On Minimally Nonouterplanarity of a Semi-Splitting Block Graph of a Graph

V. R. Kulli¹ and K. M. Niranjan²

¹Department of Mathematics, UBDTCE, Davangere, Karnataka, India ²Department of Mathematics, Gulbarga University, Gulbarga-585106, Karnataka, India,

Abstract: Let G = (V) be a simple connected undirected graph with vertex set V and edge set E. The advent of graph theory has played a prominent role in wide variety of engineering applications and optimizes its use in many applications. In this paper, we present here characterize graphs whose semi-splitting block graphs are minimally nonouterplanar.

Keywords : Semi-Splitting; Block; minimally nonouterplanar.

I. INTRODUCTION

All graphs considered here are finite, undirected and without loops or multiple lines. We use the terminology of [1]. The open-neighbourhood N(u) of a point u in V(G) is the set of points adjacent to u. $N(u) = [v/uv \in E(G)].$

In 1975, Kulli [2] introduced the idea of a minimally nonouterplanar graph. The inner point i(G) of a planar graph *G* is the minimum possible number of points not belonging to the boundary of the exterior region in any embedding of *G* in the plane. Obviously *G* is outerplanar if and only if i(G)=0. A graph *G* is minimally nonouterplanar if i(G)=1, and *G* is *n*-minimally $(n\geq 2)$ nonouterplanar if i(G)=n. A graph is planar if it can be drawn on the plane in such a way that no two of its lines intersect.

If $B = \{u_1, u_2, ..., u_r, r \ge 2\}$ is a block of a graph *G*, then we say that point u_1 and block *B* are incident with each other, as are u_2 and *B* and so on. If two blocks B_1 and B_2 of *G* are incident with a common cutpoint, then they are adjacent blocks. If $B = \{e_1, e_2, ..., e_s, s \ge 1\}$ is a block of a graph *G*, then we say that line e_1 and block *B* are incident with each other, as are e_2 and *B* and so on. This idea was introduced by Kulli in [3]. The points, lines and blocks of a graph are called its members.

For each point v_i of G, we take a new point u_i and the resulting set of points is denoted by $V_l(G)$.

The semi-splitting block graph $S_B(G)$ of a graph G is defined as the graph having point set $V(G) \cup V_I(G) \cup b(G)$ with two points are adjacent if they correspond to a adjacent points of G or one corresponds to a point v_i of $V_I(G)$ and the other to a point w_j of G and w_j is in $N(v_i)$ or one corresponds to a point u_i of V(G) and the other to a point w_j of G and w_j is in $N(v_i)$ or one corresponds to a point u_i of V(G) and the other to a point b_i of b(G), where b(G) is the set of blocks of G. This concept was introduced by Kulli and Niranjan [4]. Many other graph valued functions in graph theory were studied, [e.g in [5]-[32]].

The splitting graph S(G) of a graph G is defined as the graph having point set $V(G) \cup V_I(G)$ with two points are adjacent if they correspond to a adjacent points of G or one corresponds to a point v_i of $V_I(G)$ and the other to a point w_j of G and w_j is in $N(v_i)$. This concept was introduced by Sampathkumar and Walikar in [34].

A graph G, the semi-splitting block graph $S_B(G)$ and the splitting graph S(G) are shown in Fig. 1.

Fig. 1

We make use of the following results to prove our main results.

Theorem A [35]. The splitting graph S(G) of a graph G is planar if and only if every block of G is an even cycle or a line or a triangle.

Theorem B [35]. If G has a cycle of odd length $p \ge 5$ then S(G) is nonplanar.

Theorem C [35]. The splitting graph S(G) of a graph *G* is outerplanar if and only if every component of *G* is a path or a triangle.

Theorem D [4]. If G is a cycle with $p \ge 4$ points, then $S_B(G)$ is nonplanar.

Theorem E [4]. The semi-splitting block graph $S_B(G)$ is outerplanar if and only if G is either $K_{1,2}$ or K_2 .

