GENERALIZED HYERS-ULAM TYPE STABILITY OF THE 2k-VARIABLE ADDITIVE β -FUNCTIONAL INEQUALITIES AND EQUATIONS IN COMPLEX BANACH SPACES

LY VAN AN

Faculty of Mathematics Teacher Education, Tay Ninh University, Ninh Trung, Ninh Son, Tay Ninh Province, Vietnam.

ABSTRACT. In this paper we study to solve two additive β -functional inequality the 2k-variables and their Hyers – Ulam stability. First are investigated in complex Banach spaces and last are investigated the Hyers – Ulam stability of additive β -functional equation associated with the additive β -functional inequalities in complex Banach spaces. Then I'll show that the solutions of first and second inqualities are additive mappings. Then Hyers – Ulam stability of these inequalities are given and proven. These are the main results of this paper.

Mathematics subject classification: Primary 4610, 4710, 39B62, 39B72, 39B52, **Keywords**: additive β – functional equation; additive β – functional inequality; space; complex Banach space; Hyers – Ulam stability.

1. Introduction

Let \mathbb{X} and \mathbb{Y} be a normed spaces on the same field \mathbb{K} , and $f: \mathbb{X} \to \mathbb{Y}$. We use the notation $\|\cdot\|$ for all the norm on both \mathbb{X} and \mathbb{Y} . In this paper, we investisgate some additive β -functional inequality when \mathbb{X} is a real or complex normed space and \mathbb{Y} is a complex Banach spaces.

In fact, when X is a real or complex normed space and Y is a complex Banach spaces we solve and prove the Hyers-Ulam stability of two forllowing additive β -functional inequality.

$$\left\| f\left(\frac{1}{k}\sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_{j}\right) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \left(kf\left(\frac{1}{k^{2}}\sum_{j=1}^{k} x_{k+j} + \frac{1}{k}\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_{j}\right) \right) \right\|_{\mathbb{Y}} \tag{1.1}$$

ISSN: 2231-5373 http://www.ijmttjournal.org

$$\left\| kf\left(\frac{1}{k^{2}} \sum_{j=1}^{k} x_{k+j} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_{j}\right) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \left(f\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+1}}{k}\right) - \sum_{j=1}^{k} f\left(x_{j}\right) \right) \right\|_{\mathbb{Y}}, \tag{1.2}$$

where β is a fixed complex number with $|\beta| < 1$ and k be a fixed integer with $k \ge 2$.

The Hyers-Ulam stability was first investigated for functional equation of Ulam in [6] concerning the stability of group homomorphisms.

The functional equation

$$f(x+y) = f(x) + f(y)$$

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping.

The Hyers [7] gave firts affirmative partial answer to the equation of Ulam in Banach spaces. After that, Hyers' Theorem was generalized by Aoki[1] additive mappings and by Rassias [8] for linear mappings considering an unbouned Cauchy diffrence. Ageneralization of the Rassias theorem was obtained by Găvruta [4] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

$$f\left(\frac{x+y}{2}\right) = \frac{1}{2}f(x) + \frac{1}{2}f(y)$$

is called the *Jensen equation*. See [2, 3, 9, 10] for more information on functional equations.

The Hyers-Ulam stability for functional inequalities have been investigated such as in [14, 15]. Gilány showed that is if satisfies the functional inequality

$$\left\| 2f(x) + 2f(y) - f(xy^{-1}) \right\| \le \left\| f(xy) \right\|$$

then f satisfies the Jordan-von Newman functional equation

$$2f(x) + 2f(y) = f(xy) + f(xy^{-1}). (1.3)$$

See also [15,16]. Gilányi [13] and Fechner [9] proved the Hyers-Ulam stability of the functional inequality.

Choonkil Park [17, 18] proved the Hyers-Ulam stability of additive β -functional inequalities. Recently, in [17, 18, 19, 22] the authors studied the Hyers-Ulam stability for the following functional inequalities

$$\left\| f\left(x+y\right) - f\left(x\right) - f(y) \right\| \le \left\| \rho\left(2f\left(\frac{x+y}{2}\right) - f\left(x\right) - f\left(y\right)\right) \right\| \tag{1.4}$$

$$\left\| 2f\left(\frac{x+y}{2}\right) - f\left(x\right) - f\left(y\right) \right\| \le \left\| \rho\left(f\left(x+y\right) - f\left(x\right) - f\left(y\right)\right) \right\|. \tag{1.5}$$

Next

$$\left\| f\left(\frac{x+y}{2} + z\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right\| \le \left\| \gamma \left(2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right)\right) \right\|$$

$$\tag{1.6}$$

and

$$\left\| 2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right\| \le \left\| \gamma \left(f\left(\frac{x+y}{2} + z\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right) \right\|. \tag{1.7}$$

Final

$$\left\| f\left(\sum_{i=1}^{n} x_i\right) - \sum_{i=1}^{n} f\left(x_i\right) \right\| \le \left\| \gamma \left(n f\left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) - \sum_{i=1}^{n} f\left(x_i\right) \right) \right\|$$
(1.8)

and

$$\left\| nf\left(\frac{1}{n}\sum_{i=1}^{k}x_i\right) - \sum_{i=1}^{n}f\left(x_n\right) \right\| \le \left\| \gamma\left(f\left(\sum_{i=1}^{n}x_i\right) - \sum_{i=1}^{n}f\left(x_i\right)\right) \right\| \tag{1.9}$$

in complex Banach spaces.

