Some results on relative L* —order of analytic function in the unit polydisc

Balram Prajapati¹, Rakesh Kumar², Anupma Rastogi³

¹Research Scholar, ²Research Scholar, ³Assistant Professor & Department of Mathematics & Astronomy & University of Lucknow, Lucknow, Uttar Pradesh, India

Abstract - In this paper we proved some earlier results on the basis of relative L*-order of analytic function in a unit polydisc

Keywords - Analytic function, polydisc, relative order, relative L^* -order.

Introduction, Definition and Notation

Let f be function in the unit disc $U = \{z : |z| < 1\}$ is said to be of finite Nevanlinna order [8] if their exist a number μ such that the Nevanlinna characteristic function

$$T_f(r) = \frac{1}{2\pi} \int_0^{2\pi} log |f(re^{i\theta})| d\theta$$

satisfies $T_f(r) < (1-r)^{-\mu}$ for all $0 < r_0(\mu) < r < 1$.

The greatest lower bound if all such number μ is called the Nevanlinna order off. Thus the Nevanlinna order ρ_f off is given by

$$\rho_f = \underset{r \rightarrow 1}{lim} \, sup \frac{log \, T_f(r)}{-log (1-r)}$$

Similarly, the Nevanlinna lower order
$$\lambda_f$$
 of f are given by
$$\lambda_f = \lim_{r \to 1} \inf \frac{\log T_f(r)}{-\log(1-r)}$$

Banerjee and Datta [5] give the following definition in a unit di

Definition 1. [5] of f be analytic in U and g be entire, the relative order of f with respect to g denoted by $\rho_g(f)$ is defined by

$$\rho_g(f) = \inf \left\{ \mu > 0 : \; T_f(r) < T_g \left[\left(\frac{1}{1-r} \right)^{\mu} \right] \text{, for all } 0 < r_0(\mu) < r < 1 \right\}$$

Similarly, one may define $\lambda_g(f)$, the relative lower order off with respect to g, with $g(z) = \exp z$. The definition coincides with the definition of Nevanlinna order off.

$$\lambda_g(f) = \lim_{r \rightarrow 1} \inf \frac{\log T_g^{-1} T_f(r)}{-\log(1-r)}$$

Extending the nation of single variables to several variables, let $f(z_1, z_2, ..., z_n)$ be a non-constant analytic function of n complex variables z_1, z_2, \dots, z_n in the unit polydisc

$$U = \{(z_1, z_2, \dots z_n) : |z_j| \le 1, j = 1, 2, \dots, n; r_1 > 0, r_2 > 0, \dots, r_n > 0\}$$

generalized n-variables kth Nevanlinna order and the generalized n-variables kth Nevanlinna lower order for functions of n complex variables analytic in a unit polydisc as follows.

$$\nu_{n} \rho_{f}^{[k]} = \lim_{r_{1}, r_{2}, \dots, r_{n} \to 1^{-}} \frac{\log^{[k]} T_{f}(r_{1}, r_{2}, \dots, r_{n})}{-\log[(1 - r_{1})(1 - r_{2}) \dots (1 - r_{n})]}$$

and

$$\nu_{_{n}}\lambda_{f}^{[k]} = \lim_{r_{1},r_{2},...,r_{n} \rightarrow 1^{-}} \frac{\log^{[k]}T_{f}(r_{1},r_{2},....,r_{n})}{-\log[(1-r_{1})(1-r_{2})....(1-r_{n})]}$$

where $\log^{[l]} x = \log(\log^{[l-1]} x)$ for l = 1,2,... and $\log^{[0]} x = x$ when n = k = 1, the above definition reduces to the definition of Juneja and Kapoor [8].

Definition 2. Generalized n-variables kth-relative Nevanlinna order and the generalized n-variables kth-relative Nevalinna lower order for functions of n-complex variables analytic in unit polydisc as follows:

$$\nu_{_{n}}\rho_{g}^{[k]}(f) = \lim_{r_{1},r_{2},...,r_{n} \to 1^{-}} \sup \frac{\log^{[k]}T_{g}^{-1}T_{f}(r)(r_{1},r_{2},....,r_{n})}{-\log[(1-r_{1})(1-r_{2})....(1-r_{n})]}$$

and

$$\nu_{_{n}}\lambda_{g}^{[k]}(f)=\lim_{r_{1},r_{2},\ldots,r_{n}\rightarrow 1^{-}}\inf\frac{\log^{[k]}T_{g}^{-1}T_{f}(r)(r_{1},r_{2},\ldots,r_{n})}{-\log[(1-r_{1})(1-r_{2})\ldots(1-r_{n})]}$$
 where k and n are any two positive integers. If we consider $k=n=1$ in definition 2, then it coincides with

definition 1.

Somasundaram and Thamizharasi [6] introduced the notion of L-order for entire functions where $L \equiv L(r_1, r_2, ..., r_n)$ is a positive continuous function increasing slowly i.e.,

 $L(ar_1, ar_2, ..., ar_n) \sim L(r_1, r_2, ..., r_n)$ as $r_1, r_2, ..., r_n$ is a positive constant a. **Definition 3**. The generalized L-order $\left[v_n \rho_f^{[k]}\right]^{L^*}$ and $\left[v_n \lambda_f^{[k]}\right]^{L^*}$

$$\left[\nu_{n} \rho_{f}^{[k]}\right]^{L^{*}} = \lim_{r_{1}, r_{2}, \dots, r_{n} \to 1^{-}} \sup \frac{\log^{[k]} T_{f}(r_{1}, r_{2}, \dots, r_{n})}{\log \left[\frac{1}{(1-r_{1})(1-r_{2})...(1-r_{n})} \exp L\left(\frac{1}{1-r_{1}}, \frac{1}{1-r_{2}}, \dots, \frac{1}{1-r_{n}}\right)\right]}$$

and

$$\left[v_n \lambda_f^{[k]} \right]^{L^*} = \lim_{r_1, r_2, \dots, r_n \to 1^-} \inf \frac{\log^{[k]} T_f(r_1, r_2, \dots, r_n)}{\log \left[\frac{1}{(1-r_1)(1-r_2)...(1-r_n)} \exp L\left(\frac{1}{1-r_1}, \frac{1}{1-r_2}, \dots, \frac{1}{1-r_n}\right) \right]}.$$

