Some results on relative L^{*}-order of analytic function in the unit polydisc

Balram Prajapati ${ }^{1}$, Rakesh Kumar ${ }^{2}$, Anupma Rastogi ${ }^{3}$
${ }^{1}$ Research Scholar, ${ }^{2}$ Research Scholar, ${ }^{3}$ Assistant Professor \& Department of Mathematics \& Astronomy \& University of Lucknow, Lucknow, Uttar Pradesh, India

Abstract

In this paper we proved some earlier results on the basis of relative L^{*}-order of analytic function in a unit polydisc

Keywords - Analytic function, polydisc, relative order, relative L^{*}-order.

Introduction, Definition and Notation

Let f be function in the unit disc $\mathrm{U}=\{\mathrm{z}:|\mathrm{z}|<1\}$ is said to be of finite Nevanlinna order [8] if their exist a number μ such that the Nevanlinna characteristic function

$$
\mathrm{T}_{\mathrm{f}}(\mathrm{r})=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\mathrm{f}\left(\mathrm{re}^{\mathrm{i} \theta}\right)\right| \mathrm{d} \theta
$$

satisfies $\mathrm{T}_{\mathrm{f}}(\mathrm{r})<(1-\mathrm{r})^{-\mu}$ for all $0<\mathrm{r}_{0}(\mu)<r<1$.
The greatest lower bound if all such number μ is called the Nevanlinna order off. Thus the Nevanlinna order ρ_{f} off is given by

$$
\rho_{\mathrm{f}}=\lim _{\mathrm{r} \rightarrow 1} \sup \frac{\log \mathrm{~T}_{\mathrm{f}}(\mathrm{r})}{-\log (1-\mathrm{r})}
$$

Similarly, the Nevanlinna lower order λ_{f} of f are given by

$$
\lambda_{\mathrm{f}}=\liminf _{\mathrm{r} \rightarrow 1} \frac{\log \mathrm{~T}_{\mathrm{f}}(\mathrm{r})}{-\log (1-\mathrm{r})}
$$

Banerjee and Datta [5] give the following definition in a unit disc.
Definition 1. [5] of f be analytic in U and g be entire, the relative order of f with respect to g denoted by $\rho_{g}(f)$ is defined by

$$
\rho_{\mathrm{g}}(\mathrm{f})=\inf \left\{\mu>0: \mathrm{T}_{\mathrm{f}}(\mathrm{r})<\mathrm{T}_{\mathrm{g}}\left[\left(\frac{1}{1-\mathrm{r}}\right)^{\mu}\right], \text { for all } 0<\mathrm{r}_{0}(\mu)<r<1\right\}
$$

Similarly, one may define $\lambda_{g}(f)$, the relative lower order off with respect to g, with $g(z)=\operatorname{expz}$. The definition coincides with the definition of Nevanlinna order off.

$$
\lambda_{\mathrm{g}}(\mathrm{f})=\liminf _{\mathrm{r} \rightarrow 1} \frac{\log \mathrm{~T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}(\mathrm{r})}{-\log (1-\mathrm{r})}
$$

Extending the nation of single variables to several variables, let $f\left(z_{1}, z_{2}, \ldots . z_{n}\right)$ be a non-constant analytic function of n complex variables $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots . \mathrm{z}_{\mathrm{n}}$ in the unit polydisc

$$
\mathrm{U}=\left\{\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots . \mathrm{z}_{\mathrm{n}}\right):\left|\mathrm{z}_{\mathrm{j}}\right| \leq 1, \mathrm{j}=1,2, \ldots, \mathrm{n} ; \mathrm{r}_{1}>0, \mathrm{r}_{2}>0, \ldots . \mathrm{r}_{\mathrm{n}}>0\right\}
$$

generalized n -variables $\mathrm{k}^{\text {th }}$ Nevanlinna order and the generalized n -variables $\mathrm{k}^{\text {th }}$ Nevanlinna lower order for functions of n complex variables analytic in a unit polydisc as follows.

$$
v_{n} \rho_{\mathrm{f}}^{[\mathrm{k}]}=\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{-\log \left[\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)\right]}
$$

and

$$
v_{n} \lambda_{\mathrm{f}}^{[\mathrm{k}]}=\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)}{-\log \left[\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)\right]}
$$

where $\log { }^{[1]} \mathrm{x}=\log \left(\log { }^{[1-1]} \mathrm{x}\right)$ for $\mathrm{l}=1,2, \ldots$ and $\log { }^{[0]} \mathrm{x}=\mathrm{x}$ when $\mathrm{n}=\mathrm{k}=1$, the above definition reduces to the definition of Juneja and Kapoor [8].

