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Abstract. For a finite group G, the power graph P(G) is a simple connected graph having vertex

set as the set of elements of finite group G, where two distinct vertices are adjacent if and only

if one is a power of the other. In this paper, we obtain the distance spectrum power graphs of

finite groups such as cyclic groups, dihedral groups, dicyclic groups, abelian groups, elementary

abelian p groups and other non abelian groups.
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1 Introduction

In this paper, we consider only connected, undirected, simple and finite graphs. A graph is

denoted by Γ(V (Γ), E(Γ)), where V (Γ) = {v1, v2, . . . , vn} is its vertex set and E(Γ) is its edge

set. The order of Γ is the number n = |V (Γ)| and its size is the number m = |E(Γ)|. The set of

vertices adjacent to v ∈ V (Γ), denoted by N(v), refers to the neighborhood of v. The degree of

v, denoted by dΓ(v) (we simply write dv if it is clear from the context) means the cardinality of

N(v). The adjacency matrix A = [aij] of Γ is a (0, 1)-square matrix of order n whose (i, j)-entry

is equal to 1, if vi is adjacent to vj and equal to 0, otherwise.

In Γ, the distance between two vertices u, v ∈ V (Γ), denoted by d(u, v), is defined as the

length of a shortest path between u and v. The diameter of Γ is the maximum distance between

any two vertices of Γ. The distance matrix of Γ is denoted by D(Γ) and is defined as D(Γ) = [duv],

where duv = d(u, v) if u 6= v ∈ V (Γ) and zero otherwise. For more about D(Γ), we refer reader

to its survey [2]. Kelarev and Quinn [14] defined the directed power graph of a semigroup S

as a directed graph with vertex set S in which two vertices x, y ∈ S are connected by an arc

from x to y if and only if x 6= y and yi = x for some positive integer i. Motivated by this,

Chakrabarty et al. [9] defined the undirected power graph P(G) of a group G as an undirected

graph with vertex set as G and two vertices x, y ∈ G are adjacent if and only if xi = y or
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2 Mudasir A. Wani and A. K. Shrivastav

yj = x, for 2 ≤ i, j ≤ n. Many researchers have studied various properties of power graphs

and their applications in characterising finite groups. Cameron and Gosh [6] proved that two

finite abelian groups with isomorphic power graphs are isomorphic. Cameron [5] proved that

if two finite groups have isomorphic power graphs, then they have equal number of elements

of each possible order. In [9], it was shown that for any finite group G the power graph of

a subgroup of G is an induced subgraph of P(G) and P(G) is complete if and only if G is

a cyclic group of order pn, form some prime p and n being positive integer. Various other

characterizations of power groups of finite groups are given in [10,15] and their survey was done

in [1]. The spectrum of power graphs has attracted many researchers, as Laplacian spectrum

of power graphs of finite cyclic and dihedral groups was studied in [7], spectrum and spectral

properties was studied in [16], Laplacian spectral properties in [19], signless Laplacian spectra

in [3], and other spectral properties in [12, 18] and references therein. We denote identity of

group G by e, by P(G∗) = P(G \ {e}), we mean proper power graph of P(G) by removing

the vertex e and by U(n) we denote the set {a ∈ Zn|1 ≤ a < n, gcd(a, n) = 1}. Our other

notations are standard, Kn, K1,n−1, Pn denotes complete graph, star and path, for other undefined

notations and terminology from spectral graph theory, and group theory, the readers are referred

to [11,13,17].

The rest of the paper is organized as follows. In Section 2, we discuss the distance spectrum

of the power graph P(G) for certain finite groups like cyclic groups, dihedral groups, dicyclic

groups, elementary abelian p groups and other non abelian groups.

2 Distance spectra of power graphs of finite groups

In this section, we find distance spectrum of power graphs of various group and state some

known results.

Consider an m×m matrix

A =


A1,1 A1,2 · · · A1,m

A2,1 A2,2 · · · A2,m

...
... · · · ...

...