Theorem F [4]. The semi-splitting block graph $S_B(G)$ of a graph G is planar if and only if G has no subgraph homeomorphic to C_4 or K_{4-x} or G_1 (see Fig. 3).

Theorem G [4]. The semi-splitting block graph $S_B(G)$ of a graph *G* is outerplanar if and only if *G* has no subgraph homeomorphic to $K_{1,3}$ or P_4 or C_3 .

Theorem H [4]. The semi-splitting block graph $S_B(G)$ of a graph *G* is planar if and only if every block of *G* is a line or a triangle or a triangle together one line is adjoined to some point.

II. Main Results

We now characterize graphs whose semi-splitting block graphs are minimally nonouterplanar.

Theorem 1. The semi-splitting block graph $S_B(G)$ is minimally nonouterplanar if and only if G is C_3 .

Proof. Suppose $S_B(G)$ is minimally nonouterplanar. Then by Theorem 2, every block of *G* is a line or a triangle. Assume every block of *G* is a line. We consider the following cases.

Case 1. Suppose *G* is a path. Then by clearly, $i(S_B(G)) \ge 2$, a contradiction.

Case 2. Suppose *G* is $K_{I,n}$. Then by Theorem 3, $i(S_B(G))=2n-4$, a contradiction.

Suppose $G = C_3 \cdot C_3 \cdot C_3$. Then $S_B(G)$ has two-inner points (see Fig. 3), again a contradiction. Then G is a triangle.

Conversely, suppose G is C_3 . Then it is easy to see that $S_B(C_3)$ has an inner point (see Fig. 2). Hence $S_B(G)$ is minimally nonouterplanar.

In the following theorem, we establish a characterization of graphs whose semi-splitting block graphs are *n*-minimally nonouterplanar ($n \ge 2$).

Theorem 2. If G is $K_{1,n}$, $n \ge 3$ then $i(S_B(K_{1,n}))=2n-4$.

Proof. Let *G* is $K_{1,n}$ with $n \ge 3$ points. Then by Theorem 2, $S_B(G)$ is planar.

We now prove that $S_B(K_{I,n})$ has 2n-4 inner points by the method of induction on the number of points $n(\geq 3)$ of *G*. Suppose n=3. Then $G=K_{I,3}$ and $S_B(K_{I,3})$ has 2-inner points (see Fig. 4). Hence the result is true for n=3.

Now assume the result is true for n=m. That is when $G=K_{I,n}$, $S_B(G)$ is *m*-minimally nonouterplanar.

Now suppose n=m+1. Then $G=K_{1,m+1}$. Now we have to prove $S_B(G)$ is (m+1)-minimally nonouterplanar. Let $e=v_1v_2$ be the end line. Delete from G the line e, resulting the graph G_1 . By inductive hypothesis, $S_B(G_1)$ is m-minimally nonouterplanar. Now rejoin the line $e=v_1v_2$ to the point v_1 , resulting the graph G. Formation of $S_B(G)$ is an extension of $S_B(G_1)$ with adding points v_2 , v'_2 and b_1 . The points v_1, v_2, v'_2 together with b_1 produces a subgraph homeomorphic from K_4 which has an inner points. Therefore $S_B(G)$ has (m+1)inner points. Thus $S_B(G)$ is (m+1)-minimally nonouterplanar. Therefore n=m+1. Thus $S_B(G)$ is n-minimally nonouterplanar (see Fig. 5). Hence the proof the theorem.

Theorem 3. If *G* is a path of odd length, then $i(S_B(P_n))=n/2$, where $n \ge 4$.

Proof. Let *G* is a path of odd length with $n \ge 4$ points. Then by Theorem 2, $S_B(G)$ is planar. We now prove that $S_B(P_n)$ has n/2 inner points by the method of induction on the number of points $n(\ge 4)$ of *G*.