Definition 2. Generalized n -variables $\mathrm{k}^{\text {th }}$-relative Nevanlinna order and the generalized n -variables $\mathrm{k}^{\text {th }}$-relative Nevalinna lower order for functions of n-complex variables analytic in unit polydisc as follows:

$$
v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})=\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}(\mathrm{r})\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{-\log \left[\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)\right]}
$$

and

$$
v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})=\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \inf \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}(\mathrm{r})\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{-\log \left[\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)\right]}
$$

where k and n are any two positive integers. If we consider $\mathrm{k}=\mathrm{n}=1$ in definition 2 , then it coincides with definition 1.
Somasundaram and Thamizharasi [6] introduced the notion of L-order for entire functions where $\mathrm{L} \equiv \mathrm{L}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)$ is a positive continuous function increasing slowly i.e., $L\left(\operatorname{ar}_{1}, \mathrm{ar}_{2}, \ldots, \mathrm{ar}_{\mathrm{n}}\right) \sim \mathrm{L}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)$ as $\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}$ is a positive constant a.
Definition 3. The generalized L-order $\left[v_{n} \rho_{\mathrm{f}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}$ and $\left[v_{n} \lambda_{\mathrm{f}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}$

$$
\left[v_{n} \rho_{\mathrm{f}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}=\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log \left[\frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots ., \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right]}
$$

and

$$
\left[v_{n} \lambda_{\mathrm{f}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}=\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \inf \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log \left[\frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots ., \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right]}
$$

Definition 4. The generalized L-order (alternatively generalized relative L-order) $\left[v_{n} \rho_{g}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}}$ and relative (alternatively generalized relative L-lower order) $\left[v_{n} \lambda_{g}^{[k]}(f)\right]^{\mathrm{L}}$ of analytic function f in U (unit polydisc) with respect to another entire function g are defined as

$$
\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}}=\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}(\mathrm{r})\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log \left[\frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \mathrm{L}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots, \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right]}
$$

and

$$
\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}}=\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \inf \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}(\mathrm{r})\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log \left[\frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \mathrm{L}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots ., \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right]}
$$

Definition 5. The relative generalized L^{*}-order (alternatively generalized relative L^{*}-order) $\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}$ and relative generalized L^{*}-lower order (alternatively generalized relative L^{*}-lower order) $\left[v_{n} \lambda_{g}^{[k]}(f)\right]^{L^{*}}$ of analytic function f in U (unit polydisc) with respect to another function g are defined as

$$
\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}=\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}(\mathrm{r})\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log \left[\frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots, \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right]}
$$

and

$$
\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}=\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \inf \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}(\mathrm{r})\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log \left[\frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots, \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right]}
$$

The following definition is also well known.
Definition 6. Two entire function f and g are said to be asymptotically equivalent if there exist $0 \leq \alpha<\infty$, such that $\frac{\mathrm{F}(\mathrm{r})}{\mathrm{G}(\mathrm{r})} \rightarrow \alpha$ as $\alpha \rightarrow \infty$ and in this case we write $\mathrm{f} \sim \mathrm{g}$. If $\mathrm{f} \sim \mathrm{g}$ then clearly $\mathrm{g} \sim \mathrm{f}$

In the paper we establish some results relating to the composition of two non-constant analytic functions of n complex variables in the unit polydisc

$$
\mathrm{U}=\left\{\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{n}}\right):\left|\mathrm{z}_{\mathrm{j}}\right| \leq 1, \mathrm{j}=1,2, \ldots, \mathrm{n} ; \mathrm{r}_{1}>0, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}>0\right\}
$$

Also we prove a few theorems related to generalized n - variables based $k^{\text {th }}$ relative L^{*}-Nevanlinna order $\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}$ (generalized n -variables based $\mathrm{k}^{\text {th }}$ relative L^{*}-Nevanlinna lower order $\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}$ of an analytic
function f with respect to an entire function g of n complex variables. Which are in fact some entertains of earlier results. We do not explain the standard definitions and notations in the theory of entire functions are available in [7][1][4][2][3].