Am,1 Am,2 · · · Am,m

 ,

whose rows and columns are partitioned according to a partition P = {P1, P2, . . . , Pm} of X =

{1, 2, . . . , n}. The quotient matrix M [4] is the m × m matrix whose entries are the average

row sums of the blocks Ai,j of A. The partition P is called equitable if each block Ai,j of A

has constant row (and column) sum and in such case matrix M is known as equitable quotient

matrix. A vertex partition {V1, V2, . . . , Vm} of the vertex set V (G) of the graph G is equitable

if for each i and for all u, v ∈ Vi, |N(u) ∩ Vj| = |N(v) ∩ Vj|, for all j. In general eigenvalues of

M interlace the eigenvalues of A, while if partition is equitable, then following lemma is helpful

and can be found in [4].
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On distance spectra of power graphs of finite groups 3

Lemma 2.1 If the partition P of X of matrix A is equitable. Then each eigenvalue of M is an

eigenvalue of A.

The following graph operation appears in the literature with different names, called H-join

graph operation in [11], and also joined union in [20]. Herein, we use the latter name for it, and

define it as follows:

Let Γ = (V,E) be a graph of order n and Γi = (Vi, Ei) be a graph of order mi, where i = 1, . . . , n.

Then, the joined union Γ[Γ1, . . . ,Γn] is the graph H = (W,F ) with:

W =
n⋃
i=1

Vi and F =
n⋃
i=1

Ei ∪
⋃

{vi,vj}∈E

Vi × Vj.

In other words, the joined union is obtained from the union of graphs Γ1, . . . ,Γn by joining an

edge between each pair of vertices from Γi and Γj whenever vi and vj are adjacent in Γ. Thus,

the usual join of two graphs Γ1 and Γ2 is a special case of the joined union: Γ1OΓ2 = K2[Γ1,Γ2],

where K2 is the complete graph of order 2.

The following theorem in [20] gives the distance spectrum of the joined union of graphs

Γ1,Γ2, . . . ,Γn, in terms of adjacency spectrum of the graphs Γ1,Γ2, . . . ,Γn and eigenvalues of

equitable quotient matrix.

Theorem 2.2 Let Γ = (Vi, Ei) be a simple graph with n vertices V (Γ) = {v1, . . . , vn} and for

i = 1, 2, . . . , n, let Γi = (Vi, Ei) be an ri−regular graph of order mi and eigenvalues of the

adjacency matrix λi,1 = ri ≥ λi,2 ≥ . . . ≥ λi,mi
. Then the distance spectrum of the joined union

Γ[Γ1, . . . ,Γn] consists of the eigenvalues −λi,j − 2 for i = 1, . . . , n and j = 2, 3, . . . ,mi and the

eigenvalues of the matrix

M =


2m1 − r1 − 2 m2dΓ(v1, v2) m3dΓ(v1, v3) . . . mndΓ(v1, vn)

m1dΓ(v2, v1) 2m2 − r2 − 2 m3dΓ(v2, v3) . . . mndΓ(v2, vn)
...

...
. . .

...

m1dΓ(vn, v1) m2dΓ(vn, v2) m3dΓ(vn, v3) . . . 2mn − rn − 2

 .
Corollary 2.3 Let Γi be ri− regular graphs of order ni and let ri = λi,1 ≥ λi,2 ≥ · · · ≥ λi,ni

be

the adjacency eigenvalues of Γi. Then the distance spectrum of Γ1∨Γ2 consists of the eigenvalues

−λi,j − 2, i = 1, 2 and 2 ≤ j ≤ mi, and two more eigenvalues

m1 +m2 − 2− r1 + r2

2
±

√(
n1 − n2 −

r1 − r2

2

)2

+m1m2.

An integer d is called proper divisor of n if d|n, for 1 < d < n. Let d1, d2, . . . , dt be the

distinct proper divisors of n. Let ∆n be the simple graph with vertex set {d1, d2, . . . , dt}, in

which two distinct vertices are connected by an edge if and only if di|dj, for 1 ≤ i < j ≤ t. If

the prime power factorization of n = pn1
1 p

n2
2 . . . pnr

r , where r, n1, n2, . . . , nr are positive integers
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4 Mudasir A. Wani and A. K. Shrivastav

and p1, p2, . . . , pr are distinct prime numbers. Then it is easy to see that the size of the ∆n is

given by

|V (Υn)| =
r∏
i=1

(ni + 1)− 2.

If n = 22 or n = pq, where p < q are primes, then it is easy to see that ∆n is disconnected graph

otherwise ∆n.

The next result can be found in [15], stating that power of cyclic group Zn can be written as

the joined union of complete graphs.