In this paper, we solve and proved the Hyers-Ulam type stability for two β -functional inequalities (1.1)-(1.2), ie the β -functional inequalities with 2k-variables. Under suitable assumptions on spaces \mathbb{X} and \mathbb{Y} , we will prove that the mappings satisfying the β -functional inequatilies (1.1) or (1.2). Thus, the results in this paper are generalization of those in [17, 18, 19, 22] for β -functional inequatilies with 2k-variables.

The paper is organized as followns: In section preliminarier we remind some basic notations in [18, 19, 20] such as We only redefine the solution definition of the equation of the additive function.

Section 3: is devoted to prove the Hyers-Ulam stability of the addive β - functional inequalities (1.1) when we assume that \mathbb{G} be a 2k-divisible abelian group and \mathbb{X} is a real or complex normed space and \mathbb{Y} complex Banach space.

Section 4: is devoted to prove the Hyers-Ulam stability of the addive β - functional inequalities (1.2) when \mathbb{X} is a real or complex normed space and \mathbb{Y} complex Banach space.

2. Preliminarier

The functional equation

$$f(x+y) = f(x) + f(y)$$

is called the cauchuy equation. In particular, every solution of the cauchuy equation is said to be an *additive mapping*.

Now, we first study the solutions of (1.1). Note that for these inequalities, X is a real or complex normed space and Y is a complex Banach spaces. Under this setting, we can show that the mapping satisfying (1.1) is additive. These results are give in the following.

Lemma 3.1. A mapping $f: \mathbb{G} \to \mathbb{Y}$ satisfies

$$\left\| f\left(\frac{1}{k} \sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \left(k f\left(\frac{1}{k^{2}} \sum_{j=1}^{k} x_{k+j} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right) \right\|_{\mathbb{Y}}$$
(3.1)

for all $x_j, x_{k+j} \in \mathbb{G}$ for all $j = 1 \to k$ if and only if $f : \mathbb{G} \to \mathbb{Y}$ is additive.

Proof. Assume that $f: \mathbb{G} \to \mathbb{Y}$ satisfies (3.1). Letting $x_j = x_{k+j} = 0, j = 1 \to k$ in (3.1), we get

$$\left(\left| 2k - 1 \right| - \left| k\beta \right| \right) \left\| f(0) \right\|_{\mathbb{Y}} \le 0.$$

So f(0) = 0.

Letting $x_{k+j} = 0$ and $x_j = x$ for all $j = 1 \rightarrow k$ in (3.1), we get

$$\left\| f\left(kx\right) - kf\left(x\right) \right\|_{\mathbb{Y}} \le 0$$

and so f(kx) = kf(x) for all $x \in \mathbb{G}$.

Thus

$$f\left(\frac{x}{k}\right) = \frac{1}{k}f(x) \tag{3.2}$$

for all $x \in \mathbb{G}$ It follows from (3.1) and (3.2) that:

$$\left\| f\left(\frac{1}{k}\sum_{j=1}^{k} x_{k+j} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \left(kf\left(\frac{1}{k^{2}}\sum_{j=1}^{k} x_{k+j} + \frac{1}{k}\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+1}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right) \right\|_{\mathbb{Y}}$$

$$= \left| \beta \right| \left\| f\left(\frac{1}{k}\sum_{j=1}^{k} x_{k+1} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right) \right\|_{\mathbb{Y}}$$

$$(3.3)$$

and so

$$f\left(\frac{1}{k}\sum_{j=1}^{k}x_{k+j} + \sum_{j=1}^{k}x_{j}\right) = \sum_{j=1}^{k}f\left(\frac{x_{k+1}}{k}\right) + \sum_{j=1}^{k}f\left(x_{j}\right)$$

for all $x_j, x_{k+j} \in \mathbb{G}$ for all $j = 1 \to k$. Hence $f : \mathbb{G} \to \mathbb{Y}$ is additive. The coverse is obviously true.

