Spatially symmetric operators of Strum - Liouville Problems

B.Kavitha^{#1}, Dr.C.Vimala^{#2}

¹Assistant Professor/Department of Mathematics, Sri Manakula Vinayagar Engineering College, Pondicherry, India.

²Dr.C.Vimala Associate Professor/Department of Mathematics, Periyar Maniyammai University, Thanjore, India

Abstract: This paper we discusses with spatially symmetric operators of Strum-Liouville problem of eigenvalues and eigenfunctions, of the differential operators $-\left(\frac{d^2}{dx^2}\right) + P(x)$. We simplify the proofs of theorems due to Borg, Levinson, Hochstadt and Lieverman. In the present article Strum-Liouville operators of spatially symmetric type

Keywords:- spatially symmetric operators in Strum-Liouville problem of eigenvalues and eigenfunctions,

Introduction

The spatially symmetric operators of Strum-Liouville problem within the notations for $P \in C^{'}[0,1]$, $h \in R$ and $H \in R$, $A_{P,h,H}$ denotes the realization in $L^{2}(0,1)$ of the differential operator, For $P \in C^{'}[0,1]$, and $h \in R$ $A_{P,h,h}$ denotes the symmetric operator, for $P \in C^{'}[0,1]$, $h \in R$ and $\lambda \in R$, $\phi = \phi(x:p,h,\lambda)$ and $\phi^{*} = \phi^{*}(x:p,h,\lambda)$, for $P \in C^{'}[0,1]$, A_{p}^{*} denotes the realization $L^{2}[0,1]$ of the differential operator, For $n_{1} \geq 1$, $P \in C^{'}[0,1]$, and $h \in R$, $W = W(x;p,h,n_{1})$. The method of separation of variables utilized within the solutions of boundary value problems of mathematical physics frequently gives rise so called Strum-Liouville eigenvalue problems of spatially symmetric operators ,our attention to small but significant fragment of the theory of Strum-Liouville problems and their solutions.

1.1 Spatially symmetric operators

For $P \in C^{'}[0,1]$, $h \in R$ and $H \in R$, $A_{P,h,H}$ denotes the realization in $L^{2}(0,1)$ of the differential operator $-\left(\frac{d^{2}}{dx^{2}}\right) + P(x)$

With the boundary condition
$$\left[-\left(\frac{d}{dx}\right) + h \right] \Big|_{x=0}$$

$$= \left[-\left(\frac{d}{dx}\right) + h \right] \Big|_{x=0}$$

 $\text{Let } \sigma(A_{P.\,h.\,H}) = \left\{\lambda_n\right\}_{n=0}^{\infty} \text{ be the eigenvalues } A_{P.\,h.\,H} \text{ each } \not\subset \lambda_n \text{ is simple } -\infty < \lambda_0 < \lambda_1 < \ldots \rightarrow \infty$

Put
$$C_s[0,1] = \{ P \in C[0,1] | P(1-x) = P(x), 0 \le x \le 1 \}$$
 (1.1)

Then $A_{P,h,H}$ is a spatially symmetric operator if and only if $P \in C_s[0,1]$ and a h = H.

Let a symmetric operator $A_{P,h,h}$ be given, and let $\left\{\lambda_n\right\}_{n=0}^{\infty}$

$$-\infty < \lambda_0 < \lambda_1 < \ldots \rightarrow \infty$$
 be $\sigma(A_{P.\,h.\,h})$, the eigenvalues of $A_{P.\,h.\,h}$

Furthermore let $\left\{\lambda_m\right\}_{m=0}^{\infty}$

 $(-\infty < \mu_0 < \mu_1 < \dots \to \infty)$ be the eigenvalues of another symmetric operator $A_{q,j,j}$.

