On fuzzy contra GPR - open maps and fuzzy contra GPR - closed maps in fuzzy topological spaces

Usharani.S Assistant Professor, Department of Mathematics, Sri Vijay Vidyalaya College of Arts and Science, Dharmapuri

February 28, 2019

Abstract

The aim of this paper is to introduced and investigate the fuzzy contra gpr- continuous and fuzzy contra gpr- irresolute maps and study their properties.Furthermore introduced the concept of fuzzy contra gpr- open maps and fuzzy contra gpr- closed maps in fuzzy topological spaces and obtain charterizations of theses maps.

Key words: fuzzy contra *gpr*- continuous, fuzzy contra *gpr*- irresolute maps, fuzzy contra *gpr* - open maps and fuzzy contra *gpr* - closed maps.

1.Introduction

The concept of a fuzzy subset was introduced and studied by L.A.Zadeh [8][9] in the year 1965. The subsequent research activities in this area and related areas have found applications in many branches of science and engineering. C.L.Chang[1] introduced and studied fuzzy topological spaces in 1968 as a generalization of topological spaces. Many researchers have contributed to development of fuzzy topological spaces.

2. preliminaries

Throughout this paper by $(X, \tau), (Y, \sigma)$ and (Z, η) as simply by X, Y, Z respectively. We mean fuzzy topological spaces (briefly fts)due to chang[1]. Let A be a fuzzy subset of X. The fuzzy closure of A denoted by cl(A) and defined as $cl(A) = \wedge \{B|B \ge A, B \text{ is a fuzzy closure subset of } (X, \tau)\}$ The fuzzy interior of A denoted by Int(A) and defined as $int(A) = \vee \{B|B \le A, B \text{ is a fuzzy closure subset of } (X, \tau)\}$.

Definition:2.1 Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be a function from a fts (Y, σ) . The

ISSN: 2231-5373

function f is called (i)fuzzy θ - open[2] if $f(\lambda)$ is a fuzzy θ -open set of Y for each fuzzy open set λ of Y.

(ii)fuzzy θ -irresolute if the inverse image of each fuzzy θ -open in Y is fuzzy θ -open in Y is fuzzy θ -open set in X.

3. Fuzzy contra *gpr*-continuous maps and fuzzy *gpr*-irresolute maps in fuzzy topological spaces

In the section, the concepts of fuzzy contra *gpr*-continuous maps and fuzzy contra *gpr*-irresolute maps in fuzzy topological spaces is introduced and study some of their properties.

Definition:3.1 Let X and Y be fuzzy topological spaces. A map $f: X \longrightarrow Y$ is said to be fuzzy contra *gpr*-continuous if the inverse image of every fuzzy open set in Y is fuzzy *gpr*-closed in X.

Theorem:3.2 If a map $f: (X, \tau) \longrightarrow (Y, \sigma)$ is fuzzy contra continuous. Then f is fuzzy contra *gpr*-continuous.

Proof: Let μ be a fuzzy open set in fuzzy topological spaces Y. Since f is fuzzy contra continuous $f^{-1}(\mu)$ is fuzzy closed set in fuzzy topological spaces X. As every fuzzy closed set is fuzzy gpr-closed. We have set in $f^{-1}(\mu)$ is fuzzy gpr-closed in fuzzy topological spaces X. Therefore f is fuzzy contra gpr-continuous.

The converse of the above theorem need not be true in general as seen from the following example

Theorem:3.3 If a function $f : (X, \tau) \longrightarrow (Y, \sigma)$ is fuzzy contra almost continuous.then it is fuzzy contra *gpr*-continuous.

Proof: Let a function $f : (X, \tau) \longrightarrow (Y, \sigma)$ be a fuzzy contra almost continuous and μ be a fuzzy open set in fuzzy topological spaces Y. Then $f^{-1}(\mu)$ is fuzzy regular closed set in fuzzy topological spaces x. Now $f^{-1}(\mu)$ is fuzzy grp-closed in X, as every closed set is fuzzy gpr-closed. Therefore f is fuzzy contra gpr-closed. Therefore f is fuzzy contra grp-continuous.

The converse of the above theorem need not be true in general as seen from the following example

Theorem:3.4 If a function $f : (X, \tau) \longrightarrow (y, \sigma)$ is fuzzy contra *gpr*-continuous and fuzzy completely semi-continuous, then it is contra fuzzy continuous.