ISSN: 2231-5373

Lemma 3.2. A mapping $f: \mathbb{G} \to \mathbb{Y}$ satisfy f(0) = 0 and

$$\left\| kf\left(\frac{1}{k^{2}}\sum_{j=1}^{k}x_{k+j} + \frac{1}{k}\sum_{j=1}^{k}x_{j}\right) - \sum_{j=1}^{k}f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k}f\left(x_{j}\right) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta\left(f\left(\frac{1}{k}\sum_{j=1}^{k}x_{k+j} + \sum_{j=1}^{k}x_{j}\right) - \sum_{j=1}^{k}f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k}f\left(x_{j}\right) \right) \right\|_{\mathbb{Y}}$$
(3.4)

for all $x_j, x_{k+j} \in \mathbb{G}$ for all $j = 1 \to k$ if and if $f : \mathbb{G} \to \mathbb{Y}$ is additive.

Proof. Assume that $f: \mathbb{G} \to \mathbb{Y}$ (3.4).

Letting $x_1 = x$ and $x_{j+1} = x_{k+j} = 0$ for all $j = 1 \to k$ in (3.4), we get

$$\left\| kf\left(\frac{x}{k}\right) - f\left(x\right) \right\|_{\mathbb{Y}} \le 0$$

and so

$$f\left(\frac{x}{k}\right) = \frac{1}{k}f(x) \tag{3.5}$$

It follows from (3.4) and (3.5) that

$$\left\| kf\left(\frac{1}{k^{2}}\sum_{j=1}^{k}x_{k+j} + \frac{1}{k}\sum_{j=1}^{k}x_{j}\right) - \sum_{j=1}^{k}f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k}f\left(x_{j}\right) \right\|_{\mathbb{Y}}$$

$$= \left\| f\left(\frac{1}{k}\sum_{j=1}^{k}x_{k+j} + \sum_{j=1}^{k}x_{j}\right) - \sum_{j=1}^{k}f\left(\frac{x_{k+1}}{k}\right) - \sum_{j=1}^{k}f\left(x_{j}\right) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \right\| \left\| f\left(\frac{1}{k}\sum_{j=1}^{k}x_{k+j} + \sum_{j=1}^{k}x_{j}\right) - \sum_{j=1}^{k}f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k}f\left(x_{j}\right) \right\|_{\mathbb{Y}}$$

and so

$$f\left(\frac{1}{k}\sum_{j=1}^{k}x_{k+j} + \sum_{j=1}^{k}x_{j}\right) = \sum_{j=1}^{k}f\left(\frac{x_{k+1}}{k}\right) + \sum_{j=1}^{k}f\left(x_{j}\right)$$

for all $x_j, x_{k+j} \in \mathbb{G}$ for all $j = 1 \to k$. Hence $f : \mathbb{G} \to \mathbb{Y}$ is additive. The converse is obvoiusly true.

From Lemma 3.1 and Lemma 3.2 we have Corollarys.

Corollary 3.3. A mapping $f: \mathbb{G} \to \mathbb{Y}$ satisfies

$$f\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} z_j\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_j\right)$$

$$= \beta \left(kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^2} + \sum_{j=1}^{k} x_j\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_j\right)\right)$$
(3.6)

for all $x_j, x_{k+j} \in \mathbb{G}$ for all $j = 1 \to k$ if and only if $f : \mathbb{G} \to \mathbb{Y}$ is additive.

Corollary 3.4. A mapping $f: \mathbb{G} \to \mathbb{Y}$ satisfies f(0) = 0 and

$$kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^2} + \sum_{j=1}^{k} x_j\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_j\right)$$

$$= \beta \left(f\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_j\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_j\right)\right)$$
(3.7)

for all $x_j, x_{k+j} \in \mathbb{G}$ for all $j = 1 \to k$ if and only if $f : \mathbb{G} \to \mathbb{Y}$ is additive.

* Note: The equations (3.6) and (3.7) is called an additive $\beta-functional\ equations.$

Theorem 3.5. Let r > 1 and θ be nonnegative real numbers, and let $f : \mathbb{X} \to \mathbb{Y}$ be mapping such that

$$\left\| f\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_{j}\right) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \left(kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k}\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_{j}\right) \right) \right\|_{\mathbb{Y}}$$

$$+ \theta \left(\sum_{j=1}^{k} \left\| x_{j} \right\|^{r} + \sum_{j=1}^{k} \left\| x_{k+j} \right\|^{r} \right)$$
(3.8)

for all $x_j, x_{k+j} \in \mathbb{X}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $Q : \mathbb{X} \to \mathbb{Y}$ such that

$$\left\| f\left(x\right) - Q\left(x\right) \right\|_{\mathbb{Y}} \le \frac{k\theta}{k^r - k} \left\| x \right\|^r \tag{3.9}$$

for all $x \in X$.