Suppose P_4 : $V_1V_2V_3V_4$ is a path of odd length with four points. By Theorem C, S(G) is outerplanar. If the pair of points (V_1, B_1) , (V_2, B_1) , (V_2, B_2) , (V_3, B_2) , (V_3, B_3) , (V_4, B_3) are adjacent in $S_B(G)$ can not be adjacent in S(G). Thus $S(G) \subseteq S_B(G)$. Since the lines $[(V_1, B_1), (V_2, B_1), (V_2, B_2), (V_2, B_2), (V_3, B_2), (V_3, B_3), (V_4, B_3)] \in (S_B(G))$, then in each case these exists at least one inner point. Thus $i[S_B(G))] = 2$ (see Fig. 6), depicts the inner point number of $S_B(G)$ is at most 2. Thus $i[S_B(G)] = 2$.

As the inductive hypothesis, let the semi-splitting block graph of a odd length with $n \ge 4$ points has n/2 inner points. We now show that the semi-splitting block graph of a path of odd length with n+2 points has (n+2)/2 inner points.

Let $G' = P_{n+2}$ be a path of odd length with $V_1, V_2, V_3, V_4, ..., V_n, V_{n+1}, V_{n+2}$ points see Fig.7. The points $V_{n+2}, V'_{n+2}, V'_{n+2}, V'_{n+1}, V'_{n+1}, B_n, B_{n+1}$ are more points in $S_B(P_{n+2})$ than in $S_B(P_n)$. The lines V_{n+1}, B_{n+1} or B_{n+1}, V_{n+2} or V_n B_n or $B_n V_{n+1}$ gives one more inner point in $S_B(P_{n+2})$, than that of $S_B(P_n)$. Since $S_B(P_n)$ is nonouterplanar with n points, it has n/2 inner points. Thus $S_B(P_{n+2})$ with n+2 points has (n+2)/2 inner points. Hence $i(S_B(P_{n+2}))=(n+2)/2$. This completes the proof.

Theorem 4. If *G* is a path of even length, then $i(S_B(P_n))=(n-1)/2$, where $n \ge 5$ **Proof.** We omit the proof.

Fig. 4

III. Conclusion

We present here semi-splitting block graphs are minimally nonouterplanar We further to find a characterizations of graphs whose semi-splitting block graphs are planar, outerplanar, minimally nonouterplanar in terms of forbidden subgraphs.

Acknowledgements

The authors are grateful to the reviewers for their critical comments and valuable suggestions.

References

- [1] F.Harary, Graph Theory, Addison Wesley, Reading Mass. (1969).
- [2] V.R.Kulli, On minimally nonouterplanar graphs. Proc. Indian. Nat. Sci. Acad. 41 (1975) 275-280
- [3] V.R. Kulli, The semitotal block graph and total-block graph of a graph of a graph, IndianJ. Pure Appl. Math., 7, 625-630 (1976).
- [4] V.R. Kulli and K.M.Niranjan, The semi-splitting block graph of a graph, Journal of Scientific Research, 2(3) (2010) 485-488.
- [5] M.S.Biradar, Eulerianity of some graph valued functions, International Journal of Mathematics Trends and Technology, Vol.33 no. 2 (5), 127-129 (2016).
- [6] M.S.Biradar and V.R.Kulli, Results on labeled path and its iterated line graphs, Intern. J.Fuzzy Mathematical Archive, Vol. 10, No. 2, 125-129 (2016).
- [7] M.S.Biradar and S.S.Hiremath, The total blitact graph of a graph, Intern. J. MathematicalArchive 7 (5), pp 49-54, (2016).
- [8] V.R.Kulli, On full graphs, J. Comp. & Math. Sci, vol.(6), 261-267, 5, pp261-267, (2015).
- [9] V.R. Kulli, On the plick graph and the qlick graph of a graph, Research Journal, 1, 48-52(1988).