Proof:Let a function $f : (X, \tau) \longrightarrow (y, \sigma)$ be a fuzzy contra *gpr*-continuous and fuzzy completely semi-continuous. Let μ be a fuzzy open in fuzzy topological spaces Y. Then $f^{-1}(\mu)$ is both fuzzy regular semi open and fuzzy *gpr*-closed set in fuzzy topological spaces X.By the theorem [4], $f^{-1}(\mu)$ is is fuzzy closed in

ISSN: 2231-5373

fuzzy topological spaces X. Therefore f is fuzzy contra continuous.

Theorem:3.5 If a function $f : (X, \tau) \longrightarrow (Y, \sigma)$ is fuzzy contra *gpr*- continuous and $g : (Y, \sigma) \longrightarrow (Z, \eta)$ is fuzzy continuous, then their composition $gof : (X, \tau) \longrightarrow (Z, \eta)$ is fuzzy contra *gpr*-continuous.

Proof: Let μ be a fuzzy open set in fuzzy topological spaces Z. Since g is fuzzy continuous $g^{-1}(\mu)$ is fuzzy open set in fuzzy topological spaces Y. Since f is fuzzy contra gpr-continuous. $f^{-1}(g^{-1}(\mu))$ is fuzzy gpr-closed set in fuzzy topological spaces X. But $(gof)^{-1}(\mu) = f^{-1}(g^{-1}(\mu))$. Thus gof is fuzzy contra gpr-continuous.

Definition:3.6 Let X and Y be fuzzy topological spaces. A map $f: X \longrightarrow Y$ is said to be fuzzy contra *gpr*-irresolute map if the inverse image of every fuzzy *gpr*-open set in Y is fuzzy *gpr*-closed in X.

Theorem:3.7 if a map $f : (X, \tau) \longrightarrow (Y, \sigma)$ is fuzzy contra *gpr*-irresolute, then it is fuzzy contra *gpr*-continuous.

Proof: Let β be a fuzzy open set in fuzzy topological spaces Y. Since every fuzzy open set is fuzzy gpr-open β is fuzzy gpr-open set in Y. Since f is fuzzy contra gpr- irresolute. $f^{-1}(\beta)$ is fuzzy gpr-closed set in fuzzy topological spaces X. Thus f is fuzzy contra gpr- continuous.

Theorem:3.8 Let X, Y and Z be the fuzzy topological spaces. If $f : (X, \tau) \longrightarrow (Y, \sigma)$ is fuzzy contra *gpr*-irresolute and $g : (Y, \sigma) \longrightarrow (Z, \eta)$ is fuzzy *gpr*- continuous, Then their composition $gof : (X, \tau) \longrightarrow (Z, \eta)$ is fuzzy contra *gpr*-continuous.

Proof: Let α be any fuzzy *gpr*-open set in fuzzy topological spaces Z. Since g is fuzzy contra *gpr*- irresolute, $g^{-1}(\alpha)$ is fuzzy *gpr*- closed set in fuzzy topological spaces Y. Since f is fuzzy *gpr*-irresolute. $f^{-1}(g^{-1}(\alpha))$ is fuzzy *gpr*- closed set in fuzzy topological spaces X. But $(gof)^{-1}(\alpha) = f^{-1}(g^{-1}(\alpha))$. Thus *gof* is fuzzy contra *gpr*- irresolute.

4. Fuzzy contra gpr - open maps and fuzzy contra gpr- closed maps

In this section we introduce fuzzy contra gpr- open maps and fuzzy contra gpr-closed maps in fuzzy topological spaces and obtain certain characterizations of these maps.

Definition:4.1 Let X and y be two fuzzy topological spaces. A map $f : (X, T_1) \longrightarrow (Y, T_2)$ is called fuzzy contra gpr- open if the image of every fuzzy open set in X is fuzzy gpr- closed in Y.

Theorem:4.2 Every fuzzy contra open map is a fuzzy contra *gpr*- open map.

Proof: Let $f : (X,T_1) \longrightarrow (Y,T_2)$ be a fuzzy contra open map and μ be a fuzzy open set in fuzzy topological spaces X. Then $f(\mu)$ is fuzzy closed set in fuzzy topological spaces Y. Since every fuzzy closed set is fuzzy gpr- closed, $f(\mu)$ is fuzzy gpr- closed set in fuzzy topological spaces Y. Hence f is fuzzy contra gpr- open map.

The converse of the above theorem need not to be true in general.

Theorem:4.3 If $f: (X, T_1) \longrightarrow (Y, T_2)$ is fuzzy open map and $g: (Y, T_2) \longrightarrow (Z, T_3)$ is fuzzy contra *gpr*- open map. then their composition $gof: (X, T_1) \longrightarrow (Z, T_3)$ is fuzzy contra *gpr*- open map.

