The Path Induced Edge-to-Vertex Monophonic Number of Graphs

I. Annalin Selcy¹, P. Arul Paul Sudhahar², S. Robinson Chellathurai³,

¹Register Number-12446, Scott Christian College, Nagercoil-629 003, India. ²Assistant Professor, Department of Mathematics, Rani Anna Government Arts College (W), Tirunelveli-627 012, India. ³Associate Professor, Department of Mathematics, Scott Christian College, Nagercoil-629 003, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, Tamil Nadu, India.

ABSTRACT-- Let G be a connected graph with at least three vertices. An edge-to-vertex monophonic set is called a path induced edge-to-vertex monophonic set of G if < M > contains a Hamiltonian path. The minimum cardinality of a path induced edge-to-vertex monophonic set is called the path induced edge-to-vertex monophonic number of G and is denoted by $pim_{ev}(G)$. The minimum path induced edge-to-vertex monophonic set with $|M| = pim_{ev}(G)$ is called a minimum path induced edge-to-vertex monophonic number of G or pim_{ev} -set of G. Some general properties satisfied by this concept are studied. For every pair a and b of integers with $4 \le a \le b$, there exists a connected path induced edge-to-vertex geodetic graph G such that $pim_{ev}(G) = a$ and $pig_{ev}(G) = b$.

Keywords: monophonic path, monophonic number, path induced edge-to-vertex monophonic number.

AMS Subject Classification: 05C12.

1. INTRODUCTION

By a graph G = (V, E) we mean a finite undirected connected graph without loops or multiple edges. The order and size of *G* are denoted by *p* and *q* respectively. We consider connected graph with at least three vertices. For basic graph theoretic terminology we refer to Harary [2]. For two vertices *u* and *v* in a connected graph *G*, the *distance* d(u, v) is the length of a shortest u - v path in *G*. An u - v path of length d(u, v) is called an u - v geodesic. For a vertex *v* of *G*, the *eccentricity* e(v) is the distance between *v* and a vertex farthest from *v*. The minimum eccentricity among the vertices is the *radius, rad G* and the maximum eccentricity is the *diameter, diam G* of *G*. For subsets *A* and *B* of *V*(*G*), the *distance* d(A,B) is defined as $d(A,B) = min\{d(x,y) : x \in A, y \in B\}$. An u - v path of length d(A,B) is called an A - B geodesic joining the sets *A*, *B* where $u \in A$ and $v \in B$. A vertex *x* is said to lie on an A - B geodesic if *x* is a vertex of an A - B geodesic. For A = (u, v) and B = (z, w) with uv and zw edges, we write an A - B geodesic as uv - zw geodesic and d(A,B) as d(uv, zw). The maximum degree of *G*, denoted by $\Delta(G)$, is given by $\Delta(G) = max\{degG(v): v \in V(G)\}$, $N(v) = \{u \in V(G): uv \in E(G)\}$ is called the *neighborhood* of the vertex *v* in *G*. A vertex *v* is an *extreme vertex* of a graph *G* if the sub graph induced by its neighbors is complete. An edge *e* of a graph *G* is called an *extreme edge* of *G*, if one of its ends is an extreme vertex of *G*. A chord of a path $u_0, u_1, u_2, \dots u_h$ is an edge u_iu_j , with $j \ge i + 2$. An u - v path is called a

monophonic path if it is a chordless path. A monophonic set of G is a set $M \subseteq V$ such that every vertex of G lies on a monophonic path joining some pair of vertices in M. A set $S \subseteq E$ is called an *edge-to-vertex monophonic set* if every vertex of G lies on a monophonic path between two vertices in V(S). The *edge-to-vertex monophonic number* $m_{ev}(G)$ of G is the minimum cardinality of its edge-to-vertex monophonic sets and any edge-to-vertex monophonic set of cardinality $m_{ev}(G)$ is an m_{ev} - set of G. A monophonic set $M \subseteq V$ is called a *path induced monophonic set* is called of G if < M > has a Hamiltonian path. The minimum cardinality of a path induced monophonic set is called *path induced monophonic number* of G, denoted by pim(G). A path induced monophonic set with |M| = pim(G)is called a minimum path induced monophonic number of G or *pim*-set of G.

