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     ABSTRACT-- Let 𝐺 be a connected graph with at least three vertices. An edge-to-vertex monophonic set is 

called a path induced edge-to-vertex monophonic set of 𝐺 if < 𝑀 > contains a Hamiltonian path. The minimum 

cardinality of a path induced edge-to-vertex monophonic set is called the path induced edge-to-vertex monophonic 

number of 𝐺 and is denoted by 𝑝𝑖𝑚𝑒𝑣(𝐺). The minimum path induced edge-to-vertex monophonic set with |𝑀| =

𝑝𝑖𝑚𝑒𝑣(𝐺) is called a minimum path induced edge-to-vertex monophonic number of 𝐺 or 𝑝𝑖𝑚𝑒𝑣-set of 𝐺. Some 

general properties satisfied by this concept are studied.  For every pair 𝑎 and 𝑏 of integers with 4 ≤ 𝑎 ≤ 𝑏, there 

exists a connected path induced edge-to-vertex geodetic graph 𝐺 such that 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑎 and 𝑝𝑖𝑔𝑒𝑣(𝐺) = 𝑏. 
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1. INTRODUCTION 

By a graph 𝐺 = (𝑉, 𝐸) we mean a finite undirected connected graph without loops or multiple edges. The order and 

size of 𝐺 are denoted by 𝑝 and 𝑞 respectively. We consider connected graph with at least three vertices.  For basic 

graph theoretic terminology we refer to Harary [2]. For two vertices u and v in a connected graph 𝐺, the distance 

𝑑(𝑢, 𝑣) is the length of a shortest 𝑢 − 𝑣 path in G.  An  𝑢 −  𝑣 path of length 𝑑 (𝑢, 𝑣)  is called an 𝑢 −  𝑣 geodesic. 

For a vertex 𝑣 of G, the eccentricity 𝑒(𝑣) is the distance between  𝑣  and a vertex farthest from 𝑣.  The minimum 

eccentricity among the vertices is the radius, rad 𝐺 and the maximum eccentricity is the diameter, diam 𝐺 of G.  For 

subsets A and B of 𝑉 (𝐺), the distance 𝑑(𝐴, 𝐵) is defined as 𝑑(𝐴, 𝐵)= 𝑚𝑖𝑛{𝑑(𝑥, 𝑦) ∶  𝑥 ∈  𝐴, 𝑦 ∈  𝐵}.  An  𝑢 –  𝑣   

path of length 𝑑(𝐴, 𝐵) is called an A − B geodesic joining the sets A, B where 𝑢 ∈  𝐴  and 𝑣 ∈  𝐵.  A vertex x is 

said to lie on an 𝐴 −  𝐵 geodesic if 𝑥 is a vertex of an A − B geodesic. For 𝐴 =  (𝑢, 𝑣) and 𝐵 =  (𝑧, 𝑤) with 

𝑢𝑣  and 𝑧𝑤 edges, we write an 𝐴 –  𝐵  geodesic as 𝑢𝑣 −  𝑧𝑤 geodesic and 𝑑(𝐴, 𝐵) as 𝑑(𝑢𝑣, 𝑧𝑤). The maximum 

degree of G, denoted by ∆(G), is given by ∆(𝐺) = 𝑚𝑎𝑥{𝑑𝑒𝑔𝐺(𝑣):  𝑣 ∈ 𝑉(𝐺)}, 𝑁(𝑣) =  {𝑢 ∈  𝑉(𝐺): 𝑢𝑣 ∈ 𝐸(𝐺)} 

is called the neighborhood of the vertex v in G. A vertex v is an extreme vertex of a graph G if the sub graph induced 

by its neighbors is complete.  An edge e of a graph G is called an extreme edge of 𝐺, if one of its ends is an extreme 

vertex of 𝐺. A chord of a path 𝑢0, 𝑢1,  𝑢2, …𝑢ℎ  is an edge 𝑢𝑖𝑢𝑗 , with 𝑗 ≥   𝑖 +  2.  An  𝑢–  𝑣 path is called a 
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monophonic path if it is a chordless path.  A monophonic set of 𝐺 is a set 𝑀 ⊆  𝑉 such that every vertex of 𝐺 lies on 

a monophonic path joining some pair of vertices in 𝑀.  A set 𝑆 ⊆  𝐸 is called an edge-to-vertex monophonic set if 

every vertex of 𝐺 lies on a monophonic path between two vertices in 𝑉(𝑆). The edge-to-vertex monophonic number 