1.2 Notation (Spatially symmetric operators)

For $P \in C_s[0,1]$, and $h \in R$ $A_{P.h.h}$ denotes the symmetric operator

$$-\left(\frac{d^2}{dx^2}\right) + P(x) \text{ in } L^2(0,1)$$

With the boundary condition

$$\left[-\left(\frac{d}{dx}\right) + h \right] \Big|_{x=0} = \left[-\left(\frac{d}{dx}\right) + h \right] \Big|_{x=1} = 0$$

Let

$$\sigma(A_{P.h.h}) = \left\{\lambda_n\right\}_{n=0}^{\infty} \qquad (-\infty < \lambda_0 < \lambda_1 < \dots \to \infty)$$

the eigenvalues of $A_{P.\,h.\,h}$ are denoted by

$$\lambda_n = \lambda_n(P, h) \qquad (n = 0, 1, 2...)$$

Let a symmetric operator

$$A_{P.h.h} (P \in C_s [0,1], h \in R)$$

and a set

$$\Sigma \subset N \equiv \{0,1,2...\}$$

be given, and put

$$Q_{P,h,\Sigma} = \left\{ (q,j) \in C : [0,1] \times R \mid \lambda_n(q,j) \right\}$$

$$= \lambda_n(p,h) (n \in N \setminus \Sigma)$$
(1.2)

 $Q_{{\it P.h.}\Sigma}$, denotes the totality of symmetric operator $A_{{\it q.\,j.\,j}}$

Whose eigenvalues $\lambda_n(q,j)$ coincide with those of $A_{p,h,h}$, expect for $n\in \Sigma$.

1.3 Notation (Spatially symmetric operators)

For $P \in C$ [0,1], $h \in R$ and $\lambda \in R$,

 $\phi = \phi(x:p,h,\lambda)$ and $\phi^* = \phi^*(x:p,h,\lambda)$ denote the solution of

$$\left[-\left(\frac{d^2}{dx^2}\right) + P(x) \right] \phi = \lambda \phi (0 \le x \le 1), \phi(0) = 1, \phi'(0) = h$$
 (1.3)

And

$$\left[-\left(\frac{d^2}{dx^2}\right) + P(x) \right] \phi^* = \lambda \phi^* \ (0 \le x \le 1),$$

$$\phi^*(0)=1, \ \phi^*(0)=1$$
 (1.4)

respectively.

Hence forth, means $\frac{d}{dx}$.

For

$$\lambda = \lambda_n(p,h) \quad n \in \mathbb{N},$$

 $\phi(.;p,h,\lambda)$ become an eigenfunction of $A_{p.h.h}$

On the other hand $<\phi,\phi^*>$ gives a fundamental system of the solution of\

$$\left[-\left(\frac{d^2}{dx^2}\right) + P(x) \right] \psi = \lambda \psi$$

1.4 Notation (Spatially symmetric operators)

For $P \in C$ [0,1], A_p^* denotes the realization L^2 [0,1] of the differential operator

$$-\left(\frac{d^2}{dx^2}\right) + P(x)$$
 with the (Dirichlet) boundary condition $\Big|_{x=0} = \Big|_{x=1} = 0$

The eigenvalues of A_p^* , $\sigma(A_p^*) = \left\{\lambda_n^*\right\}_{n=1}^{\infty} \left\{-\infty < \lambda_1^* < \lambda_2^* < \dots \rightarrow \infty\right\}$

are denoted by $\lambda_n^* = \lambda_n^*(p)$ for $n \in \mathbb{N}^* = \{1, 2, ...\}$

Note that in our notation, $\sigma(A_{p.h.h})$ are numbered from 0.

while $\sigma(A_p^*)$ are numbered from 1.

For
$$\lambda = \lambda_n^*(p) \ (n \ge 1), \ \phi^*(.; p, \lambda)$$

Becomes an eigefunction of A_p^*

1.5 Notation (Spatially symmetric operators)

For
$$n_1 \ge 1$$
, $P \in C^*[0,1]$, and $h \in R$

$$w = w(x; p, h, n_1)$$

$$= \phi^*(x; p, \lambda_{n_1}^*(p)) \phi(x; p, h, \lambda_{n_1}(p, h))$$

$$-\phi^*(x; p, \lambda_{n_1}^*(p)) \phi'(x; p, h, \lambda_{n_1}(p, h)) \qquad (1.5)$$

As will be shown in

$$P \in C_s[0,1]$$
, implies $\left(\frac{d^2}{dx^2}\right) \log(w) \in C_s[0,1]$.