Theorem 2.4 Let Zn be a finite cyclic group. Then power graph

P(Zn) = Kφ(n)+1O∆n[Kφ(d1), Kφ(d2), . . . , Kφ(dt)].

Now, we compute the distance spectrum of the power graph P(G) of the finite group with

the help of Theorem 2.2 and Theorem 2.4, in terms of adjacency spectrum of Kω and zeros of

the characteristic polynomial of the auxiliary matrix. We recall from [9] that P(G) is a complete

graph if and only if G is cyclic group of order n = pz, z ∈ N, where p is prime and noting that the

adjacency spectrum of Kω is {ω, (−1)[ω−1]}. So by Theorem 2.2, out of n distance eigenvalues of

P(G), n−t of them are known to be non negative integers. The remaining t distance eigenvalues

of P(G) are the non-zero zeros of the characteristic polynomial of the equitable quotient matrix

M .

We consider a new graph H = K1O∆n, it is clearly that H is a connected graph of diameter

at most two. This graph is very important for finding the distance spectrum of power graph of

finite cyclic groups. The following result computes the distance eigenvalues of Zn with the help

of Theorem 2.2 and Theorem 2.4.

Theorem 2.5 The distance spectrum of P(Zn) consists of the eigenvalue −1 with multiplicity

n− t− 1 and the zeros of the characteristic polynomial of the following equitable quotient matrix

M =


φ(n) φ(d1) . . . φ(dn)

(φ(n) + 1)d(v2, v1) φ(d2)− 1 . . . φ(dt)d(v2, vt+1)
...

... · · · ...

(φ(n) + 1)d(vt+1, v1) (φ(d1))d(vt+1, v2) . . . φ(dt)− 1

 .
Proof. Let G ∼= Zn be a finite cyclic group of order n. Then by the definition of power graph,

we observe that identity and the generators of Zn, which are φ(n) in number are adjacent to

every other vertex of P(Zn). So by Theorem 2.4, we have

P(Zn) = Kφ(n)+1O∆n[Kφ(d1), Kφ(d2), . . . , Kφ(dt)] = H[Kφ(n)+1, Kφ(d1), Kφ(d2), . . . , Kφ(dt)],

where H = K1O∆n is the new graph with vertices {v1, . . . , vt+1}. Since m1 = φ(n) + 1 and

mi = φ(di−1), for i = 2, . . . , t + 1. By Theorem 2.2, we have λ1,j − 2 = −(−1) − 2 = −1
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On distance spectra of power graphs of finite groups 5

with multiplicity φ(n). Similarly, we can show that −1 is the distance eigenvalues of P(Zn) with

multiplicity φ(d1)−1. Proceeding in this way, we see that eigenvalue −1 occurs with multiplicity

φ(n)+φ(d1)−1+ . . . φ(dt)−1 = φ(n)−
∑

1,n6=d|n
φ(d)− t = φ(n)+n−1−φ(n)− t = n− t−1. The

remaining distance eigenvalues are the zeros of the characteristic polynomial of the equitable

quotient matrix M .

From the Theorem 2.5, we note that the distance d(vi, vj), i 6= j and 1 ≤ i, j ≤ t+ 1 remains

most of times unknown. Since H = K1O∆n is a graph of diameter at most two, so d(vi, vj) = 1

or 2 depending upon whether vi and vj are adjacent or not.

Following are the consequences of the Theorem 2.5, which gives distance Laplacian spectrum

of P(Zn) for various values of n.

Corollary 2.6 If n = pz, where p is prime and z is a non negative integer, then distance

Laplacian spectrum of P(Zn) is {n− 1, (−1)[n−1]}.

Proof. If n = pz, where p is prime and n ∈ N, then as shown in [9], P(Zn) is isomorphic to

complete graph Kn and result hence follows.

Corollary 2.7 If n = pq, where p < q are primes, then distance spectrum of P(Zn) consists of

the eigenvalue −1 with multiplicity n − 3 and the remaining three eigenvalues are given by the

matrix in (2.1).

Proof. Let n = pq, where p < q are distinct primes. Since there are φ(pq) generators and

identity element which are connected to every other vertex of P(Zn). Then by [10], we have

P(Zn) = Kp−1 ∪Kq−1OKφ(pq)+1 = P3[Kp−1, Kφ(pq)+1, Kq−1].

