〇-Subalgebra and \odot-Ideal in BN_{1}-algebra

Santri Ayu Aminah ${ }^{\# 1}$, Sri Gemawati ${ }^{* 2,}$ Syamsudhuha ${ }^{\# 3}$
\#Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau Bina Widya Campus, Pekanbaru, 28293, Indonesia

Abstract

This study is the development of the Companion $B N_{l}$ algebra concept that researched by A. Mursalima, et al. [1]. The companion concept is developed by adding the subalgebra and ideal concepts to obtain \odot--Subalgebra and \odot-Ideal in $B N_{l}$-algebra. The final result of this research is in the form of constructing the definitions and properties of \odot-Subalgebra and \odot--Ideal which are stated in several theorems, including the nature of the relationship.

Keywords - $B N_{I}$-algebra, Companion, Subalgebra, Ideal.

I. INTRODUCTION

In 2002, H. S. Kim and J. Neggers [15] have been defined a new algebra, namely B-algebra. B-algebra is a nonempty set $(X, *, 0)$ that statisfies (B1) $x * x=0$, (B2) $x * 0=x$ and (B) $(x * y) * \mathrm{z}=x *(\mathrm{z} *(0 * y)$) for all $x, y, z \in X$ [15]. Four years later, in 2006, C.B. Kim and H. S. Kim [5] introduced a new sub class of B-algebra that is BM-algebra. BM-algebra is algebra that satisfies (B2) and (BM) $(z * y) *(z * y)=y * x$. Furthermore in 2007, A. Walendziak [2] introduced a generalization of B-algebra which called BF-algebra.

In 2013, H. S. Kim and C. B. Kim founded a new structure algebra and a sub class of BF-algebra, namely BN-algebra [6]. BN-algebra is a nonempty set $(X, *, 0)$ that satisfies the axiom (B1), (B2) and $(\mathrm{BN})(x * y) * z=(0 * z) *(y * x)$ for all $x, y, z \in X$. BN-algebra is also one of the wide classes of BM-algebra. In $\{6\}$, H. S. Kim and C. B. Kim [6] was also introduced subalgebra of BN -algebra, BN_{1}-algebra. BN_{1}-algebra is a BN-algebra that satisfies $x=(x * y) * y$.

Various algebra concepts have been applied in B-algebra. L. D. Naingue and J. P. Vilela [18] developed a companion in B-algebra. Based on companion B-algebra [18], A. Mursalima, et al. developed on companion BN_{1}-algebra [1]. In this article, by adding subalgebra and ideal concept, we deveoped the definition of \odot subalgebra and \odot-ideal. Let S and I be a companion BN_{1}-algebra, then S is called a \odot-subalgebra when $x \odot y \in S$ for all $x, y \in S$. If While I is said to be \odot-ideal, if $0 \odot y \in I, x \odot y \in I$ and $y \in I$, then $x \in I$. We also investigate the properties of \odot-subalgebra and \odot-ideal BN_{1}-algebra, the relationship between $\odot-$ subgebra and \odot-ideal by using some axioms

II. B-ALGEBRA, BN-ALGEBRA, BN $_{1}$-ALGEBRA AND COMPANION BN \mathbf{N}_{1}-ALGEBRA

In this section, the definition and some properties of B-Algebra, BN -algebra, BN_{1}-algebra and companion BN_{1} algebra are given. J. Neggers and H. S. Kim [15] gave the definition of B-algebra by:

Definition 1.1 (Definition of B-algebra) B-algebra is a nonempty set ($X, *, 0$) with constanta 0 and binary operation * that satisfies:
(B1) $x * x=0$,
(B2) $x * 0=x$,
(B) $(x * y) * \mathrm{z}=x *(\mathrm{z} *(0 * y))$,
for all $x, y, z \in X$.

Companion B-algebra was defined by [18]:

Definition 1.2 (Companion B-algebra) Let $(X, *, 0)$ be with companion operation \odot. A operation \odot is said to be subcompanion operation it it satisfies $((x \odot y) * x) * y=0$ for all $x, y \in X$. A operation \odot is a companion operation of X if for $(\mathrm{z} * x) * y=0$, then $\mathrm{z} *(x \odot y)=0$.