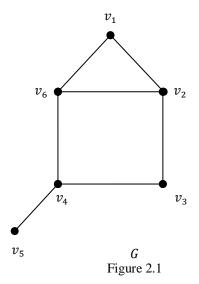
The following theorems are used in sequel.

Theorem 1.1 [3]. If v is an extreme vertex of a connected graph *G*, then every edge-to-vertex monophonic set of *G* contains at least one extreme edge incident with v.

Theorem 1.2 [5]. Every end-edge of a connected graph *G* belongs to every edge-to-vertex geodetic set of *G*.

The Path Induced Edge-to-Vertex Monophonic Graphs

Definition 2.1. Let *G* be a connected graph with at least three vertices. An edge-to-vertex monophonic set is called a *path induced edge-to-vertex monophonic set* of *G* if < M > contains a Hamiltonian path. The minimum cardinality of a path induced edge-to-vertex monophonic set is called the *path induced edge-to-vertex monophonic number* of *G* and is denoted by $pim_{ev}(G)$. The minimum path induced edge-to-vertex monophonic set with $|M| = pim_{ev}(G)$ is called a *minimum path induced edge-to-vertex monophonic number* of *G* or pim_{ev} -set of *G*.



Example 2.2. For the graph *G* given in Figure 2.1, $M_1 = \{v_1v_2, v_4v_5\}$ is an edge-to-vertex monophonic set of *G*, so that $m_{ev}(G) = 2$. Since $\langle M_1 \rangle$ has no Hamiltonian path, M_1 is not a path induced edge-to-vertex monophonic set of *G* and so $pim_{ev}(G) \ge 3$. Let $M_2 = \{v_1v_2, v_4v_5, v_4v_6\}$. Then M_2 is a pim_{ev} -set of *G* so that $pim_{ev}(G) = 3$.

Remark 2.3. There can be more than one pim_{ev} -set of G. For the graph G given in Figure 2.2, $M_1 = \{v_1v_2, v_2v_3, v_3v_4\}$ and $M_2 = \{v_1v_2, v_2v_5, v_4v_5\}$ are two pim_{ev} -sets of G.

Remark 2.4. The path induced edge-to-vertex monophonic set does not exist for all connected graphs. For the graph *G* given in Figure 2.3, there is no path induced edge-to-vertex monophonic set.

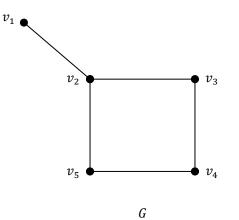


Figure 2.2

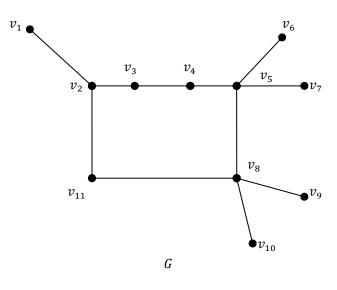


Figure 2.3

Observation 2.5.

- (i) Each end edge of G belongs to every path induced edge-to-vertex monophonic set of G.
- (ii) Let G be a non-trivial tree, then G has a path induced edge-to-vertex monophonic set if and only if G is a path.
- (iii) The cycle $G = C_p$ ($p \ge 3$), has a path induced edge-to-vertex monophonic set.
- (iv) The complete graph $G = K_p$, $(p \ge 3)$, has a path induced edge-to-vertex monophonic set.
- (v) For the complete bipartite graph $G = K_{m,n} (2 \le m \le n)$, has a path induced edge-to-vertex monophonic set if and only if m = n.

Definition 2.6. A graph *G* is said to be a *path induced edge-to-vertex monophonic graph* if it has a path induced edge-to-vertex monophonic set.

Theorem 2.7. Let G be a connected graph. Then G is a path induced edge-to-vertex monophonic graph if and only if G contains at most two end edges and also if G contains two end edges, then they are not adjacent.

Proof. Let *G* be a path induced edge-to-vertex monophonic graph. We prove that *G* contains at most two end edges. On the contrary *G* contains at least 3 end edges. Let *M* be a path induced edge-to-vertex monophonic set of *G*. Then by Observation 2.1(i) *M* contain at least 3 end edges. Hence it follows that < M > contains no Hamiltonian path, Which is a contradiction. Therefore *G* contains at most two end edges.