Theorem 1. Let f and g be any two non constant analytic functions of n-complex variables in the unit polydisc U such that $0<\left[v_{n} \lambda_{\text {fog }}^{[\mathrm{kJ}]}\right]^{\mathrm{L}^{*}} \leq\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}<\infty$ and $0<\left[v_{n} \lambda_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}} \leq\left[v_{n} \rho_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}<\infty$. Then

$$
\begin{gathered}
\frac{\left[v_{n} \lambda_{f o g}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}} \leq \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \inf \frac{\log { }^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)} \\
\leq \frac{\left[v_{n} \lambda_{\text {fog }}^{[\mathrm{kk}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}} \leq \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{l]}]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \lambda_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}}
\end{gathered}
$$

where k and l are any two positive integers.
Proof. From the definition of generalized n-variables based $\mathrm{k}^{\text {th }}$ Nevanlinna $L^{*}-$ order and generalized n-variables $k^{\text {th }}$ Nevanlinna $L^{*}-$ lower order of analytic functions in the unit polydisc U, we have for arbitrary positive ε and for all sufficiently large values of $\frac{1}{1-r_{1}}, \frac{1}{1-r_{2}}, \ldots$ and $\frac{1}{1-r_{n}}$ that

$$
\begin{align*}
& \log ^{[k]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right) \\
& \geq\left(\left[v_{n} \lambda_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}-\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots, \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{1}
\end{align*}
$$

and

$$
\begin{equation*}
\log ^{[1]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right) \geq\left(\left[v_{n} \rho_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}+\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots ., \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{2}
\end{equation*}
$$

now from $(1) \&(2)$, it follows for all sufficiently large values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$ that

$$
\frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{l}]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)} \geq \frac{\left(\left[v_{n} \lambda_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}-\varepsilon\right)}{\left(\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{l}]}\right]^{\mathrm{L}^{*}}+\varepsilon\right)}
$$

as $\varepsilon>0$ is positive we obtain that

$$
\begin{equation*}
\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots . \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[1]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \geq \frac{\left[v_{n} \lambda_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{ll}]}\right]^{\mathrm{L}^{*}}} \tag{3}
\end{equation*}
$$

again for a sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$, tending to infinity.

$$
\begin{align*}
& \log ^{[k]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right) \\
& \geq\left(\left[v_{n} \lambda_{f o g}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}+\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots .\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots, \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{4}
\end{align*}
$$

and for all sufficiently large values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$
$\log { }^{[1]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right) \geq\left(\left[v_{n} \lambda_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}-\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots .\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots ., \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right]$
so combining (4)\&(5), we get for a sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$, tending to infinity that

$$
\frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[l]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left(\left[v_{n} \lambda_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}+\varepsilon\right)}{\left(\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{l}]}\right]^{\mathrm{L}^{*}}-\varepsilon\right)}
$$

since $\varepsilon(>0)$ is arbitrary, it follows that
also for a sequence of $\left(\frac{1}{1-\mathrm{r}_{1}}\right),\left(\frac{1}{1-\mathrm{r}_{2}}\right), \ldots$ and $\left(\frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)$, tending to infinity, we get

$$
\begin{equation*}
\log { }^{[1]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right) \leq\left(\left[v_{n} \lambda_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}+\varepsilon\right)\left[\log \frac{1}{\left(1-r_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots ., \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{7}
\end{equation*}
$$

now from (1)\&(7), we obtain for a sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$ tending to infinity that

$$
\frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[l]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \geq \frac{\left(\left[v_{n} \lambda_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}-\varepsilon\right)}{\left(\left[v_{n} \lambda_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}+\varepsilon\right)}
$$

choosing $\varepsilon \rightarrow 0$, we get that

$$
\begin{equation*}
\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{l}]} \mathrm{Tg}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \geq \frac{\left[v_{n} \lambda_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \lambda_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}} \tag{8}
\end{equation*}
$$

also for all sufficiently large values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$,

$$
\begin{align*}
& \log ^{[k]} \mathrm{T}_{\text {fog }}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right) \\
& \leq\left(\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}+\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots ., \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{9}
\end{align*}
$$

so form(5) \&(9), it follows for all sufficiently large values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$, that

$$
\frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[1]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left(\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}+\varepsilon\right)}{\left(\left[v_{n} \lambda_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}-\varepsilon\right)}
$$