Proof. Letting $x_j = x_{k+j} = 0$ for all $j = 1 \to k$ in (3.8), we get

$$\left(\left| 2k - 1 \right| - \left| k\beta \right| \right) \left\| f\left(0\right) \right\|_{\mathbb{Y}} \le 0. \tag{3.10}$$

So

$$f(0) = 0.$$

Letting $x_{k+j} = 0$, $x_j = x$ for all $j = 1 \to k$ in (3.8), we get

$$\left\| f(kx) - kf(x) \right\|_{\mathbb{Y}} \le \theta k \left\| x \right\|^{r} \tag{3.11}$$

$$\left\| f\left(x\right) - kf\left(\frac{x}{k}\right) \right\|_{\mathbb{V}} \le \frac{k\theta}{k^r} \left\| x \right\|^r$$

$$\left\| k^{l} f\left(\frac{x}{k^{l}}\right) - k^{m} f\left(\frac{x}{k^{m}}\right) \right\|_{\mathbb{Y}} \leq \sum_{j=l}^{m-1} \left\| k^{j} f\left(\frac{x}{k^{j}}\right) - k^{j+1} f\left(\frac{x}{k^{j+1}}\right) \right\|_{\mathbb{Y}} \leq \frac{k\theta}{k^{r}} \sum_{j=l}^{m-1} \frac{k^{j}}{k^{rj}} \left\| x \right\|^{r}$$
(3.12)

for all nonnegative integers m and l with m > l and all $x \in \mathbb{X}$. It follows from (3.12) that the sequence $\left\{k^n f\left(\frac{x}{k^n}\right)\right\}$ is a cauchy sequence for all $x \in \mathbb{X}$. Since \mathbb{Y} is complete space, the sequence $\left\{k^n f\left(\frac{x}{k^n}\right)\right\}$ coverges.

So one can define the mapping $Q: \mathbb{X} \to \mathbb{Y}$ by

$$Q(x) := \lim_{n \to \infty} k^n f\left(\frac{x}{k^n}\right)$$

for all $x \in \mathbb{X}$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.12), we get (3.9).

Now, It follows from (3.8) that

$$\left\| Q\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} Q\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} Q\left(x_{j}\right) \right\|_{\mathbb{Y}}$$

$$= \lim_{n \to \infty} k^{n} \left\| f\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{n+1}} + \frac{1}{k^{n}} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k^{n+1}}\right) - \sum_{j=1}^{k} f\left(\frac{x_{j}}{k^{n}}\right) \right\|_{\mathbb{Y}}$$

$$\leq \lim_{n \to \infty} k^{n} \left\| \beta \left(kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{n+2}} + \frac{1}{k^{n}} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k^{n+1}}\right) - \sum_{j=1}^{k} f\left(\frac{x_{j}}{k^{n}}\right) \right\|_{\mathbb{Y}}$$

$$+ \lim_{n \to \infty} \frac{k^{n} \theta}{k^{nr}} \left(\sum_{j=1}^{k} \left\|x_{j}\right\|^{r} + \sum_{j=1}^{k} \left\|x_{k+j}\right\|^{r}\right)$$

$$= \left\| \beta \left(kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_{j}\right) \right) \right\|_{\mathbb{Y}}$$

$$(3.13)$$

for all $x_j, x_{k+j} \in \mathbb{X}$, for all $j = 1 \to k$. So

ISSN: 2231-5373

$$\left\| Q\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} Q\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} Q\left(x_{j}\right) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \left(kQ\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} Q\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} Q\left(x_{j}\right) \right\|_{\mathbb{Y}}$$
(3.14)

for all $x_j, x_{k+j} \in \mathbb{X}$, for all $j = 1 \to k$. By Lemma (3.1), the mapping $Q : \mathbb{X} \to \mathbb{Y}$ is additive.

Next, suppose that $T: \mathbb{X} \to \mathbb{Y}$ be another additive mapping satisfying (3.9). Then we

have

$$\left\|Q\left(x\right) - T\left(x\right)\right\|_{\mathbb{Y}} = k^{n} \left\|Q\left(\frac{x}{k^{n}}\right) - T\left(\frac{x}{k^{n}}\right)\right\|_{\mathbb{Y}}$$

$$\leq k^{n} \left(\left\|Q\left(\frac{x}{k^{n}}\right) - f\left(\frac{x}{k^{n}}\right)\right\|_{\mathbb{Y}} + \left\|T\left(\frac{x}{k^{n}}\right) - f\left(\frac{x}{k^{n}}\right)\right\|_{\mathbb{Y}}\right)$$

$$\leq \frac{2k^{n+1}\theta}{\left(k^{r} - k\right)k^{nr}} \left\|x\right\|^{r}$$

$$(3.15)$$

which tends to zero as $n \to \infty$ for all $x \in \mathbb{X}$. So we can conclude that Q(x) = T(x) for all $x \in \mathbb{X}$. This proves the uniqueness of Q. Thus the mapping $Q : \mathbb{X} \to \mathbb{Y}$ is a unique additive mapping satisfying (3.9).

