Some Results On k-Relaxed Mean Graphs

R. Thayalarajan
Assistant Professor, Department of Mathematics, Manonmaniam Sundaranar University College, Govindaperi-627414, Tamilnadu, India

Abstract

A graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with \boldsymbol{p} vertices and \boldsymbol{q} edges is said to be a \boldsymbol{k}-relaxed mean graph if there exists a function \boldsymbol{f} from the vertex set of \boldsymbol{G} to $\{\boldsymbol{k}-\mathbf{1}, \boldsymbol{k}, \boldsymbol{k}+\mathbf{1}, \boldsymbol{k}+\mathbf{2}, \ldots, \boldsymbol{k}+\boldsymbol{q}\}$ such that in the induced map \boldsymbol{f}^{*} from the edge set of \boldsymbol{G} to $\{\boldsymbol{k}, \boldsymbol{k}+\mathbf{1}, \boldsymbol{k}+\mathbf{2}, \ldots, \boldsymbol{k}+\boldsymbol{q}-\mathbf{1}\}$ defined by $\boldsymbol{f}^{*}(\boldsymbol{e}=\boldsymbol{u} \boldsymbol{v})=\left\{\begin{array}{ll}\frac{f(u)+\boldsymbol{f}(\boldsymbol{v})}{2} & \text { if } \boldsymbol{f}(\boldsymbol{u})+\boldsymbol{f}(\boldsymbol{v}) \text { is even } \\ \frac{f(u)+f(v)+\mathbf{1}}{2} & \text { if } \boldsymbol{f}(\boldsymbol{u})+\boldsymbol{f}(\boldsymbol{v}) \text { is odd }\end{array}\right.$ the resulting edge labels are distinct. In this paper, we prove some results on \boldsymbol{k}-relaxed mean labelling of some graphs.

Keywords - \boldsymbol{k}-relaxed mean labeling $(\boldsymbol{k}$ - $R M L$), \boldsymbol{k}-relaxed mean graph ($\boldsymbol{k}-R M G)$

AMS Subject Classification: 05C78

I. INTRODUCTION

In this paper, we consider all graphs are finite, simple and undirected. Terms not defined here are used in the sence of Frank Harary [1]. The symbols $V(G)$ and $E(G)$ will denote the vertex set and the edge set of a graph G.

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. If the domain of the mapping is the set of vertices (or edges) then the labeling is called a vertex labeling (or an edge labeling). For an excellent survey on graph labeling, we refer to Gallian [3].

Mean labeling was introduced by S. Somasundaram and R. Ponraj [6-7]. Relaxed mean labeling was introduced by V. Maheswari, D.S.T. Ramesh and V. Balaji [4-5]. Further, it was studied by R. Thayalarajan and S. Nanthini. We have established path, cycle, ladder, the graph P_{n}^{2}, triangular snake T_{n}, quadrilateral snake Q_{n}, alternate triangular snake $A\left(T_{n}\right)$, Alternate quadrilateral snake $A\left(Q_{n}\right)$ as k-relaxed mean labeling of graphs.

II. MAIN RESULTS

Defintion 2.1: A graph $G=(V, E)$ with p vertices and q edges is said to be a k-relaxed mean graph if there exists a function f from the vertex set of G to $\{k-1, k, k+1, k+2, \ldots, k+q\}$ such that in the induced map f^{*} from the edge set of G to $\{k, k+1, k+2, \ldots, k+q-1\}$ defined by $f^{*}(e=u v)=$ $\left\{\begin{array}{ll}\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd }\end{array}\right.$ th mean labeling is called a \boldsymbol{k}-relaxed mean graph (k-RMG).

Definition 2.2: A graph is called a path if the degree $d(v)$ of every vertex v is ≤ 2 and there are no more than 2 end vertices. An end vertex is a vertex of degree 1.

Definition 2.3: A walk in which no vertex (except the initial of final vertex) appear more than once is called a cycle.

