\odot -Subalgebra and \odot -Ideal in BN₁-algebra

Santri Ayu Aminah^{#1}, Sri Gemawati^{*2,} Syamsudhuha^{#3}

#Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau Bina Widya Campus, Pekanbaru, 28293, Indonesia

Abstract — This study is the development of the Companion BN_1 .algebra concept that researched by A. Mursalima, et al. [1]. The companion concept is developed by adding the subalgebra and ideal concepts to obtain O--Subalgebra and O-Ideal in BN_1 -algebra. The final result of this research is in the form of constructing the definitions and properties of O-Subalgebra and O--Ideal which are stated in several theorems, including the nature of the relationship.

Keywords — *BN*₁-algebra, Companion, Subalgebra, Ideal.

I. INTRODUCTION

In 2002, H. S. Kim and J. Neggers [15] have been defined a new algebra, namely B-algebra. B-algebra is a nonempty set (x, *, 0) that statisfies (B1) x * x = 0, (B2) x * 0 = x and (B) (x * y) * z = x * (z * (0 * y)) for all $x, y, z \in X$ [15]. Four years later, in 2006, C.B. Kim and H. S. Kim [5] introduced a new sub class of B-algebra that is BM-algebra. BM-algebra is algebra that satisfies (B2) and (BM) (z * y) * (z * y) = y * x. Furthermore in 2007, A. Walendziak [2] introduced a generalization of B-algebra which called BF-algebra.

In 2013, H. S. Kim and C. B. Kim founded a new structure algebra and a sub class of BF-algebra, namely BN-algebra [6]. BN-algebra is a nonempty set (X, *, 0) that satisfies the axiom (B1), (B2) and (BN) (x * y) * z = (0 * z) * (y * x) for all $x, y, z \in X$. BN-algebra is also one of the wide classes of BM-algebra. In {6}, H. S. Kim and C. B. Kim [6] was also introduced subalgebra of BN-algebra, BN₁-algebra. BN₁-algebra is a BN-algebra that satisfies x = (x * y) * y.

Various algebra concepts have been applied in B-algebra. L. D. Naingue and J. P. Vilela [18] developed a companion in B-algebra. Based on companion B-algebra [18], A. Mursalima, et al. developed on companion BN₁-algebra [1]. In this article, by adding subalgebra and ideal concept, we deveoped the definition of \bigcirc -subalgebra and \bigcirc -ideal. Let *S* and *I* be a companion BN₁-algebra, then *S* is called a \bigcirc -subalgebra when $x \bigcirc y \in S$ for all $x, y \in S$. If While *I* is said to be \bigcirc -ideal, if $0 \bigcirc y \in I$, $x \oslash y \in I$ and $y \in I$, then $x \in I$. We also investigate the properties of \bigcirc -subalgebra and \bigcirc -ideal BN₁-algebra, the relationship between \bigcirc -subgebra and \bigcirc -ideal by using some axioms

II. B-ALGEBRA, BN-ALGEBRA, BN1-ALGEBRA AND COMPANION BN1-ALGEBRA

In this section, the definition and some properties of B-Algebra, BN-algebra, BN_1 -algebra and companion BN_1 -algebra are given. J. Neggers and H. S. Kim [15] gave the definition of B-algebra by:

Definition 1.1 (Definition of B-algebra) B-algebra is a nonempty set (X, *, 0) with constanta 0 and binary operation * that satisfies:

(B1) x * x = 0, (B2) x * 0 = x, (B) (x * y) * z = x * (z * (0 * y)), for all $x, y, z \in X$.

Companion B-algebra was defined by [18]:

Definition 1.2 (Companion B-algebra) Let (X, *, 0) be with companion operation \odot . A operation \odot is said to be subcompanion operation it it satisfies $((x \odot y) * x) * y = 0$ for all $x, y \in X$. A operation \odot is a companion operation of X if for (z * x) * y = 0, then $z * (x \odot y) = 0$.

BN-algebra was introduced by C. B. Kim and H. S. Kim [6] in 2013 and was defined by :

Definition 1.3 (Definition of BN-Algebra) BN-algebra is a nonempty set (X, *, 0) with binary operation * that satisfies the following axioms:

(B1) x * x = 0, (B2) x * 0 = x, (BN) (x * y) * z = (0 * z) * (y * x), for any $x, y, z \in X$.

