Spatially symmetric operators of Strum Liouville Problems

B.Kavitha ${ }^{\# 1}$, Dr.C.Vimala ${ }^{\# 2}$
${ }^{1}$ Assistant Professor/Department of Mathematics, Sri Manakula Vinayagar Engineering College, Pondicherry,India.
${ }^{2}$ Dr.C.Vimala Associate Professor/Department of Mathematics, Periyar Maniyammai University,Thanjore,India

Abstract: This paper we discusses with spatially symmetric operators of Strum-Liouville problem of eigenvalues and eigenfunctions, of the differential operators $-\left(\frac{d^{2}}{d x^{2}}\right)+P(x)$.We simplify the proofs of theorems due to Borg, Levinson,Hochstadt and Lieverman. In the present article Strum-Liouville operators of spatially symmetric type

Keywords:- spatially symmetric operators in Strum-Liouville problem of eigenvalues and eigenfunctions,

Introduction

The spatially symmetric operators of Strum-Liouville problem within the notations for $P \in C^{\prime}[0,1], h \in R$ and $H \in R, A_{P . h . H}$ denotes the realization in $L^{2}(0,1)$ of the differential operator, For $P \in C_{s}^{\prime}[0,1]$, and $h \in R \quad A_{P . h . h}$ denotes the symmetric operator, for $P \in C{ }^{\prime}[0,1], h \in R$ and $\lambda \in R, \phi=\phi(x: p, h, \lambda)$ and $\phi^{*}=\phi^{*}(x: p, h, \lambda)$, for $P \in C^{\prime}[0,1], A_{p}^{*}$ denotes the realization $L^{2}[0,1]$ of the differential operator, For $n_{1} \geq 1, P \in C '[0,1]$, and $h \in R, W=W\left(x ; p, h, n_{1}\right)$. The method of separation of variables utilized within the solutions of boundary value problems of mathematical physics frequently gives rise so called StrumLiouville eigenvalue problems of spatially symmetric operators ,our attention to small but significant fragment of the theory of Strum-Liouville problems and their solutions.

1.1 Spatially symmetric operators

For $P \in C^{\prime}[0,1], h \in R$ and $H \in R, A_{P . h . H}$ denotes the realization in $L^{2}(0,1)$ of the differential operator

$$
-\left(\frac{d^{2}}{d x^{2}}\right)+P(x)
$$

With the boundary condition $\left.\left[-\left(\frac{d}{d x}\right)+h\right]\right|_{x=0}$

$$
\begin{aligned}
& =\left.\left[-\left(\frac{d}{d x}\right)+h\right]\right|_{x=0} \\
& =0
\end{aligned}
$$

Let $\sigma\left(A_{P . h . H}\right)=\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ be the eigenvalues $A_{P . h . H}$ each $\not \subset \lambda_{n}$ is simple $-\infty<\lambda_{0}<\lambda_{1}<\ldots \rightarrow \infty$ Put

$$
\begin{equation*}
C_{s}^{\prime}[0,1]=\left\{P \in C^{\prime}[0,1] \mid P(1-x)=P(x), 0 \leq x \leq 1\right\} \tag{1.1}
\end{equation*}
$$

Then $A_{P . h . H}$ is a spatially symmetric operator if and only if $P \in C_{s}^{\prime}[0,1]$ and a h $=\mathrm{H}$.
Let a symmetric operator $A_{P . h . h}$ be given, and let $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$

$$
-\infty<\lambda_{0}<\lambda_{1}<\ldots \rightarrow \infty \text { be } \sigma\left(A_{P . h . h}\right) \text {, the eigenvalues of } A_{P . \text {.h. } h}
$$

Furthermore let $\left\{\lambda_{m}\right\}_{m=0}^{\infty}$
$\left(-\infty<\mu_{0}<\mu_{1}<\ldots \rightarrow \infty\right)$ be the eigenvalues of another symmetric operator $A_{q . j, j}$.