$\operatorname{as} \varepsilon(>0)$ is arbitrary, we obtain that

$$
\begin{equation*}
\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log { }^{[]]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \lambda_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}} \tag{10}
\end{equation*}
$$

Thus the theorem (3),(6),(8)\&(10)the following theorem can be proved in the line of theorem 1 and so its proof is omitted.

Theorem 2. Let f and g be any two non constant analytic functions of n-complex variables in the unit polydisc U with $0<\left[v_{n} \lambda_{\text {fog }}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}} \leq\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{kk}}\right]^{\mathrm{L}^{*}}<\infty$ and $0<\left[v_{n} \lambda_{\mathrm{f}}^{[\mathrm{s}]}\right]^{\mathrm{L}^{*}} \leq\left[v_{n} \rho_{\mathrm{f}}^{[\mathrm{s}]}\right]^{\mathrm{L}^{*}}<\infty$. and k and s are any two positive integers. Then

$$
\frac{\left[v_{n} \lambda_{\mathrm{fog}}^{[\mathrm{kk}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{f}}^{[\mathrm{ss}]}\right]^{\mathrm{L}^{*}}} \leq \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \inf \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{s}]} \mathrm{T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left[v_{n} \lambda_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{ss}]}\right]^{\mathrm{L}^{*}}} \leq \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{s}]} \mathrm{T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \int_{\mathrm{f}}^{[\mathrm{s}]}\right]^{\mathrm{L}^{*}}}
$$

Theorem 3. Let f and g be any two non constant analytic functions of n-complex variables in the unit polydisc U such that $0<\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}<\infty$ and $0<\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{I}]}\right]^{\mathrm{L}^{*}}<\infty$. Then

$$
\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \inf \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}} \leq \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[l]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}
$$

where k and l are any two positive integers.
Proof. From the definition of generalized n-variables based $\mathrm{k}^{\text {th }}$-Nevanlinna L^{*}-order, we get for sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$ tending to infinity that

$$
\begin{align*}
& \log ^{[l]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right) \\
& \quad \leq\left(\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}-\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots .\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots, \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{11}
\end{align*}
$$

now form (9)\&(11), it follows from a sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$ tending to infinity that $\frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{l}]} \mathrm{Tg}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left(\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}+\varepsilon\right)}{\left(\left[v_{n} \rho_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}-\varepsilon\right)}$, as $\varepsilon(>0)$ is arbitrary, then $\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \inf \frac{\log { }^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[1]} \mathrm{Tg}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{kk}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}}$
again for a sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$ tending to infinity

$$
\begin{align*}
& \log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right) \\
& \geq\left(\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}-\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots, \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{13}
\end{align*}
$$

so combining (2)\&(13), we get for a sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$ tending to infinity that

$$
\frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{l}]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)} \geq \frac{\left(\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}-\varepsilon\right)}{\left(\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{ll}}\right]^{\mathrm{L}^{*}}+\varepsilon\right)}
$$

since $\varepsilon(>0)$ is arbitrary, it follows that

$$
\begin{equation*}
\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{l}]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \geq \frac{\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{l}]}\right]^{\mathrm{L}^{*}}} \tag{14}
\end{equation*}
$$

Thus the theorem follows from (12) \& (14).
Theorem 4. Let f and g be any two non-constant analytic functions of n -complex variables in the unit polydisc Uwith $0<\left[v_{n} \rho_{\text {fog }}^{[\mathrm{kx}]}\right]^{\mathrm{L}^{*}}<\infty$ and $0<\left[v_{n} \rho_{\mathrm{f}}^{[\mathrm{ss}]}\right]^{\mathrm{L}^{*}}<\infty$. Where k and s are any two positive integer then

$$
\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \inf \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{s}]} \mathrm{T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{f}}^{[\mathrm{s}]}\right]^{\mathrm{L}^{*}}} \leq \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{s}]} \mathrm{T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}
$$