In the case of

$$\lambda_{n_1}^*(p) = \lambda_{n_2}(p,h)$$

W becomes the wronskian for

$$-\psi'' + p\psi = \lambda\psi \ (\lambda = \lambda_{n_i}^*(p) = \lambda_{n_i}(p,h)).$$

Hence w' = 0 and so

$$\left(\frac{d^2}{dx^2}\right)\log(w) = (w'/w') = 0$$

We have conversely, that (w'/w') = 0

implies
$$\lambda_{n_1}^* = \lambda_{n_1}(p,h)$$

1.6 proposition

For each
$$f \in c^2(\overline{AC})$$
 and $g \in c^2(\overline{BC})$ with $f_{|C} = g_{|C}$, there exists a unique $k = k(x,y) \in c^2(\overline{\Omega})$

and
$$k_{|AC} = f, k_{|BC} = g$$
 (1.6)

1.7 proposition

For each $f \in c^2(\overline{AB})$ and $g \in c'(\overline{AB})$ there exists a unique $k = k(x, y) \in c^2(\overline{\Omega})$

and
$$k_{|AB} = f, \frac{\partial}{\partial v} k_{|AB} = g$$
 (1.7)

1.8 proposition

For each $f \in c^2(\overline{AC}), \ g \in c^2(\overline{BC})$ Wight $f_{|A} = g_{|A}$, there exists a unique $k = k(x,y) \in c^2(\overline{\Omega})$

Such that
$$k_{|AC} = f$$
, $k_{|AB} = g$

1.9 proposition

For each $f \in c^2(\overline{AC})$ and $g \in c^1(\overline{AB})$ and $h \in R$, there exists a unique $k = k(x,y) \in c^2(\overline{\Omega})$

Such that
$$k_{|AC} = f$$
, $\frac{\partial}{\partial v} k + hk_{|AB} = g$ (1.8)

By the d'Alembert formula,

We can given the solution

$$k_0 = k_0(x, y) \in c^2(\overline{\Omega})$$
 of
$$k_{xx} - k_{yy} = 0 \text{ on } (\overline{\Omega})$$
 (1.9)

Satisfying the boundary condition given in these propositions.

On the other hand, for each

$$F = F(x, y) \in c^0(\overline{\Omega}),$$

The solution

$$k = k(x, y) \in c^2(\overline{\Omega})$$
 of

$$k_{xx} - k_{yy} = F(x, y) \ on(\overline{\Omega}) \tag{1.10}$$

Satisfying the bo undary condition for f = g = 0, is also given in a similar way

1.10 Therom

Given $p, q \in C'[0,1]$ and $h, j \in R$, there exists a unique $k = k(x, y) = k(x, y; q, j; p, h) \in c^2(\overline{D})$

such that
$$k_{xx} - k_{yy} + p(y)k = q(x)k(\overline{D})$$
 (1.11)

$$k(x,x) = (j-h) + \frac{1}{2} \int_{0}^{x} (q(s) - p(s)) ds \quad 0 \le x \le 1$$
 (1.12)

$$k_{v}(x,0) = hk(x,0) \ 0 \le x \le 1$$
 (1.13)

Proof

To show the existence of k = k(;,;q,j;p,h),

We extend $q \in C'[0,1]$ to $q \in C'[0,2]$

Set
$$D(x, y) | 0 < y < x < (2 - y)$$

By proposition (1.9)

There exists $k = k(x, y) \in c^2(D)$

Such that
$$k_{xx} - k_{yy} + p(y)k = q(x)k(D)$$
 (1.14)

$$k.(x,x) = (j-h) + \frac{1}{2} \int_{0}^{x} (q(s) - p(s)) ds \quad 0 \le x \le 1 \quad (1.15)$$

$$k_y(x,0) = hk(x,0) \ 0 \le x \le 2$$
 (1.16)

The restriction $k = k | \overline{D} \in c^2(\overline{D})$ satisfies (1.10).