Definition 2.4: The product graph $P_{2} \times P_{n}$ is called a ladder and it is denoted by L_{n}.
Definition 2.5: The $k^{t h}$ power graph G^{k} of a connected graph G, where $k \geq 1$ is that graph with $V\left(G^{k}\right)=$ $V(G)$ for which $u v \in E\left(G^{k}\right)$ if and only if $1 \leq d_{G}(u, v) \leq k$. The graph G^{2} is referred to as square of G.

Definition 2.6: A triangular snake T_{n} is obtained from a path $v_{1}, v_{2}, v_{3} \ldots, v_{n+1}$ by joining v_{i} and v_{i+1} to a new vertices u_{i} for $1 \leq i \leq n$. That is, every edge of a path is replaced by a triangle C_{3}.

Definition 2.7: A quadrilateral snake Q_{n} is obtained from a path $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to a new vertex v_{i} for $1 \leq i \leq n-1$. That is, every edge of a path is replaced by a quadrilateral C_{4}.

Definition 2.8: An alternate triangular snake $A\left(T_{n}\right)$ is obtained from a path $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} (alternately) to a new vertex v_{i}. That is, every edge of a path is replaced by C_{3} (alternately).

Definition 2.9: A alternate quadrilateral snake $A\left(Q_{n}\right)$ is obtained from a path $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} (alternate) to a new vertex v_{i} for $1 \leq i \leq n-1$. That is, every edge of a path is replaced by C_{4} (alternate).

Theorem 2.10: The path P_{n} is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 2$.
Proof: Let the vertices of P_{n} be $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and the edges of P_{n} be $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$, which are denoted as in Figure 1.1.

Figure 1.1: Ordinary labeling of $\boldsymbol{P}_{\boldsymbol{n}}$
We know that $\left|V\left(P_{n}\right)\right|=n$ and $\left|E\left(P_{n}\right)\right|=n-1$.
First we label the vertices as follows:
Define $f: V\left(P_{n}\right) \rightarrow\{k-1, k, k+1, k+2, \ldots, k+q\}$ by

$$
f\left(u_{i}\right)= \begin{cases}k+i-2 & ; 1 \leq i \leq n-1 \\ k+n-1 & ; \quad i=n\end{cases}
$$

Then, the induced edge labels of P_{n} are

$$
f^{*}\left(e_{i}\right)=k+i-1 ; 1 \leq i \leq n-1
$$

Clearly, the induced edge labels are distinct. Hence, the path P_{n} is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 2$.

Illustration 2.11: 4-RML of P_{8} is shown in Figure 1.2.

Figure 1.2: 4-RML of P_{8}
Illustration 2.12: 11-RML of P_{9} is shown in Figure 1.3.

Figure 1.3: 11-RML of P_{9}
Theorem 2.13: The cycle C_{n} is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 3$.
Proof: Let the vertices of C_{n} be $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and let the edges of C_{n} be $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, which are denoted as in Figure 1.4.

Figure 1.4: Ordinary labeling of $\boldsymbol{C}_{\boldsymbol{n}}$
We know that $\left|V\left(C_{n}\right)\right|=n$ and $\left|E\left(C_{n}\right)\right|=n$.
First we label the vertices as follows:
Define $f: V\left(C_{n}\right) \rightarrow\{k-1, k, k+1, k+2, \ldots, k+q\}$ by

For n odd, $1 \leq i \leq n$

$$
f\left(u_{i}\right)=\left\{\begin{array}{lr}
k-1 ; \quad i=1 \\
k+i-2 ; \quad 2 \leq i \leq \frac{n-1}{2} \\
k+i-1 ; \frac{n+1}{2} \leq i \leq n-1 \\
k+n ; & i=n
\end{array}\right.
$$