Conversely, Let G contains at most two end edges and they adjacent. Let are not $M \subseteq E(G)$ be an edge-to-vertex monophonic set of G. By Observation 2.1 (i) M contains each end edges. Let $M' \subseteq E(G)$ and $M' = M \cup Z$, where $Z \subseteq E(Z)$ such that $\langle M' \rangle$ has a Hamiltonian path. Therefore G is a path induced edge-to-vertex monophonic set of G.

Theorem 2.8. If v is an extreme vertex of a path induced edge-to-vertex monophonic graph G, then every path induced edge-to-vertex monophonic set contains at least one extreme edge is incident with v.

Proof. Since every path induced edge-to-vertex monophonic set of G, is a edge-to-vertex monophonic set of G, the result follows from Theorem 1.1.

Corollary 2.9. Each end edge of a path induced edge-to-vertex monophonic graph G belongs to every path induced edge-to-vertex monophonic set of G.

Proof. This follows from Theorem 2.8.

Theorem 2.10. Let G be a connected non-trivial graph of size q. If G contains a spanning path, then G is a path induced edge-to-vertex monophonic graph.

Proof. Since *G* contains a spanning path *P*, *P* is a Hamiltonian path of *G*. Hence it follows that V(P) is a path induced edge-to-vertex monophonic set of *G* so that *G* is a path induced edge-to-vertex monophonic graph.

Theorem 2.11. Let *G* be a path induced edge-to-vertex monophonic graph with cut-edges and let *M* be a path induced edge-to-vertex monophonic set of *G*. If *e* is any cut-edge of *G*, then every component of G - e contains an element of *M*.

Proof. Let e = uv and G_1, G_2 are the only two components of G - e such that $u \in V(G_1)$ and $v \in V(G_2)$. Let M be a path induced edge-to-vertex monophonic set of G and P be a Hamiltonian path in $\langle M \rangle$. On the contrary suppose that M contains no elements of G_1 . Let x belongs to $V(G_1)$ such that $x \neq u$. Then x lies on a monophonic path P' joining two edges of M. Since u is a cut-vertex of G, u appear twice in P'. And so P' is not a path, which is a contradiction. Therefore every component of G - e contains an element of M.

Theorem 2.12. Every cut-edge of a path induced edge-to-vertex monophonic set of G belongs to every path induced edge-to-vertex monophonic set of G.

Proof. Let *e* be any cut-edge of *G* and let G_1, G_2 be the components of $G - \{e\}$. Let *M* be a path induced edge-tovertex monophonic set of *G*. Then by Theorem 2.11, *M* contains at least one element from each G_i ($1 \le i \le 2$). Since < M > contains a Hamiltonian path, it follows that $e \in M$.

In the following we determine the path induced edge-to-vertex monophonic number of some standard graphs.

Theorem 2.13. For a path $G = P_p(p \ge 3)$, $pim_{ev}(G) = q$.

Proof. This follows from Observation 2.5(i) and Theorem 2.12.

Theorem 2.14. For the complete graph $G = K_p (p \ge 3)$, $pim_{ev}(G) = p - 1$.

Proof. Let $K_p: v_1, v_2, v_3, ..., v_p$ be a complete graph. Let $M = \{v_1v_2, v_2v_3, ..., v_{p-1}v_p\}$. Then every vertex of *G* is incident with an element of *M*. Therefore *M* is a path induced edge-to-vertex monophonic set of *G*. Since $\langle M \rangle$ contains the Hamiltonian path $P: v_1, v_2, v_3, ..., v_p$, *M* is a path induced edge-to-vertex monophonic set of *G*. Therefore $pim_{ev}(G) \leq p - 1$. We prove that $pim_{ev}(G) = p - 1$. Suppose that $pim_{ev}(G) \geq p$. Then there exists a pim_{ev} -set *M*'such that $|M'| \geq p$. Let e = uv be an edge of *M*' such that e' = ux and e'' = vy belongs to *M*'. Then $M_1 = M' - e$ is a pim_{ev} -set of *G* so that $pim_{ev}(G) \leq p - 1$, which is a contradiction.

Therefore $pim_{ev}(G) = p - 1$.