The following theorem is a natural consequence of theorem 1 and theorem 3.
Theorem 5. Let f and g be any two non constant analytic functions of n -complex variables in the unit polydisc U such that $0<\left[v_{n} \lambda_{\text {fog }}^{[\mathrm{kk}]}\right]^{\mathrm{L}^{*}} \leq\left[v_{n} \rho_{\text {fog }}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}<\infty$ and $0<\left[v_{n} \lambda_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}} \leq\left[v_{n} \rho_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}<\infty$. Then

$$
\begin{aligned}
& \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \inf \frac{\log { }^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log g^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)} \leq \min \left\{\frac{\left[v_{n} \lambda_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \lambda_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}}, \frac{\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left.\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{ll]}}\right]^{\mathrm{L}^{*}}\right\}}\right\} \\
& \leq \max \left\{\frac{\left[v_{n} \lambda_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \lambda_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}}, \frac{\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{kx}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{g}}^{[1]}\right]^{\mathrm{L}^{*}}}\right\} \leq \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[l]} \mathrm{T}_{\mathrm{g}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)}
\end{aligned}
$$

where k and l are any two positive integers.
Theorem 6. Let f and g be any two non constant analytic functions of n-complex variables in the unit polydisc U with $0<\left[v_{n} \lambda_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}} \leq\left[v_{n} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}<\infty$ and $0<\left[v_{n} \lambda_{\mathrm{f}}^{[\mathrm{ss}]}\right]^{\mathrm{L}^{*}} \leq\left[v_{n} \rho_{\mathrm{f}}^{[\mathrm{ss}]}\right]^{\mathrm{L}^{*}}<\infty$. where k and s are any two positive integers.then

$$
\left.\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1^{-}} \inf \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{s}]} \mathrm{T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)} \leq \min \left\{\frac{\left[v_{n} \lambda_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \lambda_{\mathrm{f}}^{[\mathrm{s}]}\right]^{\mathrm{L}^{*}}}, \frac{\left[v_{n}\right.}{} \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}\right)
$$

$$
\leq \max \left\{\frac{\left[v_{n} \lambda_{\mathrm{fog}}^{[\mathrm{k}}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \lambda_{\mathrm{f}}^{[\mathrm{s}}\right]^{\mathrm{L}^{*}}}, \frac{\left[v_{n}, \rho_{\mathrm{fog}}^{[\mathrm{k}]}\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{f}}^{[\mathrm{s}]}\right]^{\mathrm{L}^{*}}}\right\} \leq \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{fog}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{s}]} \mathrm{T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}
$$

we establish some comparative growth properties related to generalized n-variables based $k^{\text {th }}$ relative L^{*} Nevanlinna order (generalized n-variables based $\mathrm{k}^{\text {th }}$ relative L^{*}-Nevanlinna lower order) of an analytic function with respect to an entire function in the unit polydisc U.

Theorem 7. Let f , h be any two non-constant analytic functions of n -complex variables inU and g be entire in n complex varibales such $0<\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}} \leq\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{kk}}(\mathrm{f})\right]^{\mathrm{L}^{*}}<\infty$ and $0<\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}} \leq\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}<\infty$. Then

$$
\begin{gathered}
{\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}} \leq \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \inf \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)}} \\
\leq \frac{\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}}{\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}} \leq \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)}{\log { }^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}}{\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}}
\end{gathered}
$$

where k is any positive integer.
Proof. From the definition of generalized n-variables based $k^{\text {th }}$ relative L^{*} Nevanlinna order and generalized n variables based $\mathrm{k}^{\text {th }}$ relative L^{*}-Nevanlinna lower order of an analytic function with respect to an entire functions in an unit polydisc U, we have for arbitrary positive ε and for all sufficiently large values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$ that
$\log ^{[k]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)$

$$
\begin{align*}
& \geq \geq\left(\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}-\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots, \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{15}\\
& \log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right) \\
& \leq\left(\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}+\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots ., \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{16}
\end{align*}
$$

now from(15) \& (16), it follows for all sufficiently large values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$ that

$$
\frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \geq \frac{\left(\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}-\varepsilon\right)}{\left(\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}+\varepsilon\right)}
$$