For n even, $1 \leq i \leq n$

$$
f\left(u_{i}\right)=\left\{\begin{array}{lr}
k-1 ; & i=1 \\
k+i-2 ; & 2 \leq i \leq \frac{n}{2} \\
k+i-1 ; \frac{n}{2}+1 \leq i \leq n-1 \\
k+n ; & i=n
\end{array}\right.
$$

Then, the induced edge labels of C_{n} are
For n odd , $1 \leq i \leq n$

$$
f^{*}\left(e_{i}\right)=\left\{\begin{array}{lrr}
k & ; \quad 1 \leq i \leq \frac{n-1}{2} \\
k+i & ; \frac{n+1}{2} \leq i \leq n-1 \\
\frac{2 k+n-1}{2} ; & i=n
\end{array}\right.
$$

For n even, $1 \leq i \leq n$

$$
f^{*}\left(e_{i}\right)=\left\{\begin{array}{ccc}
k+i-1 & ; & 2 \leq i \leq \frac{n}{2} \\
k+i & ; \frac{n}{2}+1 \leq i \leq n-1 \\
\frac{2 k+n}{2} & ; & i=n
\end{array}\right.
$$

Clearly, the induced edge labels are distinct. Hence, the cycle C_{n} is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 3$.

Illustration 2.14: 7-RML of C_{8} is shown in Figure 1.5.

Figure 1.5: 7-RML of \boldsymbol{C}_{8}
Illustration 2.15: 4-SDML of C_{11} is shown in Figure 1.6.

Figure 1.6: 4-RML of C_{11}

Theorem 2.16: The ladder L_{n} is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 3$.
Proof: Let the vertices of L_{n} be $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the edges of L_{n} be $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\} \cup$ $\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n-1}^{\prime}\right\} \cup\left\{e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, \ldots, e_{n}^{\prime \prime}\right\}$, which are denoted as in Figure 1.7.

Figure 1.7: Ordinary labeling of $\boldsymbol{L}_{\boldsymbol{n}}$
We know that $\left|V\left(L_{n}\right)\right|=2 n$ and $\left|E\left(L_{n}\right)\right|=3 n-2$.
First we label the vertices as follows:
Define $f: V\left(L_{n}\right) \rightarrow\{k-1, k, k+1, k+2, \ldots, k+q\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}k+3 i-3 ; & ; 1 \leq i \leq n-1 \\
k+3 n-2 & ; \\
i=n\end{cases} \\
& f\left(v_{i}\right)=k+3 i-4 ; 1 \leq i \leq n
\end{aligned}
$$

Then, the induced edge labels of L_{n} are

$$
\begin{aligned}
& f^{*}\left(e_{i}\right)=k+3 i-1 ; 1 \leq i \leq n-1 \\
& f^{*}\left(e_{i}^{\prime}\right)=k+3 i-2 ; 1 \leq i \leq n-1 \\
& f^{*}\left(e_{i}^{\prime \prime}\right)=k+3 i-3 ; 1 \leq i \leq n
\end{aligned}
$$

Clearly, the induced edge labels are distinct. Hence, the ladder L_{n} is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 3$.

Illustration 2.17: 4-RML of L_{8} is shown in Figure 1.8.

Figure 1.8: 4-RML of \boldsymbol{L}_{8}
Illustration 2.18: 7-RML of L_{7} is shown in Figure 1.9.

Figure 1.9: 7-RML of L_{7}

Theorem 2.19: The graph P_{n}^{2} is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 3$.
Proof: Let the vertices of P_{n}^{2} be $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and let the edges of P_{n}^{2} be $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\} \cup$ $\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n-2}^{\prime}\right\}$, which are denoted as in Figure 1.10.