Definition 4. The generalized L-order (alternatively generalized relative L-order) $\left[v_{\mu}\rho_{\mathbf{g}}^{[\mathbf{k}]}(\mathbf{f})\right]^{\mathbf{L}}$ and relative (alternatively generalized relative L-lower order) $\left[\nu_{_{n}}\lambda_{g}^{[k]}(f)\right]^{L}$ of analytic function f in U (unit polydisc) with respect to another entire function g are defined as

$$\left[v_{n} \rho_{g}^{[k]}(f) \right]^{L} = \lim_{r_{1}, r_{2}, \dots, r_{n} \to 1^{-}} \sup \frac{\log^{[k]} T_{g}^{-1} T_{f}(r)(r_{1}, r_{2}, \dots, r_{n})}{\log \left[\frac{1}{(1-r_{1})(1-r_{2}) \dots (1-r_{n})} L\left(\frac{1}{1-r_{1}}, \frac{1}{1-r_{2}}, \dots, \frac{1}{1-r_{n}}\right) \right]}$$

and

$$\left[v_n \lambda_g^{[k]}(f) \right]^L = \lim_{r_1, r_2, \dots, r_n \to 1^-} \inf \frac{\log^{[k]} T_g^{-1} T_f(r)(r_1, r_2, \dots, r_n)}{\log \left[\frac{1}{(1-r_1)(1-r_2)\dots(1-r_n)} L\left(\frac{1}{1-r_1}, \frac{1}{1-r_2}, \dots, \frac{1}{1-r_n}\right) \right]}.$$

Definition 5. The relative generalized L*-order (alternatively generalized relative L*-order) $\left[v_{n} \rho_{g}^{[k]}(f)\right]^{L^{*}}$ and relative generalized L*-lower order (alternatively generalized relative L*-lower order) $\left[\nu_{_{n}}\lambda_{g}^{[k]}(f)\right]^{L^{*}}$ of analytic function f in U (unit polydisc) with respect to another function g are defined as

$$\left[\sqrt{10^{[k]}} \left(f \right) \right]^{L^*} = \lim_{r_1, r_2, \dots, r_n \to 1^-} \sup \frac{\log^{[k]} T_g^{-1} T_f(r) (r_1, r_2, \dots, r_n)}{\log \left[\frac{1}{(1-r_1)(1-r_2)...(1-r_n)} \exp L \left(\frac{1}{1-r_1}, \frac{1}{1-r_2}, \dots, \frac{1}{1-r_n} \right) \right]}$$

and

$$\left[v_{n} \rho_{g}^{[k]}(f) \right]^{L^{*}} = \lim_{r_{1}, r_{2}, \dots, r_{n} \to 1^{-}} \inf \frac{\log^{[k]} T_{g}^{-1} T_{f}(r)(r_{1}, r_{2}, \dots, r_{n})}{\log \left[\frac{1}{(1-r_{1})(1-r_{2}) \dots (1-r_{n})} \exp L \left(\frac{1}{1-r_{1}}, \frac{1}{1-r_{2}}, \dots, \frac{1}{1-r_{n}} \right) \right]}.$$

The following definition is also well known

Definition 6. Two entire function f and g are said to be asymptotically equivalent if there exist $0 \le \alpha < \infty$, such that $\frac{F(r)}{G(r)} \to \alpha$ as $\alpha \to \infty$ and in this case we write f~g. If f~g then clearly g~f

In the paper we establish some results relating to the composition of two non-constant analytic functions of n complex variables in the unit polydisc

$$U = \{(z_1, z_2, \dots, z_n) : |z_j| \le 1, j = 1, 2, \dots, n; r_1 > 0, r_2, \dots, r_n > 0\}$$

 $U = \left\{ (z_1, z_2, \dots, z_n) : \left| z_j \right| \leq 1, j = 1, 2, \dots, n; \ r_1 > 0, r_2, \dots, r_n > 0 \right\}$ Also we prove a few theorems related to generalized n -variables based k^{th} relative L^* -Nevanlinna order $\left[\nu_{_{n}} \rho_{g}^{[k]}(f) \right]^{L^*}$ (generalized n-variables based k^{th} relative L^* -Nevanlinna lower order $\left[\nu_{_{n}} \lambda_{g}^{[k]}(f) \right]^{L^*}$ of an analytic

function f with respect to an entire function g of n complex variables. Which are in fact some entertains of earlier results. We do not explain the standard definitions and notations in the theory of entire functions are available in [7][1][4][2][3].

Theorem 1. Let f and g be any two non constant analytic functions of n-complex variables in the unit polydisc U such that $0 < \left[\nu_{_{n}}\lambda_{\text{fog}}^{[k]}\right]^{L^{*}} \le \left[\nu_{_{n}}\rho_{\text{fog}}^{[k]}\right]^{L^{*}} < \infty \text{ and } 0 < \left[\nu_{_{n}}\lambda_{g}^{[l]}\right]^{L^{*}} \le \left[\nu_{_{n}}\rho_{g}^{[l]}\right]^{L^{*}} < \infty.$ Then

$$\begin{split} &\frac{\left[\nu_{n}\lambda_{fog}^{[k]}\right]^{L^{*}}}{\left[\nu_{n}\rho_{g}^{[l]}\right]^{L^{*}}} \leq \lim_{r_{1},r_{2},...,r_{n}\to 1^{-}} \inf \frac{\log^{[k]}T_{fog}(r_{1},r_{2},...,r_{n})}{\log^{[k]}T_{g}(r_{1},r_{2},...,r_{n})} \\ \leq &\frac{\left[\nu_{n}\lambda_{fog}^{[k]}\right]^{L^{*}}}{\left[\nu_{n}\rho_{g}^{[l]}\right]^{L^{*}}} \leq \lim_{r_{1},r_{2},...,r_{n}\to 1^{-}} \sup \frac{\log^{[k]}T_{fog}(r_{1},r_{2},...,r_{n})}{\log^{[l]}T_{g}(r_{1},r_{2},...,r_{n})} \leq \frac{\left[\nu_{n}\rho_{fog}^{[k]}\right]^{L^{*}}}{\left[\nu_{n}\lambda_{g}^{[l]}\right]^{L^{*}}} \end{split}$$

where k and l are any two positive integer

Proof. From the definition of generalized n-variables based kth Nevanlinna L* – order and generalized n-variables k^{th} Nevanlinna L^* – lower order of analytic functions in the unit polydisc U, we have for arbitrary positive ϵ and for all sufficiently large values of $\frac{1}{1-r_1}$, $\frac{1}{1-r_2}$, ... and $\frac{1}{1-r_n}$ that

$$\log^{[k]} T_{fog}(r_1, r_2, \dots, r_n) \ge \left(\left[v_n \lambda_{fog}^{[k]} \right]^{L^*} - \epsilon \right) \left[\log \frac{1}{(1 - r_n)(1 - r_n)} \left(\frac{1}{1 - r_n} \right) \exp L \left(\frac{1}{1 - r_n}, \frac{1}{1 - r_n}, \dots, \frac{1}{1 - r_n} \right) \right]$$
(