Theorem 2.15. For the cycle $G = C_p (p \ge 4)$, $pim_{ev}(G) = 2$.

Proof. Let *e* and *f* be two adjacent edges of C_p . Then $M = \{e, f\}$ is a pim_{ev} -set of *G* so that $pim_{ev}(G) = 2$.

Theorem 2.16. For the complete bipartite graph $G = K_{m,n}$ ($2 \le m \le n$), $pim_{ev}(G) = 3$.

Proof. Let $X = \{x_1, x_2, \dots, x_m\}$ and $Y = \{y_1, y_2, \dots, y_n\}$ be two bipartite set of G.

Let $M = \{x_1y_1, x_2y_2\}$. Then M is a path induced edge-to-vertex monophonic set of G. Since $\langle M \rangle$ has no Hamiltonian path, М is path induced not а edge-to-vertex monophonic set of G and that $pim_{ev}(G) \geq 3.$ Let so $M' = \{x_1y_1, x_2y_2, x_1y_2\}$. Then M' is a path induced edge-to-vertex monophonic set of G so that $pim_{ev}(G) = 3$.

Theorem 2.17. For the wheel $G = W_p = K_1 + C_{p-1}$, $(p \ge 4)$, $pim_{ev}(G) = 2$.

Proof. Let C_{p-1} : $v_1, v_2, v_3, \dots, v_{p-1}, v_1$ be a cycle of length p-1. Then $M = \{v_1v_2, v_2v_3\}$ is a path induced edge-to-vertex monophonic set of G so that $pim_{ev}(G) = 2$.

Theorem 2.18. For a path induced edge-to-vertex monophonic graph of size q, $2 \le pim_{ev}(G) \le q$. **Proof.** Any path induced edge-to-vertex monophonic set need at least two vertices. Therefore $pim_{ev}(G) \ge 2$. Since *G* is a path induced edge-to-vertex monophonic graph, M = V is a path induced edge-to-vertex monophonic set and so $pim_{ev}(G) \le q$. Thus $2 \le pim_{ev}(G) \le q$.

Remark 2.19. The bounds in Theorem 2.18 are sharp. For the graph $G = C_p$ $(p \ge 4)$, $pim_{ev}(G) = 2$ and for $G = P_p$ $(p \ge 3)$, $pim_{ev}(G) = q$. Also the bounds in Theorem 2.18 can be strict. For the graph G given in Figure 2.1, $pim_{ev}(G) = 3$, q = 7. Thus $2 < pim_{ev}(G) < q$.

Theorem 2.20. Let *G* be a path induced edge-to-vertex monophonic graph of size $q \ge 3$ which is not a path. Then $pim_{ev}(G) \le q - 1$.

Proof. Since *G* is not a path, *G* contains at least one cycle. Let *C* be a cycle in *G* and $e \in E(G)$. Then M = E(G) - e is a path induced edge-to-vertex monophonic set of *G* and so $pim_{ev}(G) \le q - 1$.

Remark 2.21. The bound in Theorem 3.20 is sharp for the graph $G = K_3$ and so $pim_{ev}(G) = 2 = q - 1$.

Theorem 2.22. Let G be a path induced edge-to-vertex monophonic graph of size $q \ge 3$. Then $pim_{ev}(G) = q$ if and only if G is the path P_p .

Proof. Let $G = P_p$. Then by Theorem 2.13, $pim_{ev}(G) = q$. Conversely let $pim_{ev}(G) = q$. We prove that G is the path P_p . On the contrary suppose G is not the path P_p , then by Theorem 2.20, $pim_{ev}(G) \le q - 1$, which is a contradiction. Therefore G is a path.

Denote \Im by the two classes of graphs given in Figure 2.4 (a) and 2.4 (b)

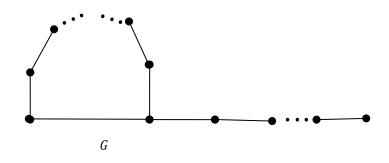
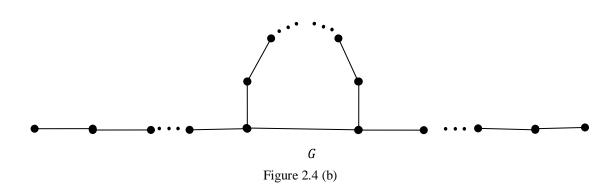


Figure 2.4 (a)



Theorem 2.23. Let *G* be a path induced edge-to-vertex monophonic graph of size $q \ge 4$. Then $pim_{ev}(G) = q - 1$ if and only if *G* is the class of graphs given in family \Im of Figure 2.4(a) and 2.4(b).