- [10] V.R. Kulli and D.G.Akka, Traversability and planarity of semitotal block graphs, J Math.and Phy. Sci., 12, 177-178(1978).
- [11] V.R.Kulli and D.G.Akka, Traversability and planarity of total block graphs. J. Mathematical and Physical Sciences, 11, 365-375 (1977).23. 12
- [12] V.R. Kulli and D.G.Akka, On semientire graphs, J. Math. and Phy. Sci, 15, 585-589, (1981).
- [13] V.R.Kulli and D.G.Akka, Characterization of minimally nonouterplanar graphs. J.Karnatak Univ.Sci. 22 (1977) 67-73.
- [14] V.R. Kulli and N.S.Annigeri, The ctree and total ctree of a graph, Vijnana Ganga, 2, 10-24 (1981).
- [15] V.R. Kulli and B. Basavanagoud, On the quasivertex total graph of a graph, J. Karnatak University Sci., 42, 1-7 (1998).
- [16] V. R. Kulli, B. Basavanagoud and K. M. Niranjan, Quasi-total Graphs with Crossing Numbers, Journal of Scientific Research. 2 (2), 257-263 (2010)
- [17] V.R. Kulli and M.S. Biradar, On eulerian blict graphs and blitact graphs, Journal of Computer and Mathematical Sciences, 6(12), 712-717 (2015).
- [18] V.R. Kulli and M.S. Biradar, The point block graph of a graph, Journal of Computer and Mathematical Sciences, 5 (5), 476-481 (2014).
- [19] V.R. Kulli and M.S. Biradar, The middle blict graph of a graph, International Research Journal of Pure Algebra 5(7), 111-117 (2015).
- [20] V.R. Kulli and M.S. Biradar, Planarity of the point block graph of a graph, Ultra Scientist, 18, 609-611 (2006).
- [21] V.R. Kulli and M.S. Biradar, The point block graphs and crossing numbers, Acta Ciencia Indica, 33(2), 637-640 (2007).
- [22] V.R. Kulli and M.S. Biradar, The line splitting graph of a graph. Acta Ciencia Indica, Vol. XXVIII M, No. 3, 435 (2002).
- [23] V.R. Kulli and K.M.Niranjan, On minimally nonouterplanarity of the semi-total (point) graph of a graph, J. Sci. Res. 1(3), 551-557 (2009).
- [24] V.R. Kulli and K.M.Niranjan, The semi-splitting block graphs with crossing numbers, Asian Journal of Research.Activites (submitted)
- [25] V.R.Kulli and K M Niranjan, The semi-image neighbourhood graph of a graph, Asian Journal of Mathematics and computer research (Accepted)
- [26] V.R. Kulli and N.S. Warad, On the total closed neighbourhood graph of a graph, J. Discrete Mathematical Sciences and Cryptography, 4, 109-114 (2001).
- [27] M.H.Muddebihal, Usha.P and Milind S.C., Image neighbourhood graph of graph, The Mathematics Education Vol.XXXVI, No.2,2002.
- [28] K. M. Niranjan, P. Nagaraja and Lokesh V, Semi-Image Neighborhood Block Graphs with Crossing Numbers, Journal of Scientific Research, 5(2) 295-299. (2013)
- [29] Rajendra Prasad K C, Niranjan K M and Venkanagouda M Goudar, Vertex semi-middle graph of a graph, Malaya Journal of Matematik, Vol. 7, No. 4, 786-789, 2019.
- [30] Rajendra Prasad KC, Venkanagouda M. Goudar and Niranjan K M, Pathos vertex semi-middle graph of a tree, south east asian j. of mathematics and mathematical sciences, Vol. 16, No. 1 (2020), pp. 171-176.
- [31] Rajanna N Eand Venkanagouda M Goudar, Pathos Vertex Semientire Block Graph, International Journal of Mathematics Trends and Technology, Vol.7., No.2, 103-105, 2014
- [32] Rajendra Prasad K C, Niranjan K M and Venkanagouda M Goudar, Edge semi-middle graph of a graph, (submitted)
- [33] Rajendra Prasad KC, Venkanagouda M. Goudar and Niranjan K M, Pathos edge semi-middle graph of a tree, (submitted)
- [34] H.P.Patil and S.Tamga Mari, Proc. Nat. Workshop on Graph Theory and its applications. M.S.Univ., Tirunelveli 121, (1996).
- [35] Sampathkumar and H.B.Walikar, J.Karnatak Univ. Sci. 25, 13,(1980-81)