$$\begin{split} & \log^{[l]} T_g(r_1, r_2, \dots, r_n) \geq \left(\left[\nu_{_{n}} \rho_g^{[l]} \right]^{L^*} + \epsilon \right) \left[\log \frac{1}{(1 - r_1)(1 - r_2) \dots (1 - r_n)} \exp L \left(\frac{1}{1 - r_1}, \frac{1}{1 - r_2}, \dots, \frac{1}{1 - r_n} \right) \right] \ (2) \\ & \text{now from}(1) \& (2), \text{ it follows for all sufficiently large values of } \left(\frac{1}{1 - r_1} \right), \left(\frac{1}{1 - r_2} \right), \dots, \text{ and } \left(\frac{1}{1 - r_n} \right) \text{ that} \end{split}$$

$$\frac{\log^{[k]} T_{\text{fog}}(r_1, r_2, \dots, r_n)}{\log^{[l]} T_{\text{g}}(r_1, r_2, \dots, r_n)} \ge \frac{\left(\left[\nu_n \lambda_{\text{fog}}^{[k]}\right]^{L^*} - \epsilon\right)}{\left(\left[\nu_n \rho_{\text{g}}^{[l]}\right]^{L^*} + \epsilon\right)}$$

as $\varepsilon > 0$ is positive we obtain that

$$\lim_{r_{1}, r_{2}, \dots, r_{n} \to 1^{-}} \frac{\log^{[k]} T_{fog}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[l]} T_{g}(r_{1}, r_{2}, \dots, r_{n})} \ge \frac{\left[\nu_{n} \lambda_{fog}^{[k]}\right]^{L^{*}}}{\left[\nu_{n} \rho_{g}^{[l]}\right]^{L^{*}}}$$
(3)

again for a sequence of values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, ... and $\left(\frac{1}{1-r_2}\right)$, tending to infinity.

 $\log^{[k]} T_{fog}(r_1, r_2, \dots, r_n)$

$$\geq \left(\left[v_{n} \lambda_{\text{fog}}^{[k]} \right]^{L^{*}} + \varepsilon \right) \left[\log \frac{1}{(1 - r_{1})(1 - r_{2}) \dots (1 - r_{n})} \exp L \left(\frac{1}{1 - r_{1}}, \frac{1}{1 - r_{2}}, \dots, \frac{1}{1 - r_{n}} \right) \right]$$
(4)

$$\geq \left(\left[\nu_{n}\lambda_{\text{fog}}^{[k]}\right]^{L^{*}} + \epsilon\right)\left[\log\frac{1}{(1-r_{1})(1-r_{2})\dots(1-r_{n})}\exp L\left(\frac{1}{1-r_{1}},\frac{1}{1-r_{2}},\dots,\frac{1}{1-r_{n}}\right)\right]$$
 (4) and for all sufficiently large values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right),\dots$ and $\left(\frac{1}{1-r_{n}}\right)$
$$\log^{[l]}T_{g}(r_{1},r_{2},\dots,r_{n}) \geq \left(\left[\nu_{n}\lambda_{g}^{[l]}\right]^{L^{*}} - \epsilon\right)\left[\log\frac{1}{(1-r_{1})(1-r_{2})\dots(1-r_{n})}\exp L\left(\frac{1}{1-r_{1}},\frac{1}{1-r_{2}},\dots,\frac{1}{1-r_{n}}\right)\right]$$
 (5) so combining (4)&(5), we get for a sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right),\dots$ and $\left(\frac{1}{1-r_{n}}\right)$, tending to infinity that

of a sequence of values of
$$\binom{1-r_1}{1-r_2}$$
, ... and $\binom{1-r_n}{1-r_n}$, tending to infinity

$$\frac{\log^{[k]} T_{fog}(r_1, r_2, \dots, r_n)}{\log^{[l]} T_g(r_1, r_2, \dots, r_n)} \leq \frac{\left(\left[\nu_n \lambda_{fog}^{[k]}\right]^{L^*} + \varepsilon\right)}{\left(\left[\nu_n \rho_g^{[l]}\right]^{L^*} - \varepsilon\right)}$$

since $\varepsilon(>0)$ is arbitrary, it follows that

$$\lim_{r_{1}, r_{2}, \dots, r_{n} \to 1} \frac{\log^{[k]} T_{fog}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[l]} T_{g}(r_{1}, r_{2}, \dots, r_{n})} \le \frac{\left[\nu_{n} \lambda_{fog}^{[k]}\right]^{L^{*}}}{\left[\nu_{n} \lambda_{g}^{[l]}\right]^{L^{*}}}$$
(6)

also for a sequence of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, and $\left(\frac{1}{1-r_n}\right)$, tending to infinity, we get

$$\log^{[1]} T_g(r_1, r_2, \dots, r_n) \leq \left(\left[v_n \lambda_g^{[1]} \right]^{L^*} + \epsilon \right) \left[\log \frac{1}{(1 - r_1)(1 - r_2) \dots (1 - r_n)} \exp L\left(\frac{1}{1 - r_1}, \frac{1}{1 - r_2}, \dots, \frac{1}{1 - r_n} \right) \right] (7)$$
now from (1)&(7), we obtain for a sequence of values of $\left(\frac{1}{1 - r_1} \right), \left(\frac{1}{1 - r_2} \right), \dots$ and $\left(\frac{1}{1 - r_n} \right)$ tending to infinity that

$$\frac{\log^{[k]} T_{fog}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[l]} T_{g}(r_{1}, r_{2}, \dots, r_{n})} \ge \frac{\left(\left[v_{n} \lambda_{fog}^{[k]}\right]^{L^{*}} - \varepsilon\right)}{\left(\left[v_{n} \lambda_{fog}^{[l]}\right]^{L^{*}} + \varepsilon\right)}$$