as $\varepsilon>0$ is arbitrary, we obtain that

$$
\begin{equation*}
\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \inf \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \geq \frac{\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}} \tag{17}
\end{equation*}
$$

again we have for a sequence values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-\mathrm{r}_{2}}\right), \ldots$ and $\left(\frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)$ tending to infinity that

$$
\begin{align*}
& \log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right) \\
& \leq\left(\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}+\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots, \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{18}
\end{align*}
$$

and for all sufficiently large values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$,

$$
\begin{align*}
& \log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right) \\
& \geq\left(\left[\nu_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}-\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots ., \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{19}
\end{align*}
$$

so combining (18)\&(19), we get for sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$ tending to infinity that

$$
\frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left(\left[\nu_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}+\varepsilon\right)}{\left(\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}-\varepsilon\right)}
$$

since $\varepsilon(>0)$ is arbitrary, it follows that

$$
\begin{equation*}
\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow 1} \inf \frac{\log ^{[k]} \operatorname{Tog}_{g}^{-1} T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\log ^{[k]} T_{g}^{-1} T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)} \geq \frac{\left[v_{n} \lambda_{g}^{[k]}(f)\right]^{L^{*}}}{\left[v_{n} \lambda_{g}^{[k]}(h)\right]^{L^{*}}} \tag{20}
\end{equation*}
$$

also for sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$ tending to infinity,

$$
\begin{align*}
& \log ^{[k]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right) \\
& \geq\left(\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}+\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots \cdot\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots ., \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{21}
\end{align*}
$$

now from (15) \& (21), we obtain for sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$.and $\left(\frac{1}{1-r_{n}}\right)$ tending to infinity that

$$
\frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \geq \frac{\left(\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}-\varepsilon\right)}{\left(\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}+\varepsilon\right)}
$$

choosing $\varepsilon>0$ is arbitrary that

$$
\begin{equation*}
\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \sup \frac{\log ^{[\mathrm{lk}]} \mathrm{T}_{\mathrm{g}}^{-1} T_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \geq \frac{\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}}{\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{kJ}](\mathrm{h})]^{\mathrm{L}^{*}}}\right.} \tag{22}
\end{equation*}
$$

also for all sufficiently large values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$,

$$
\begin{align*}
& \log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right) \\
& \leq\left(\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}+\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots .\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots ., \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{23}
\end{align*}
$$

so for (19) \& (23), it follows for all sufficiently large values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$. and $\left(\frac{1}{1-r_{n}}\right)$ that

$$
\frac{\log ^{[k]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left(\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{lk}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}+\varepsilon\right)}{\left(\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{kk}}(\mathrm{h})\right]^{\mathrm{L}^{*}}-\varepsilon\right)}
$$

as $\varepsilon(>0)$ is arbitrary, we obtain from above that

$$
\begin{equation*}
\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow 1} \sup \frac{\log ^{[k]} T \bar{g}^{-1} T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{\log ^{[k]} T_{g}^{-1} T_{h}\left(r_{1}, r_{2}, \ldots, r_{n}\right)} \leq \frac{\left[v_{n} \rho_{g}^{[k]}(f)\right]^{L^{*}}}{\left[v_{n} \sum_{g}^{[k]}(h)\right]^{L^{*}}} \tag{24}
\end{equation*}
$$

Thus the theorem follows from (17), (20), (22) \& (24).
Theorem 8. Let f, h be any two analytic functions of n -complex variables in U and g be entire in n complex variables with $0<\left[{ }_{n} \rho_{\mathrm{g}}^{[\mathrm{K}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}<\infty$ and $0<\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}<\infty$. where P is any positive integer then

$$
\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \inf \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}} \leq \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[k]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}
$$