Figure 1.10: Ordinary labeling of $P_{\boldsymbol{n}}^{\mathbf{2}}$
We know that $\left|V\left(P_{n}^{2}\right)\right|=n$ and $\left|E\left(P_{n}^{2}\right)\right|=2 n-3$.
First we label the vertices as follows:
Define $f: V\left(P_{n}^{2}\right) \rightarrow\{k-1, k, k+1, k+2, \ldots, k+q\}$ by

$$
f\left(u_{i}\right)=k+2 i-3 ; 1 \leq i \leq n
$$

Then, the induced edge labels of P_{n}^{2} are

$$
\begin{aligned}
& f^{*}\left(e_{i}\right)=k+2 i-2 ; 1 \leq i \leq n-1 \\
& f^{*}\left(e_{i}^{\prime}\right)=k+2 i-1 ; 1 \leq i \leq n-2
\end{aligned}
$$

Clearly, the induced edge labels are distinct. Hence, the P_{n}^{2} is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 3$.

Illustration 2.20: 2-RML of P_{8}^{2} is shown in Figure 1.11.

Figure 1.11: 2-RML of P_{8}^{2}
Illustration 2.21: 5-RML of P_{5}^{2} is shown in Figure 1.12.

Figure 1.12: 5-RML of P_{5}^{2}
Theorem 2.22: The triangular snake T_{n} is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 2$.
Proof: Let the vertices of T_{n} be $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{n+1}\right\}$ and let the edges of T_{n} be $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \cup\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}\right\} \cup\left\{e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, \ldots, e_{n}^{\prime \prime}\right\}$, which are denoted as in Figure 1.13.

Figure 1.13: Ordinary labeling of $\boldsymbol{T}_{\boldsymbol{n}}$

We know that $\left|V\left(T_{n}\right)\right|=2 n+1$ and $\left|E\left(T_{n}\right)\right|=3 n$.
First we label the vertices as follows:
Define $f: V\left(T_{n}\right) \rightarrow\{k-1, k, k+1, k+2, \ldots, k+q\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=k+3 i-2 ; 1 \leq i \leq n \\
& f\left(v_{i}\right)=\left\{\begin{array}{l}
k+3 i-4 ; 1 \leq i \leq n \\
k+3 n-3 ; i=n+1
\end{array}\right.
\end{aligned}
$$

Then, the induced edge labels of T_{n} are

$$
\begin{aligned}
& f^{*}\left(e_{i}\right)=k+3 i-2 ; 1 \leq i \leq n \\
& f^{*}\left(e_{i}^{\prime}\right)=k+3 i-3 ; 1 \leq i \leq n \\
& f^{*}\left(e_{i}^{\prime \prime}\right)=k+3 i-1 ; 1 \leq i \leq n
\end{aligned}
$$

Clearly, the induced edge labels are distinct. Hence, the triangular snake T_{n} is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 2$.

Illustration 2.23: 6-RML of T_{9} is shown in Figure 1.14.

Figure 1.14: 6-RML of $\boldsymbol{T}_{\mathbf{9}}$
Illustration 2.24: 3-RML of T_{6} is shown in Figure 1.15.

Figure 1.15: 3-RML of T_{6}
Theorem 2.25: The quadrilateral snake Q_{n} is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 3$.
Proof: Let the vertices of Q_{n} be $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{2 n-2}\right\}$ and let the edges of Q_{n} be $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\} \cup\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n-1}^{\prime}\right\} \cup\left\{e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, \ldots, e_{2 n-2}^{\prime \prime}\right\}$, which are denoted as in Figure 1.16.

Figure 1.16: Ordinary labeling of $\boldsymbol{Q}_{\boldsymbol{n}}$

We know that $\left|V\left(Q_{n}\right)\right|=3 n-2$ and $\left|E\left(Q_{n}\right)\right|=4 n-4$.
First we label the vertices as follows:
Define $f: V\left(Q_{n}\right) \rightarrow\{k-1, k, k+1, k+2, \ldots, k+q\}$ by

$$
f\left(u_{i}\right)=\left\{\begin{array}{lr}
k+4 i-5 ; 1 \leq i \leq n-1 \\
k+4 n-4 ; & i=n
\end{array}\right.
$$