1.2 Notation (Spatially symmetric operators)

For $P \in C_{s}^{\prime}[0,1]$, and $h \in R \quad A_{P . h . h}$ denotes the symmetric operator

$$
-\left(\frac{d^{2}}{d x^{2}}\right)+P(x) \text { in } L^{2}(0,1)
$$

With the boundary condition

$$
\left.\left[-\left(\frac{d}{d x}\right)+h\right]\right|_{x=0} \quad=\left.\left[-\left(\frac{d}{d x}\right)+h\right]\right|_{x=1}=0
$$

Let

$$
\sigma\left(A_{P . h . h}\right)=\left\{\lambda_{n}\right\}_{n=0}^{\infty} \quad\left(-\infty<\lambda_{0}<\lambda_{1}<\ldots \rightarrow \infty\right)
$$

the eigenvalues of $A_{P . \text { h.h }}$ are denoted by

$$
\lambda_{n}=\lambda_{n}(P, h) \quad(n=0,1,2 \ldots)
$$

Let a symmetric operator

$$
A_{P . h . h}\left(P \in C_{s}^{\prime}[0,1], h \in R\right.
$$

and a set

$$
\Sigma \subset N \equiv\{0,1,2 \ldots\}
$$

be given, and put

$$
\begin{align*}
Q_{P . h . \Sigma} & =\left\{(q, j) \in C_{s}^{\prime}[0,1] \mathrm{X} R \mid \lambda_{n}(q, j)\right. \\
& \left.=\lambda_{n}(p, h)(n \in N \backslash \Sigma)\right\} \tag{1.2}
\end{align*}
$$

$Q_{\text {P.h. } \Sigma}$, denotes the totality of symmetric operator $A_{q . j . j}$
Whose eigenvalues $\quad \lambda_{n}(q \cdot j)$ coincide with those of $A_{p . h . h}$, expect for $n \in \Sigma$.

1.3 Notation (Spatially symmetric operators)

For $P \in C$ ' $[0,1], h \in R$ and $\lambda \in R$,

$$
\begin{align*}
& \phi=\phi(x: p, h, \lambda) \text { and } \phi^{*}=\phi^{*}(x: p, h, \lambda) \text { denote the solution of } \\
& {\left[-\left(\frac{d^{2}}{d x^{2}}\right)+P(x)\right] \phi=\lambda \phi(0 \leq x \leq 1), \phi(0)=1, \phi^{\prime}(0)=h} \tag{1.3}\\
& {\left[-\left(\frac{d^{2}}{d x^{2}}\right)+P(x)\right] \phi^{*}=\lambda \phi^{*}(0 \leq x \leq 1),} \\
& \quad \phi^{*}(0)=1, \phi^{*}(0)=1 \tag{1.4}
\end{align*}
$$

respectively.
Hence forth, means $\frac{d}{d x}$.
For

$$
\lambda=\lambda_{n}(p, h) \quad n \in N
$$

$$
\phi(. ; p, h, \lambda) \text { become an eigenfunction of } A_{p . \text { h. } h}
$$

On the other hand $\left\langle\phi, \phi^{*}\right\rangle$ gives a fundamental system of the solution of \backslash

$$
\left[-\left(\frac{d^{2}}{d x^{2}}\right)+P(x)\right] \psi=\lambda \psi
$$

1.4 Notation (Spatially symmetric operators)

For $P \in C^{\prime}[0,1], A_{p}^{*}$ denotes the realization $L^{2}[0,1]$ of the differential operator

$$
-\left(\frac{d^{2}}{d x^{2}}\right)+P(x) \text { with the (Dirichlet) boundary condition }\left.\right|_{x=0}=\left.\right|_{x=1}=0
$$

The eigenvalues of $A_{p}^{*}, \sigma\left(A_{p}^{*}\right)=\left\{\lambda_{n}^{*}\right\}_{n=1}^{\infty} \quad\left\{-\infty<\lambda_{1}^{*}<\lambda_{2}^{*}<\ldots \rightarrow \infty\right\}$
are denoted by

$$
\lambda_{n}^{*}=\lambda_{n}^{*}(p) \text { for } n \in N^{*} \equiv\{1,2, \ldots\}
$$

Note that in our notation, $\sigma\left(A_{p . h . h}\right)$ are numbered from 0 .
while $\sigma\left(A_{p}^{*}\right)$ are numbered from 1.

