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Introduction, Definition and Notation 

Let   be function in the unit disc   *   | |   + is said to be of finite Nevanlinna order , - if their exist a number 

μ such that the Nevanlinna characteristic function 

  ( )  
 

  
∫    | (    )|  
  

 

 

satisfies    ( )  (   )
   for all     ( )       

The greatest lower bound if all such number μ is called the Nevanlinna order of   Thus the Nevanlinna order     of  
is given by 

       
   

   
     ( )

    (   )
 

Similarly, the Nevanlinna lower order    of   are given by  

       
   

   
     ( )

    (   )
 

Banerjee and Datta , - give the following definition in a unit disc. 

 

             , - of   be analytic in   and   be entire, the relative order of   with respect to   denoted by   ( ) is 

defined by  

  ( )     ,       ( )    *(
 

   
)
 

+              ( )     - 

Similarly, one may define  ( ), the relative lower order of  with respect to   , with  ( )        The definition 

coincides with the definition of Nevanlinna order of   

  ( )     
   

   
     

    ( )

    (   )
 

Extending the nation of single variables to several variables, let  (          ) be a non-constant analytic function 

of   complex variables            in the unit polydisc 

  {(          )   |  |                                } 

generalized  -variables     Nevanlinna order and the generalized  -variables     Nevanlinna lower  order for 

functions of   complex variables analytic in a unit polydisc as follows. 

nv   
, -     

             
 

   , -   (           )
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and  
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, -     
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where    , -      (   ,   - ) for         and    , -    when        the above definition reduces to the 

definition of Juneja and Kapoor , -. 
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              Generalized  -variables    -relative Nevanlinna order and the generalized  -variables    -relative 

Nevalinna lower order for functions of  -complex variables analytic in unit polydisc as follows: 
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where   and   are any two positive integers. If we consider       in definition    then it coincides with 

definition    
Somasundaram and Thamizharasi , - introduced the notion of  -order for entire functions where 

   (           ) is a positive continuous function increasing slowly i.e., 

 (              )  (           ) as             is a positive constant a. 
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              The generalized  -order (alternatively generalized relative  -order) 0
nv   
, -( )1

 

and relative 

(alternatively generalized relative  -lower order)0
nv   
, -( )1

 

of analytic function   in   (unit polydisc) with respect to 

another entire function   are defined as 
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              The relative generalized   -order (alternatively generalized relative   -order) 0
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, -( )1

  

and 

relative generalized   -lower order (alternatively generalized relative   -lower order) 0
nv   
, -( )1

  

of analytic 

function   in   (unit polydisc) with respect to another function   are defined as  
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The following definition is also well known. 

 

              Two entire function   and   are said to be asymptotically equivalent if there exist      , such 

that 
 ( )

 ( )
   as     and in this case we write    . If     then clearly     

In the paper we establish some results relating to the composition of two non-constant analytic functions of 

  complex variables in the unit polydisc 

   {(           )   |  |                              } 

Also we prove a few theorems related to generalized   variables based     relative    -Nevanlinna order 

0
nv   
, -( )1

  

(generalized  -variables based    relative   -Nevanlinna lower order 0
nv   
, -( )1

  

 of an analytic 
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function   with respect to an entire function   of    complex variables. Which are in fact some entertains of earlier 

results. We do not explain the standard definitions and notations in the theory of entire functions are available in 

, -, -, -, -, -  
 

         . Let   and   be any two non constant analytic functions of  -complex variables in the unit polydisc   

such that   0
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where   and   are any two positive integers. 

 

       From the definition of generalized  -variables based     Nevanlinna     order and generalized  -variables  

    Nevanlinna     lower order of analytic functions in the unit polydisc    we have for arbitrary positive   and for 

all sufficiently large values of 
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now from( )&( )  it follows for all sufficiently large values of .
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again for a sequence of values of .
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so combining ( )&( )  we get for a sequence of values of .
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/  tending to infinity that  
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since   (  ) is arbitrary,  it follows that 
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also for a sequence of .
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now from ( )&( )  we obtain for a sequence of values of .
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choosing    , we get that 
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also for all sufficiently large values  of .
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so form( )&( )  it follows for all sufficiently large values  of .
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as (  ) is arbitrary,  we obtain that 
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Thus the theorem ( ) ( ) ( )&(  )the following theorem can be proved in the line of theorem   and so its proof is 

omitted. 
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where   and   are any two positive integers.  

 

       From the definition of generalized  -variables based    -Nevanlinna   -order, we get for sequence of values 

of .
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now form ( )&(  )  it follows from a sequence of values of .
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so combining ( )&(  )  we get for a sequence of values of .
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since  (  ) is arbitrary,  it follows that 
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Thus the theorem follows from (  )&(  ). 
 

         . Let   and   be any two non-constant analytic functions of  -complex variables in the unit polydisc 
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The following theorem is a natural consequence of theorem   and theorem    
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where   and   are any two positive integers. 
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we establish some comparative growth properties related to generalized  -variables based     relative    Nevanlinna 

order (generalized  -variables based     relative   -Nevanlinna lower order) of an analytic function with respect to 

an entire function in the unit polydisc    
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where   is any positive integer. 

 

       From the definition of generalized  -variables based     relative    Nevanlinna order and generalized  -
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thus the theorem from (  )&(  ) from theorem  & theorem   we may state the following theorem without proof. 
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where   is any positive integer. 
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