Theorem 3.6. Let r < 1 and θ be nonnegative real numbers, and let $f : \mathbb{X} \to \mathbb{Y}$ be mapping such that

$$\left\| f\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \left(kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right) \right\|_{\mathbb{Y}}$$

$$+ \theta \left(\sum_{j=1}^{k} \left\| x_{j} \right\|^{r} + \sum_{j=1}^{k} \left\| x_{k+j} \right\|^{r} \right)$$
(3.16)

for all $x_j, x_{k+j} \in \mathbb{X}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $Q : \mathbb{X} \to \mathbb{Y}$ such that

$$\left\| f\left(x\right) - Q\left(x\right) \right\|_{\mathbb{Y}} \le \frac{k\theta}{k - k^r} \left\| x \right\|^r \tag{3.17}$$

for all $x \in \mathbb{X}$

Proof. Letting $x_j = x_{k+j} = 0$ for all $j = 1 \to k$ in (3.16), we get

$$\left(\left|2k-1\right|-\left|k\beta\right|\right)\left\|f\left(0\right)\right\|_{\mathbb{Y}} \le 0. \tag{3.18}$$

So

$$f(0) = 0.$$

Letting $x_{k+j} = 0$, $x_j = x$ for all $j = 1 \to k$ in (3.14), we get

$$\left\| f\left(kx\right) - kf\left(x\right) \right\|_{\mathbb{Y}} \le \theta k \|x\|^{r}$$

$$\left\| f\left(x\right) - \frac{1}{k} f\left(kx\right) \right\| \le \theta \|x\|^{r}$$

$$(3.19)$$

Hence

$$\left\| \frac{1}{k^{l}} f\left(k^{l} x\right) - \frac{1}{k^{m}} f\left(k^{m} x\right) \right\|_{\mathbb{Y}} \leq \sum_{j=l}^{m-1} \left\| \frac{1}{k^{j}} f\left(k^{j} x\right) - \frac{1}{k^{j+1}} f\left(k^{j+1} x\right) \right\|_{\mathbb{Y}} \leq \theta \sum_{j=l}^{m-1} \frac{k^{jr}}{k^{j}} \left\|x\right\|^{r}$$
(3.20)

for all nonnegative integers m and l with m > l and all $x \in \mathbb{X}$. It follows from (3.20) that the sequence $\left\{\frac{1}{k^n}f\left(k^nx\right)\right\}$ is a cauchy sequence for all $x \in \mathbb{X}$. Since \mathbb{Y} is complete space, the sequence $\left\{\frac{1}{k^n}f\left(k^nx\right)\right\}$ coverges.

So one can define the mapping $Q: \mathbb{X} \to \mathbb{Y}$ by

$$Q(x) := \lim_{n \to \infty} \frac{1}{k^n} f(k^n x)$$

for all $x \in \mathbb{X}$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.20), we get (3.17). The rest of the proof is similar to the proof of Theorem (3.3). By the triangle, we have

$$\left\| f\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right\|_{\mathbb{Y}}$$

$$- \left\| \beta \left(kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right) \right\|_{\mathbb{Y}}$$

$$\leq \left\| f\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) - \beta \left(kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_{j}\right) \right) \right\|_{\mathbb{Y}}.$$

$$(3.21)$$

From Theoem 3.5 and Theoem 3.6 we have Corollarys.

Corollary 3.7. Let r > 1 and θ be nonnegative real numbers, and let $f : \mathbb{X} \to \mathbb{Y}$ be mapping such that

$$\left\| f\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_{j}\right) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \left(kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k}\sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_{j}\right) \right) \right\|_{\mathbb{Y}}$$

$$+ \theta \left(\sum_{j=1}^{k} \left\| x_{j} \right\|^{r} + \sum_{j=1}^{k} \left\| x_{k+j} \right\|^{r}\right) \tag{3.22}$$

ISSN: 2231-5373

for all $x_j, x_{k+j} \in \mathbb{X}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $Q: \mathbb{X} \to \mathbb{Y}$ such that

$$\left\| f\left(x\right) - Q\left(x\right) \right\|_{\mathbb{Y}} \le \frac{k\theta}{k^r - k} \left\| x \right\|^r \tag{3.23}$$

for all $x \in \mathbb{X}$.