BN-algebra was introduced by C. B. Kim and H. S. Kim [6] in 2013 and was defined by :
Definition 1.3 (Definition of BN-Algebra) BN-algebra is a nonempty set ($X, *, 0$) with binary operation * that satisfies the following axioms:
(B1) $x * x=0$,
(B2) $x * 0=x$,
(BN) $(x * y) * \mathrm{z}=(0 * \mathrm{z}) *(\mathrm{y} * x)$,
for any $x, y, z \in X$.
Example 1.1 Let $X:=\{0,1,2,3\}$ be a set with Cayley table as follows:
Table 1: Tabel Cayley of BN-algebra

$*$	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	1	0	1
3	3	1	1	0

Then based on definition 1.3, it is easy to show that X is BN-algebra.
BN -algebra is also satisfies some of addition axioms, such as [6]:
Theorem 1.1 If a nonempty set $(X, *, 0)$ is a BN -algebra, then for any $x, y, z \in X$
(i) $0 *(0 * x)=0$,
(ii) $y * x=(0 * x) *(0 * y)$,
(iii) $(0 * x) * y=(0 * y) * x$,
(iv) $x * y=0 \Rightarrow y * x=0$,
(v) $0 * x=0 * y \Rightarrow x=y$,
(vi) $(x * z) *(y * z)=(z * y) *(z * x)$.

Proof: we can see in [6].
A subalgebra of BN -algebra is defined by [6]:

Definition 1.4 (Definition of Sub BN-Algebra) Let ($X,{ }_{, *, 0}$) be a BN-algebra and $\theta_{\neq S} \subseteq X . S$ id called to be a subalgebra of X if $x * y \in S$ for any $x, y \in S$.

One of the subalgebra of BN-algebra is BN1-algebra that is defined C. B. Kim and H. S. Kim [6] define BN1algebra as follows:

Definition 1.5 (BN_{1}-algebra) BN_{1}-algebra is a nonempty set ($X, *, 0$) of BN -algebra satisfies i (BN 1) $x=(x * y) * y$ for all $x, y, z \in X$.

Example 1.2 Let $X:=\{0,1,2,3\}$ be a set with Cayley table as follows:

Table 2: Tabel Cayley of BN_{1}-algebra

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Then based on definition 1.3 and definition 1.5, it is easy to show that X is BN_{1}-algebra.
Some additional axioms is satisfied on BN_{1}-algebra, such as [6]:
Theorem 1.2 If $(X, *, 0)$ is a BN_{1}-algebra, then it satisfies
(i) $0 * x=x$,
(ii) $x * y=y * x$
for any $x, y \in X$.
Proof. (i) Let $x, y, z \in X$. By using (BN1) $x=(x * y) * y$ and (B1) $x * x=0$, for $y=x$, we get $(x * y) * y=(x * x) * x=0 * x=x$.
(ii) From theorem 1.1, we have $y * x=(0 * x) *(0 * y)=x * y$.

Theorem 1.3 Let $(X, *, 0)$ be a BN_{1}-algebra. If $x * y=0$, then $x=y$ for any $x, y \in X$.
Proof. We can see in [6].
Based on definiton of subalgebra, the Subalgebra of BN_{1}-algebra can be defined by
Definition 1.6 (Subalgebra of $\mathbf{B N _ { 1 }}$-Algebra) Let $(X, *, 0)$ be a BN_{1}-algebra and $\theta_{\neq} S \subseteq X . S$ is said to be a subalgebra of X if $x * y \in S$ for $x, y \in S$.

While Ideal of BN_{1}-algebra can be defined as follows:
Definition $1.7\left(\mathbf{B N}_{1}\right.$-ideal) Let $(X, *, 0)$ be a BN_{1}-algebra and $\theta \neq I \subseteq X . I$ is called BN_{1}-ideal ofi X if $0 \in I$, $y \in I$ dan $x * y \in I$, then $x \in I$ for any $x, y \in I$.

Example 1.3 Let $X:=0,1,2,3$ is a BN_{1}-algebra in example 1.2. $I_{1}=\{0,1\}, I_{2}=\{0,2\}$ and $I_{3}=\{0,3\}$ are ideal of BN_{1}-algebra, but $I_{4}=\{0,1,2\}$ is not a ideal because $1 * 2=2 * 1=3$ and $3 \notin I_{4}$.

Companion concept has been applied in BN_{1}-algebra. A. Mursalima, et al.[1] defined companion BN_{1}-algebra as follows:

Definition 1.8 (Companion $\mathbf{B N}_{1}$-algebra) Let $(X, *, 0)$ be a BN_{1}-algebra with operation \odot. Operation \odot is called subcompanion, if it satisfies $((x \odot y) * x) * y=0$ for any $x, y \in X$ and subcompanion operation \odot is a companion of X if satisfies (C) if $(\mathrm{z} * x) * y=0$, then $\mathrm{z} *(x \odot y)=0$ for all $x, y, z \in X$.