To verify the uniqueness, we divide D into

$$\Omega_1 = \{(x, y) | 0 < y < x < 1 - y \}$$
 and $\Omega_2 = D\overline{\Omega_1}$

We prove that (1.11)

$$k(x, x) = 0 \quad (0 \le x \le 1),$$

(1.12) and
$$k \in c^2(\overline{D})$$
 Imply $k = 0$

In fact, we first have k = 0 on $\overline{\Omega_1}$ by proposition (1.9)

so that we have k = 0 on $\overline{\Omega_2}$ by proposition (1.8)

1.11 Theorem

First deformation formula

The function $\phi = \phi(.;, p, h, \lambda)$ defined in notation (1.3). Then for k = k(;, q, j; p, h) is theorem (1.10), the identity

$$\phi(x;q,j,\lambda) = \phi(x;p,h,\lambda) + \int_{0}^{x} k(x,y;q,j;p,h) \ \phi(y;p,y)dy$$
 (1.17)

holds for q, $p \in C'[0,1]$ $j,h \in R$ and $\lambda \in R$

Note

We finally note the following facts on the eigenfunctions

$$\left\{\phi(.;p,h,\lambda_{_{\!n}}(p,h)\right\}_{_{n=0}}^{^{\infty}}$$
 of a symmetric operator $A_{_{p.h.h}}$

Put, for the moment $\phi_n(x) = \phi(x; p, h, \lambda_n(p, h))$ (n = 0, 1, ...)

Let
$$p \in C'_s[0,1]$$
 and $h \in R$

1.12 Theorem

We have
$$\phi_n(1-x) = (-1)^n \phi_n(x)$$
 $(n \in \mathbb{N}, x \in [0,1])$ (1.18)

Proof

Since $A_{p.h.h}$ is symmetric,

$$\phi_n(1-x) = c_n \phi_n(x)$$
 $(0 \le x \le 1)$

Holds of the for some $c_n \in R$ because of the uniqueness of the Cauchy problem,

From $c_n \neq 1$ and $c_n \neq -1$ follow

$$\phi_n\left(\frac{1}{2}\right) = 0$$
 and $\phi_n\left(\frac{1}{2}\right) = 0$

respectively, while

$$\phi_n\left(\frac{1}{2}\right) = \phi_n\left(\frac{1}{2}\right) = 0$$

cannot occur simultaneously

hence $c_n = \pm 1$ hence

By sturm-Liouville theorem

 ϕ_n has non-zeros an (0,1) hence (1.18) holds

Conclusion

In this article we've investigated Strum-Liouvillie problems in spatially symmetric operators of eigenvalues and eigenfunctions, eigenvalue and special function are discussed. Eigenvalues and eigan function expantion of spatially symmetric operators of strum – Liouville are lustrated.

References

- [1] Takashi Suzuki(1985) on the inverse sturm Liouville problem of differential for spatilly symmetric operators-1[Journal of differential equations 56,165-194)
- [3] Mohammed Al-Refai and Thabet Abdeljawad Fundamental Results of Conformable Sturm-Liouville Eigenvalue Problems [Hindwai Complicity]
- [4] Pergrnon (Oxford 1980) sturm liouville invers iegenvalue problem[Mechanics today vol-5 281-295]
- [5] James ward ruel and ruel c. Churchill brown(1993) sturm liouville problem and Applications [Fourier series and Boundary value problem]
- [6] Dr.M.K.Venkataraman(1992) sturm liouville system eigenvalues, eigenfunctin [Higher Mathematics for Enginering and Science]