𝑚𝑒𝑣(𝐺) of 𝐺 is the minimum cardinality of its edge-to-vertex monophonic sets and any edge-to-vertex monophonic 

set of cardinality 𝑚𝑒𝑣(𝐺) is an 𝑚𝑒𝑣- set of 𝐺.  A  monophonic set  𝑀 ⊆ 𝑉 is called a  path induced monophonic set 

of 𝐺 if  < 𝑀 >  has  a  Hamiltonian  path.  The minimum cardinality of a path induced monophonic set is called 

path induced monophonic number of 𝐺, denoted by 𝑝𝑖𝑚(𝐺). A path induced monophonic set with  |𝑀| = 𝑝𝑖𝑚(𝐺)  

is called a minimum path induced monophonic number of  𝐺  or  𝑝𝑖𝑚-set  of  𝐺. 

The following theorems are used in sequel. 

Theorem 1.1 [3]. If 𝑣 is an extreme vertex of a connected graph G, then every edge-to-vertex monophonic set of 

𝐺 contains at least one extreme edge incident with v. 

Theorem 1.2 [5]. Every end-edge of a connected graph 𝐺 belongs to every edge-to-vertex geodetic set of 𝐺. 

The Path Induced Edge-to-Vertex Monophonic Graphs 

 

Definition 2.1. Let 𝐺 be a connected graph with at least three vertices. An edge-to-vertex monophonic set is called a 

path induced edge-to-vertex monophonic set of 𝐺 if < 𝑀 > contains a Hamiltonian path. The minimum cardinality 

of a path induced edge-to-vertex monophonic set is called the path induced edge-to-vertex monophonic number of 

𝐺 and is denoted by 𝑝𝑖𝑚𝑒𝑣(𝐺). The minimum path induced edge-to-vertex monophonic set with |𝑀| = 𝑝𝑖𝑚𝑒𝑣(𝐺) is 

called a minimum path induced edge-to-vertex monophonic number of 𝐺 or 𝑝𝑖𝑚𝑒𝑣-set of 𝐺. 
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Example 2.2. For the graph 𝐺 given in Figure 2.1, 𝑀1  =  {𝑣1𝑣2, 𝑣4𝑣5} is an edge-to-vertex monophonic set of 𝐺, so 

that 𝑚𝑒𝑣(𝐺) = 2. Since < 𝑀1 > has no Hamiltonian path, 𝑀1 is not a path induced edge-to-vertex monophonic set of 

𝐺 and so 𝑝𝑖𝑚𝑒𝑣(𝐺) ≥ 3. Let 𝑀2 = {𝑣1𝑣2, 𝑣4𝑣5, 𝑣4𝑣6}. Then 𝑀2 is a 𝑝𝑖𝑚𝑒𝑣-set of 𝐺 so that 𝑝𝑖𝑚𝑒𝑣(𝐺) = 3. 

Remark 2.3. There can be more than one 𝑝𝑖𝑚𝑒𝑣-set of 𝐺. For the graph 𝐺 given in Figure 2.2, 𝑀1 =

{𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4} and 𝑀2 = {𝑣1𝑣2, 𝑣2𝑣5, 𝑣4𝑣5} are two 𝑝𝑖𝑚𝑒𝑣-sets of 𝐺. 

Remark 2.4. The path induced edge-to-vertex monophonic set does not exist for all connected graphs. For the graph 

𝐺 given in Figure 2.3, there is no path induced edge-to-vertex monophonic set. 
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Observation 2.5.  

(i) Each end edge of 𝐺 belongs to every path induced edge-to-vertex monophonic set of 𝐺. 