Now, by using Theorem 2.4, we get eigenvalue λ1,j− 2 = −1 with multiplicity m1− 1. Similarly,

we see that −1 is the distance eigenvalue with multiplicity m2 + m3 − 2, and the remaining

eigenvalues of P(Zn) are given by the following matrixp− 2 pq − p− q + 2 q − 1

p− 1 pq − p− q + 1 q − 1

p− 1 pq − p− q + 2 q − 2

 . (2.1)

Next result is the generalization of above corollary and gives distance spectrum of P(Zn)

when n is product of three distinct primes.

Corollary 2.8 Let n = pqr, where p < q < r are primes. Then the distance spectrum of P(Zn)

consists of eigenvalue −1 with multiplicity n− 7 and the remaining five distance eigenvalues of

P(Zn) are the zeros of the characteristic polynomial of the matrix in (2.2).
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6 Mudasir A. Wani and A. K. Shrivastav

Proof. Let n = pqr, where p < q < r are primes. Then by the definition of ∆n, we have edge

set of ∆n as {(p, pq), (p, pr), (q, pq), (q, qr), (r, pr), (r, qr)} and H = K1O∆n. This implies that

P(Zn) = H[Kφ(n)+1, Kφ(d1), . . . , Kφ(d6)]. After labelling the vertices of P(Zn) in a proper way

and using Theorem 2.4, −1 is the distance eigenvalue with multiplicity n − 7. The remaining

eigenvalues are given by the following quotient matrix

φ(n) φ(p) φ(q) φ(r) φ(pq) φ(pr) φ(qr)

φ(n) + 1 φ(p)− 1 2φ(q) 2φ(r) φ(pq) φ(pr) 2φ(qr)

φ(n) + 1 2φ(p) φ(q)− 1 2φ(r) φ(pq) 2φ(pr) φ(qr)

φ(n) + 1 2φ(p) 2φ(q) φ(r)− 1 2φ(pq) φ(pr) φ(qr)

φ(n) + 1 φ(p) φ(q) 2φ(r) φ(pq)− 1 2φ(pr) 2φ(qr)

φ(n) + 1 φ(p) 2φ(q) φ(r) 2φ(pq) φ(pr)− 1 2φ(qr)

φ(n) + 1 2φ(p) φ(q) φ(r) 2φ(pq) 2φ(pr) φ(qr)− 1


. (2.2)

Corollary 2.9 The distance spectrum of P(Zpq2) is −1 with multiplicity n− 5 are the zeros of

the characteristic polynomial of the following quotient matrix
φ(n) φ(p) φ(pq) φ(q) φ(q2)

φ(n) + 1 φ(p)− 1 φ(pq) 2φ(q) 2φ(q2)

φ(n) + 1 φ(p) φ(pq)− 1 φ(q) 2φ(q2)

φ(n) + 1 2φ(p) φ(pq) φ(q)− 1 φ(q2)

φ(n) + 1 2φ(p) 2φ(pq) φ(q) φ(q2)− 1

 . (2.3)

Proof. Let n = pq2, where p and q are distinct primes. Since proper divisors of n are p, q, pq, q2,

so ∆p2q is the path P4 : p ∼ pq ∼ q ∼ q2. By Theorem 2.4, we have

P(Zpq2) = Kφ(pq2)+1OP4[Kφ(p), Kφ(pq), Kφ(q), Kφ(q2)] = H[Kφ(pq2)+1, Kφ(p), Kφ(pq), Kφ(q), Kφ(q2)],

where H = K1OP4. By Theorem 2.5, the distance spectrum of P(Zpq2) consists of eigenvalues

−1 with multiplicities n − 5. The remaining eigenvalues are given by the equitable quotient

matrix in (2.3).

Corollary 2.10 The distance spectrum of P(Zn) for n = (pq)2 is −1 wit multiplicity n− 8 and

the zeros of the characteristic polynomial of the matrix in (2.4).