Proof. Let *G* be the graph given in Figure 2.4(a). It is easily verified that $pim_{ev}(G) = q - 1$. Conversely let $pim_{ev}(G) = q - 1$. First we prove that *G* is unicycle. If not let C_1 and C_2 be the two cycles in *G*. Let *v* be a common vertex of C_1 and C_2 . Let *x* be a vertex in C_1 and *y* be a vertex in C_2 such that $vx, vy \in E(G)$. Then $M = E(G) - \{vx, vy\}$ is a path induced edge-to-vertex monophonic set and so $pim_{ev}(G) \leq q - 2$, which is a contradiction. Then C_1 and C_2 has no vertex in common. Let C_1 and C_2 have a common edge uv. Let $x \in C_1$ and $y \in C_2$ such that $ux, uy \in E(G), u, v \neq x$. Then $M_1 = E(G) - \{ux, vy\}$ is a path induced edge-to-vertex monophonic set of *G* so that $pim_{ev}(G) \leq q - 2$, which is a contradiction. Therefore C_1 and C_2 has no common edge. Suppose that C_1 and C_2 are connected by a path u_0, u_1, \ldots, u_n such that $u_0 \in C_1$ and $u_n \in C_2$. Let $x \in C_1$ such that $u_0x \in E(G)$ and $y \in C_2$ such that $u_ny \in E(G)$. Then $M_2 = E(G) - \{u_0x, u_ny\}$ is a path induced edge-to-vertex monophonic set of *G* so that $pim_{ev}(G) \leq q - 2$, which is a contradiction. Therefore C_1 and C_2 has no common edge. Suppose that C_1 and C_2 are connected by a path u_0, u_1, \ldots, u_n such that $u_0 \in C_1$ and $u_n \in C_2$. Let $x \in C_1$ such that $u_0x \in E(G)$ and $y \in C_2$ such that $u_ny \in E(G)$. Then $M_2 = E(G) - \{u_0x, u_ny\}$ is a path induced edge-to-vertex monophonic set of *G* so that $pim_{ev}(G) \leq q - 2$, which is a contradiction. Therefore C_1 and C_2 are not connected by a path. Therefore *G* is a unicyclic graph. Let C(G) denotes the length of the longest cycle in *G*. Since *G* is a unicyclic graph, *G* contains either one or two vertices of degree 3.

Case (i) Let G contains only one vertex of degree 3, say u. Since G is a unicyclic graph, G contains exactly one end edge and all the edges in E(G) - E(C) are cut edges except the end edge.

Case (ii) Suppose that C contains two vertices u and v such that $\deg(u) = \deg(v) = 3$. Since $pim_{ev}(G) = q - 1$, $uv \in E(G)$. Also since $q \ge 4$, E(G) - E(C) contains exactly two end edges and all the remaining edges are cut edges. Therefore G is the family \Im of graph given in Figure 2.4 (b). So we have done.

Theorem 2.24. Let G be a path induced edge-to-vertex geodetic graph. Then G is a path induced edge-to-vertex monophonic graph.

Proof. Let *G* be a path induced edge-to-vertex geodetic graph. Let *S* be a path induced geodetic set of *G*. Since every geodetic path is a monophonic path, *S* is a path induced edge-to- vertex monophonic set of *G*. Therefore *G* is a path induced edge-to-vertex monophonic graph. \blacksquare

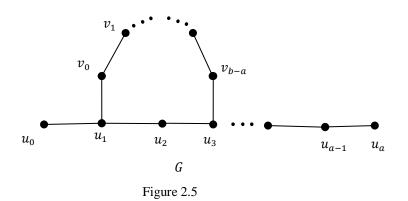
Theorem 2.25. Let *G* be a path induced edge-to-vertex geodetic graph. Then $2 \le pim_{ev}(G) \le pig_{ev}(G) \le q$.