Corollary 3.8. Let r < 1 and θ be nonnegative real numbers, and let $f : \mathbb{X} \to \mathbb{Y}$ be mapping such that

$$\left\| f\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \left(kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right) \right\|_{\mathbb{Y}}$$

$$+ \theta \left(\sum_{j=1}^{k} \left\| x_{j} \right\|^{r} + \sum_{j=1}^{k} \left\| x_{k+j} \right\|^{r} \right)$$
(3.24)

for all $x_j, x_{k+j} \in \mathbb{X}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $Q : \mathbb{X} \to \mathbb{Y}$ such that

$$\left\| f\left(x\right) - Q\left(x\right) \right\|_{\mathbb{Y}} \le \frac{k\theta}{k - k^r} \left\| x \right\|^r \tag{3.25}$$

for all $x \in \mathbb{X}$

4. Additive β -functional inequality in complex Banach space

Now, we study the solutions of (1.2). Note that for these inequalities, X is a real or complex normed space and Y is complex Banach spaces. Under this setting, we can show that the mapping satisfying (1.2) is additive. These results are give in the following.

Theorem 4.1. Let r > 1 and θ be nonnegative real numbers, and let $f : \mathbb{X} \to \mathbb{Y}$ be mapping with f(0) = 0 such that

$$\left\| kf \left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^2} + \frac{1}{k} \sum_{j=1}^{k} x_j \right) - \sum_{j=1}^{k} f \left(\frac{x_{k+j}}{k} \right) - \sum_{j=1}^{k} f \left(x_j \right) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \left(f \left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_j \right) - \sum_{j=1}^{k} f \left(\frac{x_{k+j}}{k} \right) - \sum_{j=1}^{k} f(x_j) \right) \right\|_{\mathbb{Y}}$$

$$+ \theta \left(\sum_{j=1}^{k} \left\| x_j \right\|^r + \sum_{j=1}^{k} \left\| x_{k+j} \right\|^r \right)$$

$$(4.1)$$

for all $x_j, x_{k+j} \in X$, for all $j = 1 \to k$. Then there exists a unique additive mapping $Q: \mathbb{X} \to \mathbb{Y}$ such that

$$\left\| f\left(x\right) - Q\left(x\right) \right\|_{\mathbb{Y}} \le \frac{k^r \theta}{k^r - k} \left\| x \right\|^r \tag{4.2}$$

for all $x \in \mathbb{X}$.

Proof. Letting $x_{j+1} = x_{k+j} = 0$ and $x_1 = x$ for all $j = 1 \rightarrow k$ in (4.1), we get

$$\left\| kf\left(\frac{x}{k}\right) - f\left(x\right) \right\|_{\mathbb{V}} \le \theta \left\| x \right\|^{r} \tag{4.3}$$

for all $x \in \mathbb{X}$. Hence

$$\left\| k^{l} f\left(\frac{1}{k^{l}} x\right) - k^{m} f\left(\frac{1}{k^{m}} x\right) \right\|_{\mathbb{Y}} \leq \sum_{j=l}^{m-1} \left\| k^{j} f\left(\frac{x}{k^{j}}\right) - k^{j+1} f\left(\frac{x}{k^{j+1}}\right) \right\|_{\mathbb{Y}} \leq \theta \sum_{j=l}^{m-1} \frac{k^{j}}{k^{rj}} \left\| x \right\|^{r}$$
(4.4)

for all nonnegative integers m and l with m > l and all $x \in \mathbb{X}$. It follows from (4.4) that the sequence $\left\{k^n f\left(\frac{x}{k^n}\right)\right\}$ is a cauchy sequence for all $x \in \mathbb{X}$. Since \mathbb{Y} is complete space, the sequence $\left\{k^n f\left(\frac{x}{k^n}\right)\right\}$ coverges.

So one can define the mapping $Q: \mathbb{X} \to \mathbb{Y}$ by

$$Q(x) := \lim_{n \to \infty} k^n f\left(\frac{x}{k^n}\right)$$

for all $x \in \mathbb{X}$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (4,4), we get (4.2). The rest of the proof is similar to the proof of theorem (3.5)

Theorem 4.2. Let r < 1 and θ be nonnegative real numbers, and let $f : \mathbb{X} \to \mathbb{Y}$ be mapping with f(0) = 0 such that

$$\left\| kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_{j}\right) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \left(f\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right) \right\|_{\mathbb{Y}}$$

$$+ \theta \left(\sum_{j=1}^{k} \left\| x_{j} \right\|^{r} + \sum_{j=1}^{k} \left\| x_{k+j} \right\|^{r} \right)$$

$$(4.5)$$

for all $x_j, x_{k+j} \in \mathbb{X}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $Q : \mathbb{X} \to \mathbb{Y}$ such that

$$\left\| f\left(x\right) - Q\left(x\right) \right\|_{\mathbb{Y}} \le \frac{k^r \theta}{k - k^r} \left\| x \right\|^r \tag{4.6}$$

for all $x \in \mathbb{X}$

Proof. Letting $x_{j+1} = x_{k+j} = 0$, $x_1 = x$ for all $j = 1 \rightarrow k$ in (4.5), we get

$$\left\| kf\left(\frac{x}{k}\right) - f\left(x\right) \right\|_{\mathbb{Y}} \le \theta \left\| x \right\|^r \tag{4.7}$$

for all $x \in X$.