Proof. Let n = (pq)2, where p < q are distinct primes. Since proper divisors of n are

p, p2, q, q2, pq, p2q and pq2, so ∆n is the graph G7 with vertex set as proper divisors and edge set

{(p, p2), (p, pq), (p, p2q), (p, pq2), (q, q2), (q, pq), (q, p2q), (q, pq2), (p2, p2q), (q2, pq2)(pq, p2q), (pq, pq2)}.
Let H = K1OG7 and using Theorem 2.4, we have

P(Zn) = Kφ(n)+1OG7[Kφ(p), Kφ(q), Kφ(p2), Kφ(q2), Kφ(pq), Kφ(p2q), Kφ(pq2)]

= H[Kφ(n)+1, Kφ(p), Kφ(q), Kφ(p2), Kφ(q2), Kφ(pq), Kφ(p2q), Kφ(pq2)].
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On distance spectra of power graphs of finite groups 7

By Theorem 2.5 the distance eigenvalue of P(Zn) is −1 with multiplicity n−8 and the remaining

eight eigenvalues are given by the following matrix

φ(n) φ(p) φ(q) φ(p2) φ(q2) φ(pq) φ(p2q) φ(pq2)

φ(n) + 1 φ(p)− 1 2φ(q) 2φ(p2) φ(q2) φ(pq) φ(p2q) φ(pq2)

φ(n) + 1 2φ(p) φ(q)− 1 2φ(p2) φ(q2) φ(pq) φ(p2q) φ(pq2)

φ(n) + 1 2φ(p) 2φ(q) φ(p2)− 1 2φ(q2) 2φ(pq) φ(p2q) φ(pq2)

φ(n) + 1 φ(p) φ(q) 2φ(p2) φ(q2)− 1 2φ(pq) 2φ(p2q) 2φ(pq2)

φ(n) + 1 φ(p) φ(q) 2φ(p2) 2φ(q2) φ(pq)− 1 2φ(p2q) 2φ(pq2)

φ(n) + 1 φ(p) φ(q) φ(p2) 2φ(q2) 2φ(pq) φ(p2q)− 1 2φ(pq2)

φ(n) + 1 φ(p) φ(q) φ(p2) 2φ(q2) 2φ(pq) 2φ(p2q) φ(pq2)− 1


.

(2.4)

Next we find the distance spectrum of the dihedral group and dicyclic group for some par-

ticular values of n. The dihedral group of order 2n and dicyclic groups of order 4n are denoted

and presented as follows

D2n =< a, b|an = b2 = e, bab = a−1 >,

Qn =< a, b|a2n = e, b2 = an, ab = ba−1 > .

If n is a power of 2, then Qn is called the generalized quaternion group of order 4n.

Proposition 2.11 If n is a prime power, then the distance spectrum of P(D2n) is{
(−1)[n−2], (−2)[n−1]

}
and the three eigenvalues of matrix in (2.5).

Proof. Since < a > generates a cyclic subgroup of order n and is therefore isomorphic to

Zn. The remaining n elements of D2n form an independent set of P(D2n), sharing the identity

element e. Therefore, the structure of the power group of the dihedral group D2n can be obtained

from the power graph P(Zn) by adding the n pendent vertices at the identity vertex e. If n = pz,

where z is positive integer, then it is easy to see that

P(D2n) = P3[Kn−1, K1, Kn].

By using Theorem 2.2, the distance spectrum of P(D2n) consists of the eigenvalue λ1,j − 2 =

1− 2 = −1 with multiplicity n− 2, the eigenvalue −2 with multiplicity n− 1 and the remaining

three distance eigenvalues are given by the following matrix n− 2 1 2n

n− 1 0 n

2n− 2 1 2n− 2

 . (2.5)
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8 Mudasir A. Wani and A. K. Shrivastav

Proposition 2.12 If n is a power of 2, then the distance spectrum of P(Qn) is −1 with multi-

plicity 3n− 2 and the remaining n+ 2 eigenvalues are given by the matrix (2.6).

Proof. As by the definition of power graph, the identity element is always connected to every

other vertex of P(Qn) and in particular, if n is a power of 2, then in [19], it was shown that an

is also adjacent to all other vertices of P(Qn). Therefore by using these observation and some

simple investigation, the power group of P(Qn) can be written as

P(Qn) = W [K2, K2n−2, K2, K2, . . . , K2︸ ︷︷ ︸
n

],

where W = K1,n+1. By using Theorem 2.2, we see that the distance spectrum of P(Qn) consists

of the eigenvalue −1 with multiplicity 1+2n−3+1 + · · ·+ 1︸ ︷︷ ︸
n

and the remaining n+2 eigenvalues

of P(Qn) are given by the following equitable quotient matrix

M(Qn) =



1 2n− 2 2 . . . 2 2

2 2n− 3 2 . . . 2 2

2 2(2n− 2) 1 . . . 2 2
...

...
... . . .

...
...