Example 1.1 Let $X := \{0, 1, 2, 3\}$ be a set with Cayley table as follows:

Table 1: Tabel Cayley of BN-algebra

*	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	1	0	1
3	3	1	1	0

Then based on definition 1.3, it is easy to show that X is BN-algebra.

BN-algebra is also satisfies some of addition axioms, such as [6]:

Theorem 1.1 If a nonempty set (X, *, 0) is a BN-algebra, then for any $x, y, z \in X$

(i)
$$0 * (0 * x) = 0$$
,
(ii) $y * x = (0 * x) * (0 * y)$,
(iii) $(0 * x) * y = (0 * y) * x$,
(iv) $x * y = 0 \Rightarrow y * x = 0$,
(v) $0 * x = 0 * y \Rightarrow x = y$,
(vi) $(x * z) * (y * z) = (z * y) * (z * x)$

Proof: we can see in [6].

A subalgebra of BN-algebra is defined by [6]:

Definition 1.4 (Definition of Sub BN-Algebra) Let (X, *, 0) be a BN-algebra and $\emptyset \neq S \subseteq X$. S id called to be a subalgebra of X if $x * y \in S$ for any $x, y \in S$.

One of the subalgebra of BN-algebra is BN1-algebra that is defined C. B. Kim and H. S. Kim [6] define BN1-algebra as follows:

Definition 1.5 (BN₁-algebra) BN₁-algebra is a nonempty set (X,*,0) of BN-algebra satisfies i (BN1) x = (x * y) * y for all $x, y, z \in X$.

Example 1.2 Let $X := \{0, 1, 2, 3\}$ be a set with Cayley table as follows:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Table 2: Tabel Cayley of BN₁-algebra

Then based on definition 1.3 and definition 1.5, it is easy to show that X is BN_1 -algebra.

Some additional axioms is satisfied on BN₁-algebra, such as [6]:

Theorem 1.2 If (X, *, 0) is a BN₁-algebra, then it satisfies

(i) 0 * x = x, (ii) x * y = y * x

for any $x, y \in X$.

Proof. (i) Let $x, y, z \in X$. By using (BN1) x = (x * y) * y and (B1) x * x = 0, for y = x, we get (x * y) * y = (x * x) * x = 0 * x = x.

(ii) From theorem 1.1, we have y * x = (0 * x) * (0 * y) = x * y.

Theorem 1.3 Let (X, *, 0) be a BN₁-algebra. If x * y = 0, then x = y for any $x, y \in X$. **Proof.** We can see in [6].

Based on definiton of subalgebra, the Subalgebra of BN1-algebra can be defined by

Definition 1.6 (Subalgebra of BN₁-Algebra) Let (X, *, 0) be a BN₁-algebra and $\emptyset \neq S \subseteq X$. S is said to be a subalgebra of X if $x * y \in S$ for $x, y \in S$.

While Ideal of BN₁-algebra can be defined as follows:

Definition 1.7 (BN₁-ideal) Let (X, *, 0) be a BN₁-algebra and $\bigotimes \neq I \subseteq X$. *I* is called BN₁-ideal of *X* if $0 \in I$, $y \in I$ dan $x * y \in I$, then $x \in I$ for any $x, y \in I$.

Example 1.3 Let X := 0, 1, 2, 3 is a BN₁-algebra in example 1.2. $I_1 = \{0,1\}, I_2 = \{0,2\}$ and $I_3 = \{0,3\}$ are ideal of BN₁-algebra, but $I_4 = \{0,1,2\}$ is not a ideal because 1 * 2 = 2 * 1 = 3 and $3 \notin I_4$.

Companion concept has been applied in BN_1 -algebra. A. Mursalima, et al.[1] defined companion BN_1 -algebra as follows:

Definition 1.8 (Companion BN₁-algebra) Let (X, *, 0) be a BN₁-algebra with operation Θ . Operation Θ is called subcompanion, if it satisfies $((x \odot y) * x) * y = 0$ for any $x, y \in X$ and subcompanion operation Θ is a companion of X if satisfies (C) if (z * x) * y = 0, then $z * (x \odot y) = 0$ for all $x, y, z \in X$.