For

$$
\lambda=\lambda_{n}^{*}(p)(n \geq 1), \phi^{*}(. ; p, \lambda)
$$

Becomes an eigefunction of A_{p}^{*}

1.5 Notation (Spatially symmetric operators)

For $n_{1} \geq 1, P \in C '[0,1]$, and $h \in R$

$$
\begin{align*}
& w=w\left(x ; p, h, n_{1}\right) \\
& =\phi^{*}\left(x ; p, \lambda_{n_{1}}^{*}(p)\right) \phi\left(x ; p, h, \lambda_{n_{1}}(p, h)\right) \\
& -\phi^{*}\left(x ; p, \lambda_{n_{1}}^{*}(p)\right) \phi^{\prime}\left(x ; p, h, \lambda_{n_{1}}(p, h)\right) \tag{1.5}
\end{align*}
$$

As will be shown in

$$
P \in C_{s}^{\prime}[0,1], \text { implies }\left(\frac{d^{2}}{d x^{2}}\right) \log (w) \in C_{s}^{\prime}[0,1]
$$

In the case of

$$
\lambda_{n_{1}}^{*}(p)=\lambda_{n_{1}}(p, h)
$$

W becomes the wronskian for

$$
-\psi^{\prime \prime}+p \psi=\lambda \psi\left(\lambda=\lambda_{n_{1}}^{*}(p)=\lambda_{n_{1}}(p, h)\right)
$$

Hence w' $=0$ and so

$$
\left(\frac{d^{2}}{d x^{2}}\right) \log (w)=\left(w^{\prime} / w^{\prime}\right)=0
$$

We have conversely, that $\left(w^{\prime} / w^{\prime}\right)=0$
implies $\lambda_{n_{1}}^{*}=\lambda_{n_{1}}(p, h)$

1.6 proposition

For each $f \in c^{2}(\overline{A C})$ and $g \in c^{2}(\overline{B C})$ with $f_{\mid C}=g_{\mid C}$, there exists a unique $k=k(x, y) \in c^{2}(\bar{\Omega})$
and $k_{\mid A C}=f, k_{\mid B C}=g$

1.7 proposition

For each $f \in c^{2}(\overline{A B})$ and $g \in c^{\prime}(\overline{\mathrm{AB}})$ there exists a unique $k=k(x, y) \in c^{2}(\bar{\Omega})$)
and $k_{\mid A B}=f, \frac{\partial}{\partial v} k_{\mid A B}=g$

1.8 proposition

For each $f \in c^{2}(\overline{A C}), g \in c^{2}(\overline{B C})$ Wight $f_{\mid A}=g_{\mid A}$, there exists a unique $k=k(x, y) \in c^{2}(\bar{\Omega})$
Such that $k_{\mid A C}=f, k_{\mid A B}=g$

1.9 proposition

For each $f \in c^{2}(\overline{A C})$ and $g \in c^{\prime}(\overline{A B})$ and $h \in R$, there exists a unique $k=k(x, y) \in c^{2}(\bar{\Omega})$
Such that $\quad k_{\mid A C}=f, \quad \frac{\partial}{\partial v} k+h k_{\mid A B}=g$
By the d'Alembert formula,
We can given the solution

$$
\begin{align*}
& k_{0}=k_{0}(x, y) \in c^{2}(\bar{\Omega}) \text { of } \\
& k_{x x}-k_{y y}=0 \text { on }(\bar{\Omega}) \tag{1.9}
\end{align*}
$$

Satisfying the boundary condition given in these propositions.
On the other hand, for each

$$
F=F(x, y) \in c^{0}(\bar{\Omega})
$$

The solution $\quad k=k(x, y) \in c^{2}(\bar{\Omega})$ of

$$
\begin{equation*}
k_{x x}-k_{y y}=F(x, y) \text { on }(\bar{\Omega}) \tag{1.10}
\end{equation*}
$$

Satisfying the bo undary condition for $\mathrm{f}=\mathrm{g}=0$, is also given in a similar way

1.10 Therom

Given $p, q \in C^{\prime}[0,1]$ and $h, j \in R$, there exists a unique $k=k(x, y)=k(x, y ; q, j ; p, h) \in c^{2}(\bar{D})$
such that $k_{x x}-k_{y y}+p(y) k=q(x) k(\bar{D})$

$$
\begin{align*}
& k(x, x)=(j-h)+\frac{1}{2} \int_{0}^{x}(q(s)-p(s)) d s \quad 0 \leq x \leq 1 \tag{1.12}\\
& k_{y}(x, 0)=h k(x, 0) \quad 0 \leq x \leq 1
\end{align*}
$$

Proof

To show the existence of $k=k(;, ; q, j ; p, h)$,
We extend $q \in C^{\prime}[0,1]$ to $q \in C^{\prime}[0,2]$
Set $D(x, y) \mid 0<y<x<(2-y)$
By proposition (1.9)
There exists $k=k(x, y) \in c^{2}(D)$
Such that $k_{x x}-k_{y y}+p(y) k=q(x) k(\bar{D})$

$$
k .(x, x)=(j-h)+\frac{1}{2} \int_{0}^{x}(q(s)-p(s)) d s \quad 0 \leq x \leq 1
$$

$$
\begin{equation*}
k_{y}(x, 0)=h k(x, 0) \quad 0 \leq x \leq 2 \tag{1.16}
\end{equation*}
$$