 $\label{eq:loging} \log^{n} T_g(r_1, r_2, \dots, r_n)$ choosing $\epsilon \to 0,$ we get that

$$\lim_{r_{1}, r_{2}, \dots, r_{n} \to 1} \sup \frac{\log^{[k]} T_{fog}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[l]} T_{g}(r_{1}, r_{2}, \dots, r_{n})} \ge \frac{\left[\nu_{n} \lambda_{fog}^{[k]}\right]^{L^{*}}}{\left[\nu_{n} \lambda_{g}^{[l]}\right]^{L^{*}}}$$
(8)

also for all sufficiently large values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, and $\left(\frac{1}{1-r_n}\right)$

$$\log^{[k]} T_{\text{fog}}(r_1, r_2, \dots, r_n)$$

$$\leq \left(\left[v_{n} \rho_{\text{fog}}^{[k]} \right]^{L^{*}} + \varepsilon \right) \left[\log \frac{1}{(1 - r_{1})(1 - r_{2}) \dots (1 - r_{n})} \exp L \left(\frac{1}{1 - r_{1}}, \frac{1}{1 - r_{2}}, \dots, \frac{1}{1 - r_{n}} \right) \right] (9)$$

so form(5)&(9), it follows for all sufficiently large values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, and $\left(\frac{1}{1-r_n}\right)$, that

$$\frac{\log^{[k]} T_{fog}(r_1, r_2, \dots, r_n)}{\log^{[l]} T_g(r_1, r_2, \dots, r_n)} \leq \frac{\left(\left[v_n \rho_{fog}^{[k]}\right]^{L^*} + \varepsilon\right)}{\left(\left[v_n \lambda_g^{[l]}\right]^{L^*} - \varepsilon\right)}$$

as ϵ (> 0) is arbitrary, we obtain that

$$\lim_{r_{1}, r_{2}, \dots, r_{n} \to 1} \frac{\log^{[k]} T_{fog}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[l]} T_{g}(r_{1}, r_{2}, \dots, r_{n})} \le \frac{\left[\nu_{n} \rho_{fog}^{[k]}\right]^{L^{*}}}{\left[\nu_{n} \lambda_{g}^{[l]}\right]^{L^{*}}}$$
(10)

Thus the theorem (3), (6), (8)&(10)the following theorem can be proved in the line of theorem 1 and so its proof is omitted.

Theorem 2. Let f and g be any two non constant analytic functions of n-complex variables in the unit polydisc U with $0 < \left[\nu_n \lambda_{\text{fog}}^{[k]}\right]^{L^*} \le \left[\nu_n \rho_{\text{fog}}^{[k]}\right]^{L^*} < \infty$ and $0 < \left[\nu_n \lambda_{\text{f}}^{[s]}\right]^{L^*} \le \left[\nu_n \rho_{\text{f}}^{[s]}\right]^{L^*} < \infty$. and k and s are any two positive integers. Then

$$\frac{\left[\nu_{n}\lambda_{\text{fog}}^{[k]}\right]^{L^{*}}}{\left[\nu_{n}\rho_{\text{f}}^{[s]}\right]^{L^{*}}} \leq \lim_{r_{1},r_{2},\dots,r_{n} \to 1} \inf \frac{\log^{[k]}T_{\text{fog}}(r_{1},r_{2},\dots,r_{n})}{\log^{[s]}T_{\text{f}}(r_{1},r_{2},\dots,r_{n})} \leq \frac{\left[\nu_{n}\lambda_{\text{fog}}^{[k]}\right]^{L^{*}}}{\left[\nu_{n}\lambda_{\text{g}}^{[s]}\right]^{L^{*}}} \leq \lim_{r_{1},r_{2},\dots,r_{n} \to 1} \sup \frac{\log^{[k]}T_{\text{fog}}(r_{1},r_{2},\dots,r_{n})}{\log^{[s]}T_{\text{f}}(r_{1},r_{2},\dots,r_{n})} \leq \frac{\left[\nu_{n}\rho_{\text{fog}}^{[k]}\right]^{L^{*}}}{\left[\nu_{n}\lambda_{\text{g}}^{[s]}\right]^{L^{*}}} \leq \lim_{r_{1},r_{2},\dots,r_{n} \to 1} \sup \frac{\log^{[k]}T_{\text{fog}}(r_{1},r_{2},\dots,r_{n})}{\log^{[s]}T_{\text{f}}(r_{1},r_{2},\dots,r_{n})} \leq \frac{\left[\nu_{n}\rho_{\text{fog}}^{[k]}\right]^{L^{*}}}{\left[\nu_{n}\lambda_{\text{g}}^{[s]}\right]^{L^{*}}} \leq \lim_{r_{1},r_{2},\dots,r_{n} \to 1} \sup \frac{\log^{[k]}T_{\text{fog}}(r_{1},r_{2},\dots,r_{n})}{\log^{[s]}T_{\text{f}}(r_{1},r_{2},\dots,r_{n})} \leq \frac{\left[\nu_{n}\rho_{\text{fog}}^{[k]}\right]^{L^{*}}}{\left[\nu_{n}\lambda_{\text{g}}^{[s]}\right]^{L^{*}}} \leq \lim_{r_{1},r_{2},\dots,r_{n} \to 1} \sup \frac{\log^{[k]}T_{\text{fog}}(r_{1},r_{2},\dots,r_{n})}{\log^{[k]}T_{\text{fog}}(r_{1},r_{2},\dots,r_{n})} \leq \frac{\left[\nu_{n}\rho_{\text{fog}}^{[k]}\right]^{L^{*}}}{\left[\nu_{n}\lambda_{\text{g}}^{[s]}\right]^{L^{*}}} \leq \lim_{r_{1},r_{2},\dots,r_{n} \to 1} \sup \frac{\log^{[k]}T_{\text{fog}}(r_{1},r_{2},\dots,r_{n})}{\log^{[k]}T_{\text{fog}}(r_{1},r_{2},\dots,r_{n})} \leq \frac{\left[\nu_{n}\rho_{\text{fog}}^{[k]}\right]^{L^{*}}}{\left[\nu_{n}\lambda_{\text{g}}^{[s]}\right]^{L^{*}}} \leq \lim_{r_{1},r_{2},\dots,r_{n} \to 1} \sup_{r_{1},r_{2},\dots,r_{n} \to$$

Theorem 3. Let f and g be any two non constant analytic functions of n-complex variables in the unit polydisc U such that $0 < \left[\nu_{_{n}} \rho_{fog}^{[k]}\right]^{L^{*}} < \infty$ and $0 < \left[\nu_{_{n}} \rho_{g}^{[l]}\right]^{L^{*}} < \infty$. Then

$$\lim_{r_1, r_2, \dots, r_n \to 1} \inf \frac{\log^{[k]} T_{fog}(r_1, r_2, \dots, r_n)}{\log^{[k]} T_g(r_1, r_2, \dots, r_n)} \leq \frac{\left[\nu_n \rho_{fog}^{[k]}\right]^{L^*}}{\left[\nu_n \rho_g^{[l]}\right]^{L^*}} \leq \lim_{r_1, r_2, \dots, r_n \to 1} \sup \frac{\log^{[k]} T_{fog}(r_1, r_2, \dots, r_n)}{\log^{[l]} T_g(r_1, r_2, \dots, r_n)}$$

where k and l are any two positive integers.