Exampe 1. Let $X := \{0, 1, 2, 3\}$ be a BN₁-Algebra with Cayley table as follows:

* *	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Table 3: Companion BN₁-Algebra

O	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Based on definition 1.8, it is easy to show that $(X, *, \Theta, 0)$ is a companion BN₁-algebra.

III. $\odot\mbox{-}SUBALGEBRA \mbox{ and } \odot\mbox{-}IDEAL \mbox{ of } BN_1\mbox{-}ALGEBRA$

In this section, we construct the definition \odot -Subalgebra and \odot -Ideal BN₁-algebra. We also contruct the propeties of \odot -subalgebra and \odot -Ideal BN₁-algebra on some theorems. \odot -Sub of BN₁-algebra is defined by

Definition 1.9 (**O**-Subalgebra) Let (X, *, O, 0) be a companion BN₁-algebra and S is a nonempty subset of X. S is said to be a O-subalgebra of X if $x O y \in I$ for $x, y \in S$.

Example 1.5 Let $X := \{0, 1, 2, 3\}$ is a BN₁-algebra in example 1.4. A set $I_1 = \{0, 1\}$ is a \bigcirc -subalgebra, while $I_2 = \{0, 2, 3\}$ is not because $2 \bigcirc 3 = 3 \oslash 1 = 1 \notin I_2$.

A O-subalgebra of BN1-algebra has a relation with BN1-ideal that we can see in this theorem

Theorem 1.4 Let $(X, *, \odot, 0)$ be a companion BN₁-algebra. If *I* is a ideal of *X*, then *I* is a \odot -subalgebra of *X*.

Proof. Let $x, y \in I$ and (x * y) * z = (x * y) * z. By using (SC), we have $((x \odot y) * x) * y = 0 \in I$. Since I is a BN₁-ideal, $x \in I$ and $y \in I$, we get $(x \odot y) * x \in I$ and $x \odot y \in I$. Hence I is a \bigcirc -sub BN₁-algebra.

Another relation A \odot -subalgebra of BN₁-algebra with BN₁-ideal as follows:

Theorem 1.5 Let $(X, *, \bigcirc, 0)$ be a companion BN₁-algebra that satisfies associative law (x * y) * z = (x * y) * z. If *I* is a \bigcirc -subalgebra of *X* and $0 \in I$, then *I* is a BN₁-ideal. **Proof.** Let *I* is a \bigcirc -subalgebra of *X* and $0 \in I$, and $b \in I$. Since *X* satisfies $(x * y) * z = (x * y) \bigcirc z$, thus we obtain

$$a = (a \odot b) * b$$
$$a = (a \odot b) \odot b$$

I is a \bigcirc -subalgebra, so we have $a \bigcirc b \in I$ and $b \in I$ and then $a \in I$. Based on definition i 1.7, *I* is a BN₁-ideal.

 \odot -ideal of BN₁-algebra is defined by

Definition 1.10 (O-ideal) Let (X, *, O, 0) be a companion BN₁-algebra and *I* is a subset of i *X*. *I* is said to be O-ideal if satisfies

(i) $0 \in I$ (ii) for $x \odot y \in I$ and $y \in I$, then $x \in I$ for $x, y \in I$.

Example 1.6 Let $X := \{0, 1, 2, 3\}$ is a BN₁-algebra in example 1.4. Set $I_1 = \{0, 1\}$ and $I_1 = \{0, 2\}$ is a Θ -ideal of X.

Theorem 1.6 Let $(X, *, \bigcirc, 0)$ be a companion BN₁-algebra that satisfies $(x * y) * z = (x * y) \odot z$. If *I* is a \bigcirc -ideal of *X*, then *I* is a \bigcirc -subalgebra of *X*.

Proof. X satisfies $(x * y) * z = (x * y) \odot z$, we obtain

$$(x \bigcirc y) * y = x$$
$$(x \bigcirc y) \odot y = x$$

Now $x \in I$, so $(x \odot y) \odot y \in I$. Since $(x \odot y) \odot y \in I$, $y \in I$ and $I \odot$ -ideal of X, then $x \odot y \in I$. By using definition 1.6, thus I is a \odot -subalgebra of X.

Theorem 1.7 Let $(X, *, \bigcirc, 0)$ is a companion BN₁-algebra satisfies $(x * y) * z = (x * y) \odot z$. If *I* is a \bigcirc -subalgebra of *X* and $0 \in I$, then *I* is a \bigcirc -ideal of *X*.