Proof: Let α be fuzzy open set in X, T_1 . Since f is fuzzy open map. $f(\alpha)$ is fuzzy open set in (Y, T_2) . Since g is fuzzy contra gpr- open map. $g(f(\alpha))$ is fuzzy gpr- closed set in Z, T_3 . But $g(f(\alpha)) = (gof)(\alpha)$. Thus gof is fuzzy contra gpr- open map.

Definition:4.4 Let X and Y be two fuzzy topological spaces. A map $f : (X, T_1) \longrightarrow (Y, T_2)$ is called fuzzy contra *gpr*- closed. if the image of every fuzzy closed set in X is fuzzy *gpr*- open in Y.

Theorem:4.5 Let $f : (X, T_1) \longrightarrow (Y, T_2)$ is fuzzy contra closed map. then f is fuzzy contra gpr- closed map.

Proof: Let α be fuzzy closed set in (X, T_1) . Since f is fuzzy contra closed map. $f(\alpha)$ is fuzzy open set in (Y, T_2) . Since every fuzzy open set is fuzzy *gpr*-open. $f(\alpha)$ is fuzzy *gpr*- open set in (Y, T_2) . Hence f is fuzzy contra *gpr*- closed map.

The converse of the above theorem need not to be true in general.

Theorem:4.6 If $f : (X, T_1) \longrightarrow (Y, T_2)$ and $g : (Y, T_2) \longrightarrow (Z, T_3)$ be two maps. then their composition $gof : (X, T_1) \longrightarrow (Z, T_3)$ is fuzzy contra *gpr*-closed map if f is fuzzy closed and g is fuzzy contra *gpr*- closed.

Proof: Let α be fuzzy closed set in (X, T_1) . Since f is fuzzy closed map. $f(\alpha)$ is fuzzy closed in (Y, T_2) . Since g is fuzzy contra gpr- closed map. $g(f(\alpha))$ is fuzzy gpr- open set in (Z, T_3) . But $g(f(\alpha)) = (gof)(\alpha)$. Thus gof is fuzzy contra gpr- closed map.

Remark: The composition of two fuzzy contra *gpr*- closed maps need not be fuzzy contra *gpr*- closed.

Theorem:4.7 A map $f : X \longrightarrow Y$ is fuzzy contra *gpr*- closed if for each fuzzy set δ of Y, and for each fuzzy open set μ of X such that $\mu \ge f^{-1}(\delta)$. There is fuzzy *gpr*- closed set α of Y such that $\delta \le \alpha$ and $f^{-1}(\alpha) \le \mu$.

Proof: Suppose that f is fuzzy contra gpr- closed. Let δ be a fuzzy subset of

Y and μ is a fuzzy open set of X such that $f^{-1}(\delta) \leq \mu$. Let $\alpha = 1 - f(1 - \mu)$ is fuzzy *gpr*-closed set in fuzzy topological spaces Y. We have note that $f^{-1}(\delta) \leq \mu$ which implies $\delta \leq \alpha$ and $f^{-1}(\alpha) \leq \mu$.

For the converse, suppose that μ is a fuzzy closed set in X. Then $f^{-1}(1-f(\mu) \leq 1-\mu$ and $1-\mu$ is fuzzy open. By hypothesis, there is a fuzzy *gpr*-closed set α of Y such that $1-f(\mu) \leq \alpha$ and $f^{-1}(\alpha) \leq 1-\mu$. Therefore $\mu \leq 1-f^{-1}(\alpha)$. Hence $1-\alpha \leq f(\mu), f(1-f^{-1}(\alpha)) \leq 1-\alpha$ which implies $f(\mu) = 1-\alpha$. since $1-\alpha$ is fuzzy *gpr*-open. $f(\mu)$ is fuzzy *gpr*-open and thus f is fuzzy contra *gpr*-closed.

Lemma:4.8 Let $f : (X, T_1) \longrightarrow (Y, T_2)$ is fuzzy contra irresolute and α be a fuzzy regular semiopen in Y. Then $f^{-1}(\alpha)$ is fuzzy regular semiopen in X.

Proof: Let α be fuzzy regular semiopen in Y. To prove $f^{-1}(\alpha)$ is a fuzzy regular semiopen in X. That is to prove $f^{-1}(\alpha)$ is both fuzzy semiopen and fuzzy semiclosed in X. Now α is fuzzy semiopen in Y, Since f is fuzzy contra irresolute, $f^{-1}(\alpha)$ is fuzzy semiclosed in X.