Proof. Every path induced edge-to-vertex monophonic set has at least two edges and so $pim_{ev}(G) \ge 2$. Since every path induced edge-to-vertex monophonic set is a path induced edge-to-vertex geodetic set and so $pim_{ev}(G) \leq pig_{ev}(G)$. Also the set of all edges of G is a path induced edge-to-vertex geodetic set of G so that $pig_{ev}(G) \leq q$.

Remark 2.26. The bounds in Theorem 2.25 are sharp for the graph $G = C_4$, $pim_{ev}(G) = 2$ and for the graph $G = K_4$, $pim_{ev}(G) = 3 = pig_{ev}(G)$. For the path $G = P_p$, $pim_{ev}(G) = q$. The inequalities in Theorem 3.25 can be strict. For the graph G given in Figure 2.1, $pim_{ev}(G) = 3$, $pig_{ev}(G) = 4$ and q = 7 so that $2 < pim_{ev}(G) < pig_{ev}(G) < q$.

Theorem. 2.27. For every pair *a* and *b* of integers with $4 \le a \le b$, there exists a connected path induced edge-tovertex geodetic graph *G* such that $pim_{ev}(G) = a$ and $pig_{ev}(G) = b$.

Proof: Let $P_a: u_0, u_1, u_2, ..., u_a$ be a path of size a and $Q_{b-a}: v_0, v_1, v_2, ..., v_{b-a}$ be a path of size b - a. Let G be the graph obtained from P_a and Q_{b-a} by introducing the edges v_0u_1 and $v_{b-a}u_3$. The graph G is shown in Figure 2.5.



First we show that $pim_{ev}(G) = a$. Let $M = \{u_0u_1, u_3u_4, ..., u_{a-1}u_a\}$ be the set of end edges and cut-edges of G. Then by Corollary 2.9 and Theorem 2.12 M is a subset of every path induced edge-to-vertex monophonic set of G and so $pim_{ev}(G) \ge a - 2$. Since $J_{ee}[M] \ne V$, M is not a path induced edge-to-vertex monophonic set of G. Also $J_{ee}[M \cup \{e\}] \ne V$ where $e \notin M$, and so $pim_{ev}(G) \ge a$. Now $M \cup \{u_1u_2, u_2u_3\}$ is a path induced edge-to-vertex monophonic set of G so that $pim_{ev}(G) = a$. Next, we prove that $pig_{ev}(G) = b$. Let $Z = \{u_0u_1, u_3u_4, ..., u_{a-1}u_a\}$ be the set of end edges and cut-edges of G. By Theorem 1.2, Z is a subset of every path induced edge-to-vertex geodetic set of G. Since $I_{ee}[Z] \ne V, Z$ is not a path induced edge-to-vertex geodetic set of G. It is easily observed that every path induced edge-to-vertex geodetic set of G ontains $Z_1 = \{u_1v_0, u_3v_{b-a}\} \cup V(Q_{b-a})$ and so $pim_{ev}(G) \ge a - 2 + b - a + 2 = b$. Since $S = Z \cup Z_1$ is a path induced edge-to-vertex geodetic set of G, we have $pim_{ev}(G) = b$. Also, since G contains a path induced edge-to-vertex geodetic set of G is a path induced edge-to-vertex geodetic set of G.

REFERENCES

- Arul Asha and S. Joseph Robin, International Journal of Scientific Research and Reviews, Path Induced Geodesic Graphs, 8(2) (2019), 1-8.
- [2] Buckley. F and Harary. F, Distance in Graphs, *Addison-Wesley*, *Redwood City*, *CA*, 1990.
- [3] John, J & Uma Samundeswari, K 2012, 'The edge-to- vertex Monophonic number of a graph', International Journal of Mathematical Archive, vol. 3, no. 2, pp. 722-728.
- [4] Ruthlyn N. Villarante And Imelda S. Aniversario, Path-Induced Geodetic Numbers of Some Graphs, Journal of ultra scientist of Physical Sciences, 29(5), (2017),196-204.
- [5] Santhakumaran, P & John, J 2012, 'On the edge-to- vertex geodetic number of a graph', Miskolc Mathematical Notes, vol. 13, no. 1, pp. 107-119.