Proof. From the definition of generalized n-variables based k^{th} -Nevanlinna L*-order, we get for sequence of values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, and $\left(\frac{1}{1-r_n}\right)$ tending to infinity that

$$\begin{split} \log^{[l]} T_g(r_1, r_2, \dots, r_n) \\ & \leq \left(\left[v_n \rho_g^{[k]} \right]^{L^*} - \epsilon \right) \left[\log \frac{1}{(1 - r_1)(1 - r_2) \dots (1 - r_n)} \exp L \left(\frac{1}{1 - r_1}, \frac{1}{1 - r_2}, \dots, \frac{1}{1 - r_n} \right) \right] \ (11) \end{split}$$

now form (9)&(11), it follows from a sequence of values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, and $\left(\frac{1}{1-r_2}\right)$ tending to infinity that

$$\frac{\log^{[k]} T_{fog}(r_1, r_2, \dots, r_n)}{\log^{[l]} T_g(r_1, r_2, \dots, r_n)} \leq \frac{\left(\left[\nu_n \rho_{fog}^{[k]}\right]^{L^*} + \epsilon\right)}{\left(\left[\nu_n \rho_{fog}^{[l]}\right]^{L^*} - \epsilon\right)}, \text{as } \epsilon(>0) \text{ is arbitrary, then } \lim_{r_1, r_2, \dots, r_n \to 1} \inf \frac{\log^{[k]} T_{fog}(r_1, r_2, \dots, r_n)}{\log^{[l]} T_g(r_1, r_2, \dots, r_n)} \leq \frac{\left[\nu_n \rho_{fog}^{[k]}\right]^{L^*}}{\left[\nu_n \rho_{g}^{[l]}\right]^{L^*}} (12)$$

again for a sequence of values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, ... and $\left(\frac{1}{1-r_n}\right)$ tending to infinity

 $\log^{[k]} T_{fog}(r_1, r_2, \dots, r_n)$

$$\geq \left(\left[v_{_{n}} \rho_{fog}^{[k]} \right]^{L^{*}} - \epsilon \right) \left[\log \frac{1}{(1 - r_{1})(1 - r_{2}) \dots (1 - r_{n})} \exp L \left(\frac{1}{1 - r_{1}}, \frac{1}{1 - r_{2}}, \dots, \frac{1}{1 - r_{n}} \right) \right]$$
(13)

so combining (2)&(13), we get for a sequence of values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, and $\left(\frac{1}{1-r_n}\right)$ tending to infinity that

$$\frac{\log^{[k]} T_{fog}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[l]} T_{g}(r_{1}, r_{2}, \dots, r_{n})} \ge \frac{\left(\left[\nu_{n} \rho_{fog}^{[k]}\right]^{L^{*}} - \epsilon\right)}{\left(\left[\nu_{n} \rho_{g}^{[l]}\right]^{L^{*}} + \epsilon\right)}$$

since $\varepsilon(>0)$ is arbitrary, it follows that

$$\lim_{r_{1}, r_{2}, \dots, r_{n} \to 1} \sup \frac{\log^{[k]} T_{fog}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[l]} T_{g}(r_{1}, r_{2}, \dots, r_{n})} \ge \frac{\left[\nu_{n} \rho_{fog}^{[k]}\right]^{L^{*}}}{\left[\nu_{n} \rho_{g}^{[l]}\right]^{L^{*}}}$$
(14)

Thus the theorem follows from (12)&(14).

Theorem 4. Let f and g be any two non-constant analytic functions of n-complex variables in the unit polydisc Uwith $0 < \left[v_n \rho_{\text{fog}}^{[k]}\right]^{L^*} < \infty$ and $0 < \left[v_n \rho_{\text{f}}^{[s]}\right]^{L^*} < \infty$. Where k and s are any two positive integer then

$$\lim_{r_1, r_2, \dots, r_n \to 1} \inf \frac{\log^{[k]} T_{fog}(r_1, r_2, \dots, r_n)}{\log^{[s]} T_f(r_1, r_2, \dots, r_n)} \leq \frac{\left[\nu_n \rho_{fog}^{[k]} \right]^{L^*}}{\left[\nu_n \rho_f^{[s]} \right]^{L^*}} \leq \lim_{r_1, r_2, \dots, r_n \to 1} \sup \frac{\log^{[k]} T_{fog}(r_1, r_2, \dots, r_n)}{\log^{[s]} T_f(r_1, r_2, \dots, r_n)}$$

The following theorem is a natural consequence of theorem 1 and theorem 3.

Theorem 5. Let f and g be any two non constant analytic functions of n-complex variables in the unit polydisc U such that $0 < \left[\nu_n \lambda_{\text{fog}}^{[k]}\right]^{L^*} \le \left[\nu_n \rho_{\text{fog}}^{[k]}\right]^{L^*} < \infty$ and $0 < \left[\nu_n \lambda_g^{[l]}\right]^{L^*} \le \left[\nu_n \rho_g^{[l]}\right]^{L^*} < \infty$. Then

$$\lim_{r_{1}, r_{2}, \dots, r_{n} \to 1^{-}} \inf \frac{\log^{[k]} T_{fog}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[k]} T_{g}(r_{1}, r_{2}, \dots, r_{n})} \leq \min \left\{ \frac{\left[\nu_{n} \lambda_{fog}^{[k]}\right]^{L^{*}}}{\left[\nu_{n} \lambda_{g}^{[l]}\right]^{L^{*}}}, \frac{\left[\nu_{n} \rho_{fog}^{[k]}\right]^{L^{*}}}{\left[\nu_{n} \rho_{g}^{[l]}\right]^{L^{*}}} \right\}$$

$$\leq \max \left\{ \frac{\left[v_{n}\lambda_{\text{fog}}^{[k]}\right]^{L^{*}}}{\left[v_{n}\lambda_{\text{g}}^{[l]}\right]^{L^{*}}}, \frac{\left[v_{n}\rho_{\text{fog}}^{[k]}\right]^{L^{*}}}{\left[v_{n}\rho_{\text{g}}^{[l]}\right]^{L^{*}}} \right\} \leq \lim_{r_{1}, r_{2}, \dots, r_{n} \to 1} \sup \frac{\log^{[k]} T_{\text{fog}}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[l]} T_{\text{g}}(r_{1}, r_{2}, \dots, r_{n})}$$

where k and l are any two positive integers.