The restriction $k=k \mid \bar{D} \in c^{2}(\bar{D})$ satisfies (1.10).
To verify the uniqueness, we divide D into

$$
\Omega_{1}=\{(x, y) \mid 0<y<x<1-y\} \text { and } \Omega_{2}=D \overline{\Omega_{1}}
$$

We prove that (1.11)

$$
k(x, x)=0 \quad(0 \leq x \leq 1)
$$

(1.12) and $k \in c^{2}(\bar{D})$ Imply $\mathrm{k}=0$

In fact, we first have $\mathrm{k}=0$ on $\overline{\Omega_{1}}$ by proposition (1.9)
so that we have $\mathrm{k}=0$ on $\overline{\Omega_{2}}$ by proposition (1.8)

1.11 Theorem

First deformation formula
The function $\phi=\phi(. ;, p, h, \lambda)$ defined in notation (1.3).Then for $k=k(;: ; q, j ; p, h)$ is theorem (1.10), the identity

$$
\begin{equation*}
\phi(x ; q, j, \lambda)=\phi(x ; p, h, \lambda)+\int_{0}^{x} k(x, y ; q, j ; p, h) \phi(y ; p, y) d y \tag{1.17}
\end{equation*}
$$

holds for $\mathrm{q}, p \in C^{\prime}[0,1] j, h \in R$ and $\lambda \in R$

Note
We finally note the following facts on the eigenfunctions
$\left\{\phi\left(. ; p, h, \lambda_{n}(p, h)\right\}_{n=0}^{\infty}\right.$ of a symmetric operator $A_{p . \text { h. } h}$

Put, for the moment

$$
\phi_{n}(x)=\phi\left(x ; p, h, \lambda_{n}(p, h)\right) \quad(n=0,1, \ldots .)
$$

Let $p \in C_{s}^{\prime}[0,1]$ and $h \in R$

1.12 Theorem

$$
\begin{equation*}
\text { We have } \phi_{n}(1-x)=(-1)^{n} \phi_{n}(x) \quad(\mathrm{n} \in \mathrm{~N}, \mathrm{x} \in[0,1]) \tag{1.18}
\end{equation*}
$$

Proof

Since $A_{p . h . h}$ is symmetric,
$\phi_{n}(1-x)=c_{n} \phi_{n}(x) \quad(0 \leq \mathrm{x} \leq 1)$

Holds of the for some $c_{n} \in R$ because of the uniqueness of the Cauchy problem,

From $c_{n} \neq 1$ and $c_{n} \neq-1$ follow

$$
\phi_{n}\left(\frac{1}{2}\right)=0 \text { and } \phi_{n}^{\prime}\left(\frac{1}{2}\right)=0
$$

respectively, while

$$
\phi_{n}\left(\frac{1}{2}\right)=\phi_{n}^{\prime}\left(\frac{1}{2}\right)=0
$$

cannot occur simultaneously
hence $c_{n}= \pm 1$ hence
By sturm-Liouville theorem
ϕ_{n} has non-zeros an $(0,1)$ hence (1.18) holds

Conclusion

In this article we've investigated Strum-Liouvillie problems in spatially symmetric operators of eigenvalues and eigenfunctions, eigenvalue and special function are discussed. Eigenvalues and eigan function expantion of spatially symmetric operators of strum - Liouville are lustrated.

References

[1] Takashi Suzuki(1985) on the inverse sturm - Liouville problem of differential for spatilly symmetric operators-1[Journal of differential equations 56,165-194)
[2] M H Annaby and Z S Mansour Basic sturm-Liouville problems Journal Of Physics A: Mathematical And General
[3] Mohammed Al-Refai and Thabet Abdeljawad Fundamental Results of Conformable SturmLiouville Eigenvalue Problems [Hindwai Complicity]
[4] Pergrnon (Oxford 1980) sturm - liouville invers iegenvalue problem[Mechanics today vol-5 281295]
[5] James ward ruel and ruel c. Churchill brown(1993) sturm - liouville problem and Applications [Fourier series and Boundary value problem]
[6] Dr.M.K.Venkataraman(1992) sturm - liouville system eigenvalues, eigenfunctin [Higher Mathematics for Enginering and Science]