(ii) Let 𝐺 be a non-trivial tree, then 𝐺 has a path induced edge-to-vertex monophonic set if and only if 𝐺 is a 

path. 

(iii) The cycle 𝐺 = 𝐶𝑝 (𝑝 ≥ 3), has a path induced edge-to-vertex monophonic set. 

(iv) The complete graph 𝐺 = 𝐾𝑝, (𝑝 ≥ 3), has a path induced edge-to-vertex monophonic set. 

(v) For the complete bipartite graph 𝐺 =  𝐾𝑚,𝑛(2 ≤ 𝑚 ≤ 𝑛 ), has a path induced edge-to-vertex monophonic 

set if and only if 𝑚 = 𝑛.                ∎ 

Definition 2.6. A graph 𝐺 is said to be a path induced edge-to-vertex monophonic graph if it has a path induced 

edge-to-vertex monophonic set. 

 

Theorem 2.7. Let 𝐺 be a connected graph. Then 𝐺 is a path induced edge-to-vertex monophonic graph if and only if 

𝐺 contains at most two end edges and also if 𝐺 contains two end edges, then they are not adjacent. 

 
Proof. Let 𝐺 be a path induced edge-to-vertex monophonic graph. We prove that 𝐺 contains at most two end edges. 

On the contrary 𝐺 contains at least 3 end edges. Let 𝑀 be a path induced edge-to-vertex monophonic set of 𝐺. Then 

by Observation 2.1(i) 𝑀 contain at least 3 end edges. Hence it follows that < 𝑀 > contains no Hamiltonian path, 

Which is a contradiction. Therefore 𝐺 contains at most two end edges. 

Conversely, Let 𝐺 contains at most two end edges and they are not adjacent. Let  

𝑀 ⊆ 𝐸(𝐺) be an edge-to-vertex monophonic set of 𝐺. By Observation 2.1  

(i) 𝑀 contains each end edges. Let 𝑀′ ⊆ 𝐸(𝐺) and 𝑀′ = 𝑀 ∪ 𝑍, where 𝑍 ⊆ 𝐸(𝑍) such that < 𝑀′ > has a 

Hamiltonian path. Therefore 𝐺 is a path induced edge-to-vertex monophonic set of 𝐺.                                               ∎                                                                                                                                               

 

Theorem 2.8. If 𝑣 is an extreme vertex of a path induced edge-to-vertex monophonic graph 𝐺, then every path 

induced edge-to-vertex monophonic set contains at least one extreme edge is incident with 𝑣. 

Proof. Since every path induced edge-to-vertex monophonic set of 𝐺, is a edge-to-vertex monophonic set of 𝐺, the 

result follows from Theorem 1.1.        ∎ 
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Corollary 2.9. Each end edge of a path induced edge-to-vertex monophonic graph 𝐺 belongs to every path induced 

edge-to-vertex monophonic set of 𝐺. 

 

Proof. This follows from Theorem 2.8.        ∎ 

 
Theorem 2.10. Let 𝐺 be a connected non-trivial graph of size 𝑞. If 𝐺 contains a spanning path, then 𝐺 is a path 

induced edge-to-vertex monophonic graph. 

 
Proof. Since 𝐺 contains a spanning path 𝑃, 𝑃 is a Hamiltonian path of 𝐺. Hence it follows that 𝑉(𝑃) is a path 

induced edge-to-vertex monophonic set of 𝐺 so that 𝐺 is a path induced edge-to-vertex monophonic graph.   ∎ 

 

Theorem 2.11. Let 𝐺 be a path induced edge-to-vertex monophonic graph with cut-edges and let 𝑀 be a path 

induced edge-to-vertex monophonic set of 𝐺. If 𝑒 is any cut-edge of 𝐺, then every component of 𝐺 –  𝑒 contains an 

element of 𝑀. 