Theorem 6. Let f and g be any two non constant analytic functions of n-complex variables in the unit polydisc U with $0 < \left[\nu_n \lambda_{\text{fog}}^{[k]}\right]^{L^*} \le \left[\nu_n \rho_{\text{fog}}^{[k]}\right]^{L^*} < \infty$ and $0 < \left[\nu_n \lambda_{\text{f}}^{[s]}\right]^{L^*} \le \left[\nu_n \rho_{\text{f}}^{[s]}\right]^{L^*} < \infty$. where k and s are any two positive integers then

$$\lim_{r_1, r_2, \dots, r_n \to 1^-} \inf \frac{\log^{[k]} T_{fog}(r_1, r_2, \dots, r_n)}{\log^{[s]} T_f(r_1, r_2, \dots, r_n)} \leq \min \left\{ \frac{\left[\nu_n \lambda_{fog}^{[k]}\right]^{L^*}}{\left[\nu_n \lambda_f^{[s]}\right]^{L^*}}, \frac{\left[\nu_n \rho_{fog}^{[k]}\right]^{L^*}}{\left[\nu_n \rho_f^{[s]}\right]^{L^*}} \right\}$$

$$\leq \max \left\{ \frac{\left[v_{n} \lambda_{\text{fog}}^{[k]} \right]^{L^{*}}}{\left[v_{n} \lambda_{\text{f}}^{[s]} \right]^{L^{*}}}, \frac{\left[v_{n} \rho_{\text{fog}}^{[k]} \right]^{L^{*}}}{\left[v_{n} \rho_{\text{f}}^{[s]} \right]^{L^{*}}} \right\} \leq \lim_{r_{1}, r_{2}, \dots, r_{n} \to 1} \sup \frac{\log^{[k]} T_{\text{fog}}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[s]} T_{\text{f}}(r_{1}, r_{2}, \dots, r_{n})}$$

we establish some comparative growth properties related to generalized n-variables based kth relative L* Nevanlinna order (generalized n-variables based kth relative L*-Nevanlinna lower order) of an analytic function with respect to an entire function in the unit polydisc U.

Theorem 7. Let f, h be any two non-constant analytic functions of n-complex variables in U and g be entire in n complex varibales such $0 < \left[\nu_n \lambda_g^{[k]}(f)\right]^{L^*} \le \left[\nu_n \rho_g^{[k]}(f)\right]^{L^*} < \infty \text{ and } 0 < \left[\nu_n \lambda_g^{[k]}(h)\right]^{L^*} \le \left[\nu_n \rho_g^{[k]}(h)\right]^{L^*} < \infty.$ Then

$$\begin{split} & \left[\nu_{_{n}} \lambda_{g}^{[k]}(f) \right]^{L^{*}} \leq \lim_{r_{1},r_{2},\dots,r_{n} \to 1} \inf \frac{\log^{[k]} T_{g}^{-1} T_{f}(r_{1},r_{2},\dots,r_{n})}{\log^{[k]} T_{g}^{-1} T_{h}(r_{1},r_{2},\dots,r_{n})} \\ \leq & \frac{\left[\nu_{_{n}} \lambda_{g}^{[k]}(f) \right]^{L^{*}}}{\left[\nu_{_{n}} \lambda_{g}^{[k]}(h) \right]^{L^{*}}} \leq \lim_{r_{1},r_{2},\dots,r_{n} \to 1} \sup \frac{\log^{[k]} T_{g}^{-1} T_{f}(r_{1},r_{2},\dots,r_{n})}{\log^{[k]} T_{g}^{-1} T_{h}(r_{1},r_{2},\dots,r_{n})} \leq \frac{\left[\nu_{_{n}} \rho_{g}^{[k]}(f) \right]^{L^{*}}}{\left[\nu_{_{n}} \lambda_{g}^{[k]}(h) \right]^{L^{*}}} \end{split}$$

where k is any positive integer.

Proof. From the definition of generalized n-variables based kth relative L* Nevanlinna order and generalized nvariables based kth relative L*-Nevanlinna lower order of an analytic function with respect to an entire functions in an unit polydisc U, we have for arbitrary positive ε and for all sufficiently large values of

$$\geq \left(\left[v_n \lambda_g^{[k]}(f) \right]^{L^*} - \epsilon \right) \left[\log \frac{1}{(1 - r_1)(1 - r_2) \dots (1 - r_n)} \exp \left(\frac{1}{1 - r_1}, \frac{1}{1 - r_2}, \dots, \frac{1}{1 - r_n} \right) \right] (15)$$

$$\log^{[k]} T_g^{-1} T_h(r_1, r_2,, r_n)$$

$$\leq \left(\left[v_{n} \rho_{g}^{[k]}(h) \right]^{L^{*}} + \varepsilon \right) \left[\log \frac{1}{(1 - r_{1})(1 - r_{2}) \dots (1 - r_{n})} \exp \left(\frac{1}{1 - r_{1}}, \frac{1}{1 - r_{2}}, \dots, \frac{1}{1 - r_{n}} \right) \right] (16)$$

now from (15)&(16), it follows for all sufficiently large values of $\left(\frac{1}{1-r_*}\right)$, $\left(\frac{1}{1-r_*}\right)$, and $\left(\frac{1}{1-r_*}\right)$

$$\frac{\log^{[k]} T_g^{-1} T_f(r_1, r_2, \dots, r_n)}{\log^{[k]} T_g^{-1} T_h(r_1, r_2, \dots, r_n)} \ge \frac{\left(\left[\nu_n \lambda_g^{[k]}(f)\right]^{L^*} - \epsilon\right)}{\left(\left[\nu_n \rho_g^{[k]}(h)\right]^{L^*} + \epsilon\right)}$$

as $\varepsilon > 0$ is arbitrary, we obtain that

$$\lim_{r_{1}, r_{2}, \dots, r_{n} \to 1} \inf \frac{\log^{[k]} T_{g}^{-1} T_{f}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[k]} T_{g}^{-1} T_{h}(r_{1}, r_{2}, \dots, r_{n})} \ge \frac{\left[\nu_{n} \lambda_{g}^{[k]}(f)\right]^{L^{*}}}{\left[\nu_{n} \rho_{g}^{[k]}(h)\right]^{L^{*}}}$$
(17)

again we have for a sequence values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, and $\left(\frac{1}{1-r_1}\right)$ tending to infinity that

$$\log^{[k]} T_g^{-1} T_f(r_1, r_2, \dots, r_n)$$
(f. [h.] $J^{L^*} \setminus \Gamma$ 1

$$\leq \left(\left[v_{n} \lambda_{g}^{[k]}(f) \right]^{L^{*}} + \epsilon \right) \left[\log \frac{1}{(1 - r_{1})(1 - r_{2}) \dots (1 - r_{n})} \exp L \left(\frac{1}{1 - r_{1}}, \frac{1}{1 - r_{2}}, \dots, \frac{1}{1 - r_{n}} \right) \right]$$
and for all sufficiently large values of $\left(\frac{1}{1 - r_{1}} \right), \left(\frac{1}{1 - r_{2}} \right), \dots$ and $\left(\frac{1}{1 - r_{n}} \right), \dots$

