 =  
𝛽𝑆𝐼

𝑁
 is the rate of new COVID-19 in 𝐼  while 𝑉 = ℎ𝐼 is the transfer of 

individuals in and out of the compartment 𝐼 by all other means except new infection since we have one infected 

compartment 𝐼. 

 

The associated generation matrices 𝐶 and 𝑈 can be found by taking the partial derivatives of 𝐹 and 𝑉 with respect to 

infected compartment 𝐼 at 𝐷𝐹𝐸 𝐸0. That is 𝐺 = 
𝛽𝑆0

𝑁0
 is the rate of new infection at 𝐷𝐹𝐸 𝐸0. 𝑈 = ℎ is the remaining 

transition terms at 𝐷𝐹𝐸 𝐸0 and 𝑁0 = 𝑆0 + 𝑄0 + 𝑇0. It follows that the effective reproduction number with contact 

tracing and quarantine measures is given by: 

𝑅𝑒 = 𝜌(𝐶𝑈−1) =
𝛽𝑆0

ℎ𝑁0
=

𝛽

ℎ
[

𝛾𝑓𝑔+𝑔𝜎𝜖+ ∅𝜑𝜖

𝛾𝑓𝑔+𝑔𝜎𝜖+ ∅𝜑𝜖+𝜇𝑔𝑓+ 𝑐1𝜑𝜇+𝑔𝑐1𝜇1+𝜇𝑔𝑓+ 𝑐1𝜑𝜇+𝑔𝑐1𝜇1
]   (14) 

The effective reproduction number with quarantine only (𝑐1 = 0, 𝑐2 = 0), 𝑅𝑒𝑞 is given by 

𝑅𝑒𝑞 =
𝛽

ℎ∗ [
𝛾𝑓𝑔+𝑔𝜎𝜖+ ∅𝜑𝜖

𝛾𝑓𝑔+𝑔𝜎𝜖+ ∅𝜑𝜖+𝜇𝑔𝑓+𝜇𝑔𝑓
]        (15) 

where ℎ∗ = 𝜇 + 𝜎 + 𝑑1. 

While the basic reproduction number 𝑅0 is computed when there is no control measure in the population. That is 

when 𝑄 = 0, 𝑐1 = 0, 𝑐2 = 0, 𝜎 = 0, 𝜇1 = 0 and 𝜑 = 0. 

Therefore, 𝑅0 =
𝛽

ℎ∗          (16) 

 

From equations (14), (15) and (16), this inequality 𝑅𝑒 < 𝑅𝑒𝑞 < 𝑅0 may hold. This means that quarantine as a control 

measure may reduce the spread of COVID-19 in the population, but not as much as when it is combined with 

contact tracing measure. 

 

We will examine the local stability of 𝐷𝐹𝐸 𝐸0 using linearization method at 𝐸0 with the following theorem. 

 

Theorem: The disease-free equilibrium state 𝐸0 of the model is locally asymptotically stable if 𝑅𝑒 < 1 and unstable 

if 𝑅𝑒 > 1. 

 

Proof: By linearization method, the Jacobian matrix 𝐼𝐸0 of the models (1, 2, 3 and 4) evaluated at 𝐸0 is given as: 
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𝐼𝐸0 =  

[
 
 
 
 −𝜇 − 𝑐1

𝑐1

0
0

   

𝛼
−𝑓
0
𝜑

  

−
𝛽𝑆0

𝑁0

0
𝛽𝑆0

𝑁0
− ℎ

𝛼 + 𝑐2

   

∅
0
0

−𝑔
]
 
 
 
 

         (17) 

The characteristics equation of the Jacobian matrix 𝐼𝐸0 is given as 

(𝜆 −
𝛽𝑆0

𝑁0
+ ℎ) (𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶) = 0       (18) 

where 𝑁0 = 𝑆0 + 𝑄0 + 𝑇0. 𝜆 is an eigenvalue of the Jacobian matrix 𝐼𝐸0. 

𝐴 = 𝑔 + 𝑓 + 𝜇 + 𝑐1, 𝐵 = 𝑓𝑔 + 𝑐1𝑔 + 𝜇𝑔 + 𝜇𝑓 + 𝑐1(𝜑 + 𝜇1), 𝐶 = 𝜇𝑓𝑔 + 𝑐1𝜇1𝑔 + 𝑐1𝜑𝜇 

 

For the 𝐷𝐹𝐸 𝐸0 to be locally asymptotically stable, it means that all the eigenvalues of Jacobian matrix 𝐼𝐸0 (17) will 

be negative. One of the eigenvalues of the characteristic equation (18), 𝜆 =
𝛽𝑆0

𝑁0
− ℎ is negative if 

𝛽𝑆0

ℎ𝑁0
< 1 where 

𝑅𝑒 =
𝛽𝑆0

ℎ𝑁0
 from the definition of 𝑅𝑒 in equation (14). The other three eigenvalues are found by solving the equation 

𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0          (19) 

 

Using the Routh-Hurwitz criteria, all roots of the polynomial equation (19) have negative real part, if 

i. 𝐴 > 0, 𝐵 > 0, 𝐶 > 0 

ii. 𝐴𝐵 − 𝐶 > 0 

Condition (i) is satisfied. For (ii), we have 𝐴𝐵 − 𝐶 = 𝑐1𝜇(𝜑 + 2𝜇1) + 𝑐1
2(𝑔 + 𝜇1 + 𝜑) + 𝑔𝜇(𝑔 + 𝜇) +

𝑓𝑔(2𝜇 + 𝑔 + 2𝑐1 + 𝑓) + 𝑐1𝑓(𝜑 + 𝜇 + 𝜇1) + 𝑐1𝑔(𝑔 + 𝜇 + 𝜑) + 𝑓𝜇(𝜇 + 𝑓). Therefore, all the eigenvalues of 

Jacobian matrix 𝐼𝐸0 (17) are negative when 𝑅𝑒 < 1. Thus, the disease-free equilibrium 𝐸0 is locally asymptotically 

stable if 𝑅𝑒 < 1. 

 

IV. CONCLUSION 

A deterministic model for the dynamics of COVID-19 is presented as developed and analyzed in this research paper. 

The mathematical model incorporates quarantine and contact tracing of the infected persons as control measures to 

evaluate their impact on the COVID-19 dynamics. The existence and stability of the disease-free state is established 

when the effective reproduction number is less than unity. Therefore, the combined implementation of quarantine 

and contact tracing measures are seen to have most significant impact in eradicating the COVID-19 in the human 

population. 
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