Exampe 1. Let $X:=\{0,1,2,3\}$ be a BN_{1}-Algebra with Cayley table as follows:

Table 3: Companion BN_{1}-Algebra

\ldots	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

$\cdots \odot$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Based on definition 1.8, it is easy to show that $\left(X, *, \odot_{, 0}\right)$ is a companion BN_{1}-algebra.

III. $\odot-$ SUbalgebra and $\odot-I D E A L$ of BN $_{1}$-ALGEbra

In this section, we construct the definition \odot-Subalgebra and \odot-Ideal BN_{1}-algebra. We also contruct the propeties of \odot-subalgebra and \odot-Ideal BN_{1}-algebra on some theorems.. \odot-Sub of BN_{1}-algebra is defined by

Definition $1.9\left(\odot\right.$-Subalgebra) Let $\left(X, *, \odot_{, 0}\right)$ be a companion BN_{1}-algebra and S is a nonempty subset of X. S is said to be a \odot-subalgebra of X if $x \odot y \in I$ for $x, y \in S$.

Example 1.5 Let $X:=\{0,1,2,3\}$ is a BN_{1}-algebra in example 1.4. A set $I_{1}=\{0,1\}$ is a \odot-subalgebra, while $I_{2}=\{0,2,3\}$ is not because $2 \odot 3=3 \odot 1=1 \notin I_{2}$.
$\mathrm{A} \odot$-subalgebra of BN_{1}-algebra has a relation with BN_{1}-ideal that we can see in this theorem
Theorem 1.4 Let $\left(X, *, \odot_{, 0}\right)$ be a companion BN_{1}-algebra. If I is a ideal of X, then I is a \odot-subalgebra of X.
Proof. Let $x, y \in I$ and $(x * y) * z=(x * y) * z$. By using (SC), we have $((x \odot y) * x) * y=0 \in I$. Since I is a BN_{1}-ideal, $x \in I$ and $y \in I$, we get $(x \odot y) * x \in I$ and $x \odot y \in I$. Hence I is a \odot-sub BN_{1}-algebra.

Another relation $\mathrm{A} \odot$-subalgebra of BN_{1}-algebra with BN_{1}-ideal as follows:
Theorem 1.5 Let $(X, *, \odot, 0)$ be a companion BN_{1}-algebra that satisfies associative law $(x * y) * z=(x * y) * z$. If I is a \odot-subalgebra of X and $0 \in I$, then I is a BN_{1}-ideal.
Proof. Let I is a \odot-subalgebra of X and $0 \in I$, and $b \in I$. Since X satisfies $(x * y) * z=(x * y) \odot z$, thus we obtain

$$
\begin{aligned}
a & =(a \odot b) * b \\
a & =(a \odot b) \odot b
\end{aligned}
$$

I is a \odot-subalgebra, so we have $a \odot_{b \in I}$ and $b \in I$ and then $a \in I$. Based on definition i $1.7, I$ is a $\mathrm{BN}_{1^{-}}$ ideal.
--ideal of BN_{1}-algebra is defined by
Definition 1.10 (\odot-ideal) Let $\left(X, *, \odot_{, 0}\right)$ be a companion BN_{1}-algebra and I is a subset of i $X . I$ is said to be ๑-ideal if satisfies
(i) $0 \in I$
(ii) for $x \odot y \in I$ and $y \in I$, then $x \in I$
for $x, y \in I$.
Example 1.6 Let $X:=\{0,1,2,3\}$ is a BN_{1}-algebra in example 1.4. Set $I_{1}=\{0,1\}$ and $I_{1}=\{0,2\}$ is a \odot-ideal of X.

Theorem 1.6 Let $\left(X, *, \odot_{, 0}\right)$ be a companion BN_{1}-algebra that satisfies $(x * y) * z=(x * y) \odot z$. If I is a $\odot-$ ideal of X, then I is a \odot-subalgebra of X.
Proof. X satisfies $(x * y) * z=(x * y) \odot z$, we obtain

$$
\begin{gathered}
(x \odot y) * y=x \\
(x \odot y) \odot y=x
\end{gathered}
$$

Now $x \in I$, so $(x \odot y) \odot y \in I$. Since $(x \odot y) \odot y \in I, y \in I$ and $I \odot-i d e a l$ of X, then $x \odot y \in I$. By using definition 1.6, thus I is a \odot-subalgebra of X.