For $1 \leq i \leq 2 n-2$

$$
f\left(v_{i}\right)=\left\{\begin{array}{lc}
k+2 i-1 ; \quad i \text { odd } \\
k+2 i-2 ; & \quad \text { i even } \\
k+4 n-8 ; i=2 n-3 \\
k+4 n-7 ; i=2 n-2
\end{array}\right.
$$

Then, the induced edge labels of Q_{n} are

$$
\begin{aligned}
& f^{*}\left(e_{i}\right)= \begin{cases}k+4 i-3 ; 1 \leq i \leq n-2 \\
k+4 n-6 ; & i=n-1\end{cases} \\
& f^{*}\left(e_{i}^{\prime}\right)= \begin{cases}k+4 i-2 ; 1 \leq i \leq n-2 \\
k+4 n-7 ; & i=n-1\end{cases} \\
& f^{*}\left(e_{i}^{\prime \prime}\right)=\left\{\begin{array}{lr}
k+2 i-2 ; \quad i \text { odd } \\
k+2 i-1 ; \quad \text { even } \\
k+4 n-8 ; i=2 n-3 \\
k+4 n-5 ; i=2 n-2
\end{array}\right.
\end{aligned}
$$

Clearly, the induced edge labels are distinct. Hence, the quadrilateral snake Q_{n} is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 3$.

Illustration 2.26: 11-RML of Q_{6} is shown in Figure 1.17.

Figure 1.17: 11-RML of $\boldsymbol{Q}_{\mathbf{6}}$
Illustration 2.27: 4-RML of Q_{3} is shown in Figure 1.18.

Figure 1.18: 4-RML of Q_{3}

Theorem 2.28: The alternate triangular snake $A\left(T_{n}\right)$ is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 2$.

Proof: Let the vertices of $A\left(T_{n}\right)$ be $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{2 n}\right\}$ and let the edges of $A\left(T_{n}\right)$ be $\left\{e_{1}, e_{2}, \ldots, e_{2 n-1}\right\} \cup\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{2 n}^{\prime}\right\}$, which are denoted as in Figure 1.19.

Figure 1.19: Ordinary labeling of $\boldsymbol{A}\left(T_{n}\right)$
We know that $\left|V\left(A\left(T_{n}\right)\right)\right|=3 n$ and $\left|E\left(A\left(T_{n}\right)\right)\right|=4 n-1$.
First we label the vertices as follows:
Define $f: V\left(A\left(T_{n}\right)\right) \rightarrow\{k-1, k, k+1, k+2, \ldots, k+q\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=k+4 i-3 ; 1 \leq i \leq n \\
& f\left(v_{i}\right)=\left\{\begin{array}{l}
\frac{2 k+4 i-6}{2} ; i \text { odd } \\
\frac{2 k+4 i-4}{2} ; i \text { even } \\
\frac{2 k+4 n-2}{2} ; i=2 n
\end{array}\right.
\end{aligned}
$$

Then, the induced edge labels of $A\left(T_{n}\right)$ are

$$
\begin{aligned}
& f^{*}\left(e_{i}\right)=k+2 i-1 ; 1 \leq i \leq 2 n-1 \\
& f^{*}\left(e_{i}^{\prime}\right)=k+2 i-2 ; 1 \leq i \leq 2 n
\end{aligned}
$$

Clearly, the induced edge labels are distinct. Hence, the alternate triangular snake $A\left(T_{n}\right)$ is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 2$.

Illustration 2.29: 6-RML of T_{5} is shown in Figure 1.20.

Figure 1.20: 6-RML of $A\left(T_{5}\right)$
Illustration 2.30: 3-RML of T_{3} is shown in Figure 1.21.

Figure 1.21: 3-RML of $A\left(T_{3}\right)$

Theorem 2.31: The alternate quadrilateral snake $A\left(Q_{n}\right)$ is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 3$.