$$\log^{[k]} T_g^{-1} T_h(r_1, r_2,, r_n)$$

$$\geq \left(\left[v_{n} \lambda_{g}^{[k]}(h) \right]^{L^{*}} - \varepsilon \right) \left[\log \frac{1}{(1 - r_{1})(1 - r_{2}) \dots (1 - r_{n})} \exp L \left(\frac{1}{1 - r_{1}}, \frac{1}{1 - r_{2}}, \dots, \frac{1}{1 - r_{n}} \right) \right]$$
(19)

so combining (18)&(19), we get for sequence of values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, and $\left(\frac{1}{1-r_2}\right)$ tending to infinity that

$$\frac{\log^{[k]} T_g^{-1} T_f(r_1, r_2, \dots, r_n)}{\log^{[k]} T_g^{-1} T_h(r_1, r_2, \dots, r_n)} \leq \frac{\left(\left[\nu_n \lambda_g^{[k]}(f)\right]^{L^*} + \epsilon\right)}{\left(\left[\nu_n \lambda_g^{[k]}(h)\right]^{L^*} - \epsilon\right)}$$

since $\varepsilon(>0)$ is arbitrary, it follows that

$$\lim_{r_{1}, r_{2}, \dots, r_{n} \to 1} \inf \frac{\log^{[k]} T_{g}^{-1} T_{f}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[k]} T_{g}^{-1} T_{f}(r_{1}, r_{2}, \dots, r_{n})} \ge \frac{\left[\nu_{n} \lambda_{g}^{[k]}(f)\right]^{L^{*}}}{\left[\nu_{n} \lambda_{g}^{[k]}(h)\right]^{L^{*}}}$$
(20)

also for sequence of values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, ... and $\left(\frac{1}{1-r_2}\right)$ tending to infinity,

 $\log^{[k]} T_g^{-1} T_h (r_1, r_2,, r_n)$

$$\geq \left(\left[v_{_{n}}\lambda_{g}^{[k]}(h)\right]^{L^{*}} + \epsilon\right)\left[\log\frac{1}{(1-r_{1})(1-r_{2})\dots(1-r_{n})}\exp L\left(\frac{1}{1-r_{1}},\frac{1}{1-r_{2}},\dots,\frac{1}{1-r_{n}}\right)\right] (21)$$
now from (15)&(21), we obtain for sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right),\dots$ and $\left(\frac{1}{1-r_{n}}\right)$ tending to infinity that

$$\frac{\log^{[k]} T_g^{-1} T_f(r_1, r_2, \dots, r_n)}{\log^{[k]} T_g^{-1} T_f(r_1, r_2, \dots, r_n)} \ge \frac{\left(\left[\nu_n \lambda_g^{[k]}(f)\right]^{L^*} - \epsilon\right)}{\left(\left[\nu_n \lambda_g^{[k]}(h)\right]^{L^*} + \epsilon\right)}$$

choosing $\varepsilon > 0$ is arbitrary that

$$\lim_{r_{1}, r_{2}, \dots, r_{n} \to 1} \sup \frac{\log^{[k]} T_{g}^{-1} T_{f}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[k]} T_{g}^{-1} T_{f}(r_{1}, r_{2}, \dots, r_{n})} \ge \frac{\left[\nu_{n} \lambda_{g}^{[k]}(f)\right]^{L^{*}}}{\left[\nu_{n} \lambda_{g}^{[k]}(h)\right]^{L^{*}}}$$
(22)

also for all sufficiently large values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, and $\left(\frac{1}{1-r_n}\right)$,

 $\log^{[k]} T_g^{-1} T_f(r_1, r_2,, r_n)$

$$\leq \left(\left[v_{n} \rho_{g}^{[k]}(f) \right]^{L^{*}} + \varepsilon \right) \left[\log \frac{1}{(1 - r_{1})(1 - r_{2}) \dots (1 - r_{n})} \exp L \left(\frac{1}{1 - r_{1}}, \frac{1}{1 - r_{2}}, \dots, \frac{1}{1 - r_{n}} \right) \right] (23)$$
so for (19)&(23), it follows for all sufficiently large values of $\left(\frac{1}{1 - r_{1}} \right), \left(\frac{1}{1 - r_{2}} \right), \dots$ and $\left(\frac{1}{1 - r_{n}} \right)$ that

$$\frac{\log^{[k]} T_g^{-1} T_f(r_1, r_2, \dots, r_n)}{\log^{[k]} T_g^{-1} T_h(r_1, r_2, \dots, r_n)} \le \frac{\left(\left[v_n \rho_g^{[k]}(f)\right]^{L^*} + \epsilon\right)}{\left(\left[v_n \lambda_g^{[k]}(h)\right]^{L^*} - \epsilon\right)}$$

as $\varepsilon(>0)$ is arbitrary, we obtain from above that

$$\lim_{r_{1}, r_{2}, \dots, r_{n} \to 1} \sup \frac{\log^{[k]} T_{g}^{-1} T_{f}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[k]} T_{g}^{-1} T_{h}(r_{1}, r_{2}, \dots, r_{n})} \le \frac{\left[\nu_{n} \rho_{g}^{[k]}(f)\right]^{L^{*}}}{\left[\nu_{n} \lambda_{g}^{[k]}(h)\right]^{L^{*}}}$$
(24)

Thus the theorem follows from (17), (20), (22)&(24).

Theorem 8. Let f,h be any two analytic functions of n-complex variables in U and g be entire in n complex variables with $0 < \left[\nu_n \rho_g^{[k]}(f)\right]^{L^*} < \infty$ and $0 < \left[\nu_n \rho_g^{[k]}(h)\right]^{L^*} < \infty$, where P is any positive integer then

$$\lim_{r_1,r_2,\dots,r_n\to 1}\inf\frac{\log^{[k]}T_g^{-1}T_f(r_1,r_2,\dots,r_n)}{\log^{[k]}T_g^{-1}T_f(r_1,r_2,\dots,r_n)}\leq \frac{\left[\nu_{_{\it{I}}}\rho_g^{[k]}(f)\right]^{L^*}}{\left[\nu_{_{\it{I}}}\rho_g^{[k]}(h)\right]^{L^*}}\leq \lim_{r_1,r_2,\dots,r_n\to 1}\sup\frac{\log^{[k]}T_g^{-1}T_f(r_1,r_2,\dots,r_n)}{\log^{[k]}T_g^{-1}T_h(r_1,r_2,\dots,r_n)}$$

Proof. From the definition of generalized n-variables based k^{th} - relative L*-Nevanlinna order we get for a sequence values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, and $\left(\frac{1}{1-r_n}\right)$ tending to infinity, that