Proof. From the definition of generalized n -variables based $\mathrm{k}^{\text {th }}$ - relative L^{*}-Nevanlinna order we get for a sequence values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$.and $\left(\frac{1}{1-r_{n}}\right)$ tending to infinity, that

$$
\begin{align*}
& \log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right) \\
& \geq\left(\left[{ }_{\mathrm{v}}^{n} \mathrm{~g} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}-\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots .\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots, \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{25}
\end{align*}
$$

now from (23) \& (25), it follows for a sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$ tending to infinity, that

$$
\frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left(\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}+\varepsilon\right)}{\left(\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}-\varepsilon\right)}
$$

as $\varepsilon(>0)$ is arbitrary, we get

$$
\begin{equation*}
\lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \inf \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[k]} \mathrm{Tg}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \frac{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}} \tag{26}
\end{equation*}
$$

again for a sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$ tending to infinity,

$$
\begin{align*}
& \log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right) \\
& \geq\left(\left[{ }_{v_{n}} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}-\varepsilon\right)\left[\log \frac{1}{\left(1-\mathrm{r}_{1}\right)\left(1-\mathrm{r}_{2}\right) \ldots .\left(1-\mathrm{r}_{\mathrm{n}}\right)} \operatorname{expL}\left(\frac{1}{1-\mathrm{r}_{1}}, \frac{1}{1-\mathrm{r}_{2}}, \ldots ., \frac{1}{1-\mathrm{r}_{\mathrm{n}}}\right)\right] \tag{27}
\end{align*}
$$

so combining (16) \& (27), we get for a sequence of values of $\left(\frac{1}{1-r_{1}}\right),\left(\frac{1}{1-r_{2}}\right), \ldots$ and $\left(\frac{1}{1-r_{n}}\right)$ tending to infinity, that

$$
\frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \geq \frac{\left(\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}-\varepsilon\right)}{\left(\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}+\varepsilon\right)}
$$

since $\varepsilon(>0)$ is arbitrary, it follows that

$$
\begin{equation*}
\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow 1} \sup \frac{\log ^{[k]} T_{\mathrm{g}}^{1} T_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\left.\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}} \mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \geq \frac{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{ff})\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}} \tag{28}
\end{equation*}
$$

thus the theorem from (26)\&(28) from theorem $7 \&$ theorem 8 we may state the following theorem without proof.
Theorem 9. Let f, h be any two analytic functions of n complex variables in U and g be entire in n -complex variables such that $0<\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}} \leq\left[v_{n}{ }_{n} \mathrm{~g}_{\mathrm{g}}^{\mathrm{kk}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}<\infty$ and $0<\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}} \leq\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}<\infty$. Then

$$
\begin{aligned}
& \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \inf \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)} \leq \min \left\{\frac{\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}}{\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}} \frac{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}}\right\} \\
& \leq \max \left\{\frac{\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}}{\left[v_{n} \lambda_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}} \frac{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{f})\right]^{\mathrm{L}^{*}}}{\left[v_{n} \rho_{\mathrm{g}}^{[\mathrm{k}]}(\mathrm{h})\right]^{\mathrm{L}^{*}}}\right\} \leq \lim _{\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}} \rightarrow 1} \sup \frac{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{f}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{n}}\right)}{\log ^{[\mathrm{k}]} \mathrm{T}_{\mathrm{g}}^{-1} \mathrm{~T}_{\mathrm{h}}\left(\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots ., \mathrm{r}_{\mathrm{n}}\right)}
\end{aligned}
$$

where k is any positive integer.

References

[1] A.K. Agarwal., On the properties of an entire function of two complex variables, Canadian J. Math. Vol. 20(1968), PP. $51-57$.
[2] B.A. Fuks., Theory of analytic functions of several complex variables, Moscow, 1963.
[3] B.K.Lahiri and D. Banarjee., Relative order of entire and meromorphic functions, Proc, net. Acad. Sci. , India, Vol. 69(A) No. III (1999), PP. 339 - 354.
[4] C.O. Kiselman, Plurisubharmonic functions and potential theory in several complex variables, contiribution to the book project , Development of Mathematics 1950 - 2000, edited by Jean Paul Pier.
[5] D. Banarjee and R.K. Dutta., Relative order of functions analytic in the unit disc, Bull. Cal. Math. Soc. Vol. 101, No. 1 (2009), PP. 95 - 104.
[6] D. Somasundram and R. Thamizharasi., A note on the entire functions of L-bounded index and L-type, India J. Pure App. Math. , vol. 19, No. 3(1988), PP. 284 - 293.
[7] G. Valiron., Lectures on the general theory of integral functions, Chelsea Publishing company 1949.
[8] O.P. Juneja and G.P. Kapoor., Analytic functions growth aspect, Pitman advanced publishing program, 1985.