Proof: Let the vertices of $A\left(Q_{n}\right)$ be $\left\{u_{1}, u_{2}, \ldots, u_{2 n}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{2 n}\right\}$ and let the edges of $A\left(Q_{n}\right)$ be $\left\{e_{1}, e_{2}, \ldots, e_{2 n-1}\right\} \cup\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}\right\} \cup\left\{e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, \ldots, e_{2 n}^{\prime \prime}\right\}$, which are denoted as in Figure 1.22.

Figure 1.22: Ordinary labeling of $A\left(Q_{n}\right)$
We know that $\left|V\left(A\left(Q_{n}\right)\right)\right|=4 n$ and $\left|E\left(A\left(Q_{n}\right)\right)\right|=5 n-1$.
First we label the vertices as follows:
Define $f: V\left(A\left(Q_{n}\right)\right) \rightarrow\{k-1, k, k+1, k+2, \ldots, k+q\}$ by
For $1 \leq i \leq 2 n$

$$
f\left(u_{i}\right)= \begin{cases}\frac{2 k+5 i-7}{2} & ; \text { i odd } \\ \frac{2 k+5 i-4}{2} & ; \text { i even }\end{cases}
$$

For $1 \leq i \leq 2 n$

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
\frac{2 k+5 i-3}{2} ; \text { i odd } \\
\frac{2 k+5 i-6}{2} ; \text { i even }
\end{array}\right.
$$

Then, the induced edge labels of $A\left(Q_{n}\right)$ are
For $1 \leq i \leq 2 n-1$

$$
\begin{aligned}
& f^{*}\left(e_{i}\right)=\left\{\begin{array}{l}
\frac{2 k+5 i-3}{2} ; i \text { odd } \\
\frac{2 k+5 i-2}{2} ; i \text { even }
\end{array}\right. \\
& f^{*}\left(e_{i}^{\prime}\right)=k+5 i-3 ; 1 \leq i \leq n
\end{aligned}
$$

For $1 \leq i \leq 2 n$

$$
f^{*}\left(e_{i}^{\prime \prime}\right)=\left\{\begin{array}{l}
\frac{2 k+5 i-5}{2} ; i \text { odd } \\
\frac{2 k+5 i-4}{2} ; \text { i even }
\end{array}\right.
$$

Clearly, the induced edge labels are distinct. Hence, the alternate quadrilateral snake $A\left(Q_{n}\right)$ is a k-relaxed mean graph for all $k \geq 1$ and for all $n \geq 3$.

Illustration 2.32: 5-RML of $A\left(Q_{3}\right)$ is shown in Figure 1.23.

Figure 1.23: 5-RML of $A\left(Q_{3}\right)$

Illustration 2.33: 2-RML of $A\left(Q_{n}\right)$ is shown in Figure 1.24.

Figure 1.24: 2-RML of $A\left(Q_{2}\right)$

REFERENCES

[1] Frank Harary, "Graph Theory", Narosa Publishing House (2001).
[2] Gayathri. B and Thayalarajan. R, "Variations and Extensions of Mean labeling", Bharathidasan University, Ph.D., Thesis (October 2018), pp.1-224.
[3] Gallian J.A, "A dynamic survey on graph labeling", The Electronnics Journal of Combinatorics, (2019) \#DS6.
[4] V.Maheswari, D.S.T.Ramesh and V.Balaji, "Relaxed mean labeling", International Journal of Mathematics Research, Volume 4, 3 (2012), 217-224.
[5] V. Maheswari, D.S.T. Ramesh and V. Balaji, " Some results on relaxed mean labeling", International J.Math. Combin., Vol.3(2015), pp.73-80.
[6] Somasundaram. S and Ponraj. R, "Mean Labeling of Graphs", National Academy Science Letters, 26(2003), pp.210-213.
[7] S.Somasundaram and R.Ponraj, "Some results on mean graphs", Pure and Applied Mathematika Sciences, 58(2003), 29 - 35.