 $\log^{[k]} T_g^{-1} T_h(r_1, r_2, ..., r_n)$

$$\geq \left(\left[v_n \rho_{\mathbf{g}}^{[k]}(\mathbf{f}) \right]^{L^*} - \varepsilon \right) \left[\log \frac{1}{(1 - r_1)(1 - r_2) \dots (1 - r_n)} \exp L \left(\frac{1}{1 - r_1}, \frac{1}{1 - r_2}, \dots, \frac{1}{1 - r_n} \right) \right] (25)$$

now from (23)&(25), it follows for a sequence of values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, ... and $\left(\frac{1}{1-r_n}\right)$ tending to infinity, that

$$\frac{\log^{[k]} T_g^{-1} T_f(r_1, r_2, \dots, r_n)}{\log^{[k]} T_g^{-1} T_h(r_1, r_2, \dots, r_n)} \le \frac{\left(\left[\nu_n \rho_g^{[k]}(f)\right]^{L^*} + \epsilon\right)}{\left(\left[\nu_n \rho_g^{[k]}(h)\right]^{L^*} - \epsilon\right)}$$

as $\varepsilon(>0)$ is arbitrary, we get

$$\lim_{r_{1}, r_{2}, \dots, r_{n} \to 1} \inf \frac{\log^{[k]} T_{g}^{-1} T_{f}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[k]} T_{g}^{-1} T_{f}(r_{1}, r_{2}, \dots, r_{n})} \le \frac{\left[\nu_{n} \rho_{g}^{[k]}(f)\right]^{L^{*}}}{\left[\nu_{n} \rho_{g}^{[k]}(h)\right]^{L^{*}}}$$
(26)

again for a sequence of values of $\left(\frac{1}{1-r_1}\right)$, $\left(\frac{1}{1-r_2}\right)$, ... and $\left(\frac{1}{1-r_n}\right)$ tending to infinity,

 $\log^{[k]} T_g^{-1} T_f(r_1, r_2,, r_n)$

$$\geq \left(\left[v_{n} \rho_{g}^{[k]}(f) \right]^{L^{*}} - \epsilon \right) \left[\log \frac{1}{(1 - r_{1})(1 - r_{2}) \dots (1 - r_{n})} \exp L \left(\frac{1}{1 - r_{1}}, \frac{1}{1 - r_{2}}, \dots, \frac{1}{1 - r_{n}} \right) \right] (27)$$
so combining (16)&(27), we get for a sequence of values of $\left(\frac{1}{1 - r_{1}} \right), \left(\frac{1}{1 - r_{2}} \right), \dots$ and $\left(\frac{1}{1 - r_{n}} \right)$ tending to infinity,

that

$$\frac{\log^{[k]} T_{g}^{-1} T_{f}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[k]} T_{g}^{-1} T_{h}(r_{1}, r_{2}, \dots, r_{n})} \ge \frac{\left(\left[\nu_{n} \rho_{g}^{[k]}(f)\right]^{L^{*}} - \varepsilon\right)}{\left(\left[\nu_{n} \rho_{g}^{[k]}(h)\right]^{L^{*}} + \varepsilon\right)}$$

since $\varepsilon(>0)$ is arbitrary, it follows that

$$\lim_{r_{1}, r_{2}, \dots, r_{n} \to 1} \sup \frac{\log^{[k]} T_{g}^{-1} T_{f}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[k]} T_{g}^{-1} T_{h}(r_{1}, r_{2}, \dots, r_{n})} \ge \frac{\left[\nu_{n} \rho_{g}^{[k]}(f) \right]^{L^{*}}}{\left[\nu_{n} \rho_{g}^{[k]}(h) \right]^{L^{*}}}$$
(28)

thus the theorem from (26)&(28) from theorem 7& theorem 8 we may state the following theorem without proof.

Theorem 9. Let f, h be any two analytic functions of n complex variables in U and g be entire in n-complex variables such that $0 < \left[\nu_n \lambda_g^{[k]}(f)\right]^{L^*} \le \left[\nu_n \rho_g^{[k]}(f)\right]^{L^*} < \infty$ and $0 < \left[\nu_n \lambda_g^{[k]}(h)\right]^{L^*} \le \left[\nu_n \rho_g^{[k]}(h)\right]^{L^*} < \infty$. Then

$$\lim_{r_1, r_2, \dots, r_n \to 1} \inf \frac{\log^{[k]} T_g^{-1} T_f(r_1, r_2, \dots, r_n)}{\log^{[k]} T_g^{-1} T_h(r_1, r_2, \dots, r_n)} \leq \min \left\{ \frac{\left[\nu_n \lambda_g^{[k]}(f)\right]^{L^*}}{\left[\nu_n \lambda_g^{[k]}(h)\right]^{L^*}}, \frac{\left[\nu_n \rho_g^{[k]}(f)\right]^{L^*}}{\left[\nu_n \rho_g^{[k]}(h)\right]^{L^*}} \right\}$$

$$\leq \max \left\{ \frac{\left[v_{n} \lambda_{g}^{[k]}(f) \right]^{L^{*}}}{\left[v_{n} \lambda_{g}^{[k]}(h) \right]^{L^{*}}}, \frac{\left[v_{n} \rho_{g}^{[k]}(f) \right]^{L^{*}}}{\left[v_{n} \rho_{g}^{[k]}(h) \right]^{L^{*}}} \right\} \leq \lim_{r_{1}, r_{2}, \dots, r_{n} \to 1} \sup \frac{\log^{[k]} T_{g}^{-1} T_{f}(r_{1}, r_{2}, \dots, r_{n})}{\log^{[k]} T_{g}^{-1} T_{h}(r_{1}, r_{2}, \dots, r_{n})}$$

where k is any positive integer

References

- A.K. Agarwal., On the properties of an entire function of two complex variables, Canadian J. Math. Vol. 20(1968), PP. 51-57.
- B.A. Fuks., Theory of analytic functions of several complex variables, Moscow, 1963.
- and D. B.K.Lahiri Banarjee., Relative and meromorphic functions. Proc, net. Acad. Sci., India, Vol. 69(A) No. III (1999), PP. 339 - 354.
- C.O. Kiselman, Plurisubharmonic functions and potential theory in several complex variables, contiribution to the book project, Development of Mathematics 1950 – 2000, edited by Jean Paul Pier.
- Banarjee and R.K. Dutta., Relative functions analytic disc, Bull. Cal. Math. Soc. Vol. 101, No. 1 (2009), PP. 95 - 104.
- D. Somasundram and R. Thamizharasi., A note on the entire functions of L-bounded index $India\ J.\ Pure\ App.\ Math.\ ,vol.\ 19, No.\ 3 (1988), PP.\ 284-293.$
- G. Valiron., Lectures on the general theory of integral functions, Chelsea Publishing company 1949.
- O.P. Juneja and G.P. Kapoor., Analytic functions growth aspect, Pitman advanced publishing program, 1985.