2 2(2n− 2) 2 . . . 1 2

2 2(2n− 2) 2 . . . 2 1


. (2.6)

Problem (2). Discuss the distance spectrum of P(D2n) for other values of n ∈ {pq, pqr, p2q, (pq)2}
and generalize for any n?

Problem (3). Discuss the distance spectrum of P(Qn) for other values of n ∈ {pq, pqr, p2q, (pq)2}
and generalize for any n?

In the next result, we find distance spectrum of finite elementary abelian groups (that is,

group whose each non trivial element is of prime order) of prime power order, for that we need

following lemma from [10].

Lemma 2.13 Let G be an elementary abelian group of order pn for some prime number p and

positive integer n. Then P(G) ∼= K1O
(
∪li=1Kp−1

)
, where l = pn−1

p−1
.

Theorem 2.14 Let G be an elementary abelian group pn, p is prime. Then the distance spec-

trum of P(G) is −1 with multiplicity l(p− 2) and the zeros of the matrix in (2.7).

Proof. Let G be an elementary abelian group of order pn for some prime p and positive integer

n. Then by Lemma 2.13, P(G) ∼= K1O
(
∪li=1Kp−1

)
and it follows that

P(G) ∼= S[K1, Kp−1, . . . , Kp−1],
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On distance spectra of power graphs of finite groups 9

where Kp−1 occurs l = pn−1
p−1

times and S = K1OK l = K1,l. Then by Theorem 2.2, we see that

−1 is the distance eigenvalue of P(G) with multiplicity l(p − 2) and the remaining distance

eigenvalues of P(G) are given by the following equitable quotient matrix

0 p− 1 p− 1 . . . p− 1 p− 1

1 p− 2 2(p− 1) . . . 2(p− 1) 2(p− 1)

1 2(p− 1) p− 2 . . . 2(p− 1) 2(p− 1)
...

...
... . . .

...
...

1 2(p− 1) 2(p− 1) . . . p− 2 2(p− 1)

1 2(p− 1) 2(p− 1) . . . 2(p− 1) p− 2


. (2.7)

In the Proposition 2.11, distance spectrum of non abelian groups of order 2p, where p is a

prime were determined. In the following result we obtain generalization of Proposition 2.11,

when order of non abelian group is product of two distinct primes and determine its distance

spectrum completely. Before proceeding further we need basic result from [10], which is stated

below.

Lemma 2.15 Let G be a finite group of order pq, where p and q are primes. Then G is non

abelian if and only if P(G) ∼= K1O(qKp−1 ∪Kq−1).

Proposition 2.16 If G be a non abelian group of order n = pq, where p < q are primes, then

the distance spectrum of P(G) is −1 with multiplicity q(p − 1) − 2 and the eigenvalues of the

matrix in (2.8).

Proof. If G be a non abelian group of order pq, then by the Lemma 2.15, power group of P(G)

can be written as

P(G) = K1,q+1[K1, Kp−1, Kp−1, . . . , Kp−1︸ ︷︷ ︸
q

, Kq−1].

By using Theorem 2.2, the distance spectrum of P(G) consists of the eigenvalue −1 with mul-

tiplicity pq − 2q + q − 2 = pq − q − 2 and the remaining q + 2 eigenvalues of P(G) are given by

the following equitable quotient matrix

0 q − 1 p− 1 . . . p− 1 p− 1

1 q − 2 2p− 2 . . . 2p− 2 2p− 2

1 2q − 2 p− 2 . . . 2p− 2 2p− 2
...

...
... . . .

...
...

1 2q − 2 2p− 2 . . . p− 2 2p− 2

1 2q − 2 2p− 2 . . . 2p− 2 p− 2


. (2.8)
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Lemma 2.17 [10] Let G be a finite group of order n. Then P(G) ∼= K1,n−1 if and only each

non identity element is self invertible.

Groups satisfying hypothesis of Lemma 2.17 are abelian of order n, following lemma gives

the distance spectrum of such type of abelian groups completely.

Lemma 2.18 Let G be a finite group of order n in which each non identity element is self

invertible. Then the distance spectrum of P(G) is {(−2)n−2, n− 2±
√
n2 − 3n+ 1}.

Proof Since G is a group of order n, such that each non identity element is of order two. Then

by Lemma 2.17, P(G) ∼= K1OKn−1 and using Corollary 2.3, result follows.
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