Now α is fuzzy semiopen in Y as fuzzy regular semiopen set is fuzzy semiclosed, Then $1-\alpha$ is fuzzy semiclosed in Y. Since f is fuzzy contra irresolute, $f^{-1}(1-\alpha)$ is fuzzy semiopen in X. But $f^{-1}(1-\alpha) = 1 - f^{-1}(\alpha)$ is fuzzy semiclosed in X, and so $f^{-1}(\alpha)$ is semiopen in X. Thus $f^{-1}(\alpha)$ is both fuzzy semiclosed and fuzzy semiclosed in X and hance $f^{-1}(\alpha)$ is a fuzzy regular semiopen in X.

Theorem:4.9 Let $f : (X, T_1) \longrightarrow (Y, T_2)$ is fuzzy contra irresolute and fuzzy *gpr*- closed and α is fuzzy *gpr*- closed set of X, then $f(\alpha)$ is a fuzzy *gpr*- closed set in Y.

Proof: Let α be a fuzzy closed of X. Let $f(\alpha) \leq \mu$, where μ is a fuzzy regular semiopen in Y. Since f is fuzzy contra irresolute. $f^{-1}(\mu)$ is a fuzzy regular semiopen in X.By lemma 4.8 and $\alpha \leq f^{-1}(\mu)$. Since α is fuzzy gpr-closed set in X. $cl(\alpha) \leq f^{-1}(\mu)$. Since f is fuzzy gpr-closed. $f(cl(\alpha))$ is fuzzy gpr-closed set contained in the fuzzy regular semiopen set μ , which implies $cl(f(cl(\alpha))) \leq \mu$ and hence $cl(f(\alpha)) \leq \mu$. Therefore $f(\alpha)$ is a fuzzy gpr-closed set in Y.

Corollary:4.10 If a map $f : (X, T_1) \longrightarrow (Y, T_2)$ is fuzzy contra irresolute and fuzzy closed and α is fuzzy *gpr*-closed set in fuzzy topological spaces in X, then $f(\alpha)$ is a fuzzy *gpr* - closed set in fuzzy topological spaces in Y.

Proof: The proof follows from the theorem 4.9 and fact that every fuzzy closed map is fuzzy *gpr*- closed map.

Theorem:4.11 Let $f : X \longrightarrow Y$ and $g : Y \longrightarrow Z$ be two mappings such that $gof : X \longrightarrow Z$ is fuzzy contra gpr-closed map, then

(i) if f is fuzzy continuous and surjective, then g is fuzzy contra gpr- closed and (ii) if g is fuzzy gpr- irresolute and injective. then f is fuzzy contra gpr- closed

Proof: (i) Let μ be fuzzy closed set in Y. Since f is fuzzy continuous. $f^{-1}(\mu)$ is fuzzy closed set in X. Since gof is fuzzy contra gpr- closed map. $(gof)(f^{-1}(\mu))$ is fuzzy gpr- open set in Z. But $(gof)(f^{-1}(\mu)) = g(\mu)$, as f is surjective. Thus g is fuzzy contra gpr-closed.

(ii) Let β be a fuzzy closed set of X.Then $(gof)(\beta)$ is fuzzy contra gpr- closed set in Z. Since gof is fuzzy contra gpr- closed map. Since g is fuzzy gpr- irresolute. $g^{-1}(gof)(\beta)$ is fuzzy contra gpr- closed in y. But $g^{-1}(gof)(\beta) = f(\beta)$, as g is injective. thus f is fuzzy contra gpr- closed map.

References

1.C.L.Chang, Fuzzy Topological Spaces, J.Math. Anal.App.24(1968) 2.Caldes.M, Navalagi.G, Saraf.R, Weekly θ - open function between fuzzy topological spaces in press 2. Dang S. Bahara A. Nanda, S. Fuzzy C. continuous functions, L. Fuzzy Math 2(1)

3. Dang.S. Behera. A Nanda .S Fuzzy C- continuous functions. J. Fuzzy Math.2(1),187-196(1994)

4.Y.Gnanambal, On generalized preregular closed sets, *Indian J. pure appl. math*, 28(1997),351-60.

5.Y.Gnanambal, On gpr-continuous functions functions in topological spaces, Indian J.Pure appl. Math., 30(6)(1999), 581-593.

 $6.S. Jafari \ and \ T. \ Noiri, \ On \ contra \ pre \ continuous, Bull. malayisian. Math, Sc. Soc. (second series) 25 (2002). 115-128$

R.H.Warren, Continuity of mapping of fuzzy topological spaces Amer. Math. Soc.21, (1974)
8.L.A.Zadeh, Fuzzy Sets information and control8,338-353(1965)

9.L.A.Zadeh, Fuzzy sets and system North-Holland Publishing CompanyI(1978)3-28