So

$$\left\| f\left(x\right) - \frac{1}{k}f\left(kx\right) \right\|_{\mathbb{Y}} \le \theta \frac{k^r}{k} \left\| x \right\|^r \tag{4.8}$$

for all $x \in \mathbb{X}$.

Hence

$$\left\| \frac{1}{k^{l}} f\left(k^{l} x\right) - \frac{1}{k^{m}} f\left(k^{m} x\right) \right\|_{\mathbb{Y}} \leq \sum_{j=l}^{m-1} \left\| \frac{1}{k^{j}} f\left(k^{j} x\right) - \frac{1}{k^{j+1}} f\left(k^{j+1} x\right) \right\|_{\mathbb{Y}} \leq \frac{k^{r} \theta}{k} \sum_{j=l}^{m-1} \frac{k^{jr}}{k^{j}} \left\| x \right\|^{r}$$

$$(4.9)$$

for all nonnegative integers m and l with m > l and all $x \in \mathbb{X}$. It follows from (4.8) that the sequence $\left\{\frac{1}{k^n}f\left(k^nx\right)\right\}$ is a cauchy sequence for all $x \in \mathbb{X}$. Since \mathbb{Y} is complete space, the sequence $\left\{\frac{1}{k^n}f\left(k^nx\right)\right\}$ coverges.

So one can define the mapping $Q: \mathbb{X} \to \mathbb{Y}$ by

$$Q\left(x\right) := \lim_{n \to \infty} \frac{1}{k^n} f\left(k^n x\right)$$

for all $x \in \mathbb{X}$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (4.8), we get (4.6). The rest of the proof is similar to the proof of theorem (3.6).

By the triangle inequality, we have

$$\left\| kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} f(x_{j}) \right\|_{\mathbb{Y}}$$

$$- \left\| \beta \left(f\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right) \right\|_{\mathbb{Y}}$$

$$\leq \left\| kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \frac{1}{k} \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \frac{1}{k} \sum_{j=1}^{k} f(x_{j}) - \beta \left(f\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right) \right\|_{\mathbb{Y}}.$$

$$(4.10)$$

From Theoem 4.1 and Theoem 4.2 we have Corollarys.

Corollary 4.3. Let r > 1 and θ be nonnegative real numbers, and let $f : \mathbb{X} \to \mathbb{Y}$ be mapping with f(0) = 0 such that

$$\left\| kf \left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^2} + \frac{1}{k} \sum_{j=1}^{k} x_j \right) - \sum_{j=1}^{k} f \left(\frac{x_{k+j}}{k} \right) - \sum_{j=1}^{k} f \left(x_j \right) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \left(f \left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_j \right) - \sum_{j=1}^{k} f \left(\frac{x_{k+j}}{k} \right) - \sum_{j=1}^{k} f(x_j) \right) \right\|_{\mathbb{Y}}$$

$$+ \theta \left(\sum_{j=1}^{k} \left\| x_j \right\|^r + \sum_{j=1}^{k} \left\| x_{k+j} \right\|^r \right)$$

$$(4.11)$$

for all $x_j, x_{k+j} \in X$, for all $j = 1 \to k$. Then there exists a unique additive mapping $Q: \mathbb{X} \to \mathbb{Y}$ such that

$$\left\| f\left(x\right) - Q\left(x\right) \right\|_{\mathbb{Y}} \le \frac{k^r \theta}{k^r - k} \left\| x \right\|^r \tag{4.12}$$

for all $x \in \mathbb{X}$.

Corollary 4.4. Let r < 1 and θ be nonnegative real numbers, and let $f : \mathbb{X} \to \mathbb{Y}$ be mapping with f(0) = 0 such that

$$\left\| kf\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k^{2}} + \frac{1}{k} \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f\left(x_{j}\right) \right\|_{\mathbb{Y}}$$

$$\leq \left\| \beta \left(f\left(\sum_{j=1}^{k} \frac{x_{k+j}}{k} + \sum_{j=1}^{k} x_{j}\right) - \sum_{j=1}^{k} f\left(\frac{x_{k+j}}{k}\right) - \sum_{j=1}^{k} f(x_{j}) \right) \right\|_{\mathbb{Y}}$$

$$+ \theta \left(\sum_{j=1}^{k} \left\| x_{j} \right\|^{r} + \sum_{j=1}^{k} \left\| x_{k+j} \right\|^{r} \right)$$

$$(4.13)$$

for all $x_j, x_{k+j} \in \mathbb{X}$, for all $j = 1 \to k$. Then there exists a unique additive mapping $Q : \mathbb{X} \to \mathbb{Y}$ such that

$$\left\| f\left(x\right) - Q\left(x\right) \right\|_{\mathbb{Y}} \le \frac{k^r \theta}{k - k^r} \left\| x \right\|^r \tag{4.14}$$

for all $x \in X$.