Proof. Since X satisfies $(x * y) * z = (x * y) \odot z$, we have

$$(x \odot y) * y = x$$
$$(x \odot y) \odot y = x$$

Now $x \in I$, so we have $(x \odot y) \odot y \in I$. Since $(x \odot y) \odot y \in I$, $y \in I$ and $I \odot$ -ideal dari X, we obtain $x \odot y \in I$. By using definition 1.6, I is a \odot -subalgebra of X.

Theorem 1.8 Let $(X, *, \bigcirc, 0)$ be a companion BN₁-algebra that satisfies (x * y) * z = (x * y) * z. If *I* is a \bigcirc -subalgebra of *X* and $0 \in I$, then *I* is a \bigcirc -ideal of *X*.

Proof. *I* is a \bigcirc -subalgebra of *X* and $0 \in I$. Let $a * b \in I$ and $b \in I$ and *X* satisfies $(x * y) * z = (x * y) \oslash Z$, we get

$$a = (a \odot b) * b$$
$$a = (a \odot b) \odot b$$

Since I is a \bigcirc -subalgebra, so $a \bigcirc b \in I$ and $b \in I$ and then $a \in I$. By using definition 1.10, I is a \bigcirc -ideal of X.

IV. CONCLUSION

In this article, the definition of \bigcirc -subalgebra and \bigcirc -ideal are developed from the concepts of Companion B-algebra [15] and companio BN1-algebra [1]. We also obtained the relationship between \bigcirc -subalgebra and \bigcirc -ideal BN1-algebra which is expressed in several theorems, such as the \bigcirc -ideal is definitely a \bigcirc -sub BN1-algebra. However, a sub BN1-algebra is not necessarily be a \bigcirc -ideal and can be declared be a \bigcirc -idea if it satisfies certain axioms.

V. REFERENCES

- A. Mursalima, S. Gemawati and Syamsudhuna, On Companion BN₁-algebras, International Journal of Mathematics Trends and Technology, 66 (2020), 292–296.
- [2] A. Walendziak, On BF-algebras, Scientiae Mathematica Slovaca, 57 (2007), 119–128.
- [3] A. Walendziak, Some Results On BN1-algebras, Scientiae Mathematicae Japonicae 78, 3 (2015), 335–342
- [4] C. B. Kim and H. S. Kim, On BG-algebras, Demo. Math., 41 (2008), 497–505
- [5] C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Japonicae 63 (2006), 421–427.
- [6] C. B. Kim and H. S. Kim, On BN-algebras, Kyungpook Math, 53 (2013), 175–184.
- [7] C. Prabpayak and U. Leerawat, On Derivations of BCC-algebras, Kasetsart J. (Nat. Sci.), 43 (2009), 398–401.
- [8] D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd Edition, New Jersey: Prentice Hall, Inc, 2003.
- [9] E. Fitria, S. Gemawati and A. Hadi, On Derivasi BN-Algebra, preprint, 2019.
- [10] E. Fitria, S. Gemawati and Kartini, Prime Ideals in B-Algebras, International Journal of Algebra, 11 (2017), 30–309.
- [11] G. Dymek and A. Walendziak, (Fuzzy) Ideals of BN-Algebras, Scientific World Journal, (2015), 1–9.
- [12] H. A. S. Abujabal and N. O. Al-Shehri, On Left Derivations Of BCIalgebras, Soochow Journal Of Mathematics, 33 (2007), 435–444.
 [13] H. A. S. Abujabal and N. O. Al-Shehri, Some Results On Derivations Of BCI-algebras, PK ISSN 0022- 2941 CODEN JNSMAC, 46
- (2006), 13–19.
 [14] J. C. Endam and J. P. VilelaThe, Second Isomorphism Theorem for Balgebras, Applied Mathematical Sciences, 8(2014), 1865–1872
- [15] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik, 54 (2002), 21–29.
- [16] J. S. Durbin, Modern Algebra: An Introduction, 3rd Edition, New Jersey: John Wiley & Sons, 1992.
- [17] K. Iseki, On BCI-algebras, Math. Seminar Notes, 8 (1980), 125–130.
- [18] L. D. Naingue dan J. P. Vilela, On Companion B-algebra, EJPAM, 12 (2019), 1248-1259.