Theorem 1.7 Let $(X, *, \odot, 0)$ is a companion BN_{1}-algebra satisfies $(x * y) * z=(x * y) \odot z$. If I is a $\odot-$ subalgebra of X and $0 \in I$, then I is a \odot-ideal of X.
Proof.. Since X satisfies $(x * y) * z=(x * y) \odot z$, we have

$$
\begin{array}{r}
(x \odot y) * y=x \\
(x \odot y) \odot y=x
\end{array}
$$

Now $x \in I$, so we have $(x \odot y) \odot y \in I$. Since $(x \odot y) \odot y \in I, y \in I$ and $I \odot$-ideal dari X, we obtain x $\odot y \in I$. By using definition $1.6, I$ is a \odot-subalgebra of X.

Theorem 1.8 Let $(X, *, \odot, 0)$ be a companion BN_{1}-algebra that satisfies $(x * y) * z=(x * y) * z$. If I is a $\odot-$ subalgebra of X and $0 \in I$, then I is a \odot-ideal of X.
Proof. I is a \odot-subalgebra of X and $0 \in I$. Let $a * b \in I$ and $b \in I$ and X satisfies $(x * y) * z=(x * y) \odot z$, we get

$$
\begin{aligned}
a & =(a \odot b) * b \\
a & =(a \odot b) \odot b
\end{aligned}
$$

Since I is a \odot-subalgebra, so $a \odot_{b \in I}$ and $b \in I$ and then $a \in I$. By using definition $1.10, I$ is a \odot-ideal of X.

IV. CONCLUSION

In this article, the the definition of \odot-subalgebra and \odot-ideal are developed from the concepts of Companion B-algebra [15] and companio BN1-algebra [1]. We also obtained the relationship between \odot-subalgebra and \odot ideal BN1-algebra which is expressed in several theorems, such as the \odot-ideal is definitely a \odot-sub BN1algebra. However, a sub BN_{1}-algebra is not necessarily be a \odot-ideal and can be declared be a \odot-idea if it satisfies certain axioms.

V. REFERENCES

[1] A. Mursalima, S. Gemawati and Syamsudhuna, On Companion BN_{1}-algebras, International Journal of Mathematics Trends and Technology, 66 (2020), 292-296.
[2] A. Walendziak, On BF-algebras, Scientiae Mathematica Slovaca, 57 (2007), 119-128.
[3] A. Walendziak, Some Results On BN1-algebras, Scientiae Mathematicae Japonicae 78, 3 (2015), 335-342
[4] C. B. Kim and H. S. Kim, On BG-algebras, Demo. Math., 41 (2008), 497-505
[5] C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Japonicae 63 (2006), 421-427.
[6] C. B. Kim and H. S. Kim, On BN-algebras, Kyungpook Math, 53 (2013), 175-184.
[7] C. Prabpayak and U. Leerawat, On Derivations of BCC-algebras, Kasetsart J. (Nat. Sci.), 43 (2009), 398-401.
[8] D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd Edition, New Jersey: Prentice Hall, Inc, 2003.
[9] E. Fitria, S. Gemawati and A. Hadi, On Derivasi BN-Algebra, preprint, 2019.
[10] E. Fitria, S. Gemawati and Kartini, Prime Ideals in B-Algebras, International Journal of Algebra, 11 (2017), 30-309.
[11] G. Dymek and A. Walendziak, (Fuzzy) Ideals of BN-Algebras, Scientific World Journal,(2015), 1-9.
[12] H. A. S. Abujabal and N. O. Al-Shehri, On Left Derivations Of BCIalgebras, Soochow Journal Of Mathematics, 33 (2007), 435-444.
[13] H. A. S. Abujabal and N. O. Al-Shehri, Some Results On Derivations Of BCI-algebras, PK ISSN 0022- 2941 CODEN JNSMAC, 46 (2006), 13-19.
[14] J. C. Endam and J. P. VilelaThe, Second Isomorphism Theorem for Balgebras,Applied Mathematical Sciences, 8(2014), 1865-1872
[15] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik, 54 (2002), 21-29.
[16] J. S. Durbin, Modern Algebra: An Introduction, 3rd Edition, New Jersey: John Wiley \& Sons, 1992.
[17] K. Iseki, On BCI-algebras, Math. Seminar Notes, 8 (1980), 125-130.
[18] L. D. Naingue dan J. P. Vilela, On Companion B-algebra, EJPAM, 12 (2019), 1248-1259.