ISSN: 2231-5373

Remak: If β is a real number such that $-1 < \beta < 1$ and is \mathbb{Y} is a real Banach space, then all the assertions in this sections remain valid

5. Conclusion

In this paper, I have shown that the solutions of the first and second 2k-variable β functional inequalities are additive mappings. The Hyers-Ulam stability for these given
from theorems. These are the main results of the paper, which are the generalization of
the results [17, 18, 19, 22].

References

- [1] T. Aoki, On the stability of the linear transformation in Banach space, J. Math. Soc. Japan 2(1950), 64-66.
- [2] A.Bahyrycz, M. Piszczek, Hyers stability of the Jensen function equation, Acta Math. Hungar.,142 (2014),353-365.
- [3] M.Balcerowski, On the functional equations related to a problem of z Boros and Z. Dróczy, Acta Math. Hungar.,138 (2013), 329-340.
- [4] Pascus. Găvruta, A generalization of the Hyers-Ulam -Rassias stability of approximately additive mappings, Journal of mathematical Analysis and Aequations 184 (3) (1994), 431-436 https://doi.org/10.1006/jmaa.1994.1211.
- [5] C. Park, Y. Cho, M. Han. Functional inequalities associated with Jordan-von Newman-type additive functional equations, J. Inequality .Appl., 2007(2007), Article ID 41820, 13 pages.

- [6] S. M. ULam. A collection of Mathematical problems, volume 8, Interscience Publishers. New York, 1960.
- [7] Donald H. Hyers, On the stability of the functional equation, Proceedings of the National Academy of the United States of America 27 (4) (1941), 222.https://doi.org/10.1073/pnas.27.4.222.
- [8] Themistocles M. Rassias, On the stability of the linear mapping in Banach space, proceedings of the American Mathematical Society, 27 (1978), 297-300. https://doi.org/10.2307/s00010-003-2684-8.
- [9] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161
- [10] W. P and J. Schwaiger, A system of two inhomogeneous linear functional equations, Acta Math. Hungar 140 (2013), 377-406.
- [11] L. Maligranda. Tosio Aoki (1910-1989). In *International symposium on Banach and function spaces:* 14/09/2006-17/09/2006, pages 1–23. Yokohama Publishers, 2008.
- [12] A. Najati and G. Z. Eskandani. Stability of a mixed additive and cubic functional equation in quasi-Banach spaces. *J. Math. Anal. Appl.*, 342(2):1318–1331, 2008.
- [13] Attila Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl., 5 (2002), 707-710. . .
- [14] Attila Gilányi, Eine zur parallelogrammleichung äquivalente ungleichung, Aequations 5 (2002),707-710. https://doi.org/10.7153/mia-05-71.
- [15] Jürg Rätz On inequalities assosciated with the jordan-von neumann functional equation, Aequationes matheaticae, 66 (1) (2003), 191-200 https://doi.org/10-1007/s00010-0032684-8.
- [16] W Fechner, On some functional inequalities related to the logarithmic mean, Acta Math., Hungar., 128 (2010,)31-45, 303-309.
- [17] Choonkil. Park. Additive β-functional inequalities, Journal of Nonlinear Science and Appl. 7(2014), 296-310.
- [18] Choonkil. Park. Additive ρ-functional inequalities and equations, Journal of Mathmatical inequalities Volum 9, Number 1 (2015), 17- 26 doi: 10.7153/jmi-09-02.
- [19] Ly Van An. Hyers-Ulam stability of functional inequalities with three variable in Banach spaces and Non-Archemdean Banach spaces International Journal of Mathematical Analysis Vol.13, 2019, no. 11. 519-53014), 296-310. https://doi.org/10.12988/ijma.2019.9954
- [20] Choonkil Park, functional in equalities in Non-Archimedean normed spaces. Acta Mathematica Sinica, English Series, 31 (3), (2015), 353-366. https://doi.org/10.1007/s10114-015-4278-5.
- [21] Jung Rye Lee, Choonkil Park, and DongYunShin. Additive and quadratic functional in equalities in Non-Archimedean normed spaces, International Journal of Mathematical Analysis, 8 (2014), 1233-1247... https://doi.org/10.
- [22] Ly Van An. Hyers-Ulam stability additive β-functional inequalities with three variable in Banach spaces and Non-Archemdean Banach spaces International Journal of Mathematical Analysis Vol.14, 2020, no. 5-8. 519-53014), 296-310. https://doi.org/10.12988/ijma.2020.91169.