 

Proof. Let 𝑒 = 𝑢𝑣 and 𝐺1, 𝐺2 are the only two components of 𝐺 –  𝑒 such that 𝑢 ∈ 𝑉(𝐺1) and 𝑣 ∈ 𝑉(𝐺2). Let 𝑀 be a 

path induced edge-to-vertex monophonic set of 𝐺 and 𝑃 be a Hamiltonian path in < 𝑀 >. On the contrary suppose 

that 𝑀 contains no elements of 𝐺1 . Let 𝑥 belongs to 𝑉(𝐺1) such that 𝑥 ≠ 𝑢. Then 𝑥 lies on a monophonic path 𝑃′ 

joining two edges of 𝑀. Since 𝑢 is a cut-vertex of 𝐺, 𝑢 appear twice in 𝑃′. And so 𝑃′ is not a path, which is a 

contradiction. Therefore every component of 𝐺 –  𝑒 contains an element of 𝑀.   ∎ 

 

Theorem 2.12. Every cut-edge of a path induced edge-to-vertex monophonic set of 𝐺 belongs to every path induced 

edge-to-vertex monophonic set of 𝐺. 

 

Proof. Let 𝑒 be any cut-edge of 𝐺 and let 𝐺1, 𝐺2  be the components of 𝐺 – {𝑒}. Let 𝑀 be a path induced edge-to-

vertex monophonic set of 𝐺. Then by Theorem 2.11, 𝑀 contains at least one element from each 𝐺𝑖  (1 ≤ 𝑖 ≤ 2). 

Since < 𝑀 > contains a Hamiltonian path, it follows that 𝑒 ∈ 𝑀.      ∎ 

 
In the following we determine the path induced edge-to-vertex monophonic number of some standard graphs. 

 

Theorem 2.13. For a path 𝐺 = 𝑃𝑝(𝑝 ≥  3), 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑞. 
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Proof. This follows from Observation 2.5(i) and Theorem 2.12. ∎ 

 

Theorem 2.14. For the complete graph 𝐺 =  𝐾𝑝(𝑝 ≥  3),  𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑝 − 1. 

 

Proof. Let  𝐾𝑝 : 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑝 be a complete graph. Let 𝑀 = {𝑣1𝑣2, 𝑣2𝑣3, …, 𝑣𝑝−1𝑣𝑝}.  Then every vertex of 𝐺 is 

incident with an element of 𝑀. Therefore 𝑀 is a path induced edge-to-vertex monophonic set of 𝐺. Since < 𝑀 > 

contains the Hamiltonian path 𝑃: 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑝, 𝑀 is a path induced edge-to-vertex monophonic set of 𝐺. 

Therefore 𝑝𝑖𝑚𝑒𝑣(𝐺)  ≤ 𝑝 − 1. We prove that 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑝 − 1. Suppose that 𝑝𝑖𝑚𝑒𝑣(𝐺)  ≥ 𝑝. Then there exists a 

𝑝𝑖𝑚𝑒𝑣-set 𝑀′such that |𝑀′| ≥ 𝑝. Let 𝑒 = 𝑢𝑣 be an edge of  𝑀′ such that 𝑒′ = 𝑢𝑥 and 𝑒′′ = 𝑣𝑦 belongs to 𝑀′. Then 

𝑀1 = 𝑀′ − 𝑒 is a 𝑝𝑖𝑚𝑒𝑣-set of 𝐺 so that 𝑝𝑖𝑚𝑒𝑣(𝐺)  ≤ 𝑝 − 1,. which is a contradiction. 

Therefore 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑝 − 1.                                                                                                                                       ∎  

 

Theorem 2.15. For the cycle 𝐺 = 𝐶𝑝(𝑝 ≥  4), 𝑝𝑖𝑚𝑒𝑣(𝐺) = 2. 

 

Proof. Let 𝑒 and 𝑓 be two adjacent edges of 𝐶𝑝. Then 𝑀 =  {𝑒, 𝑓} is a 𝑝𝑖𝑚𝑒𝑣-set of 𝐺 so that 𝑝𝑖𝑚𝑒𝑣(𝐺) = 2.  ∎ 

 
Theorem 2.16. For the complete bipartite graph 𝐺 =  𝐾𝑚,𝑛  (2 ≤ 𝑚 ≤ 𝑛 ), 𝑝𝑖𝑚𝑒𝑣(𝐺) = 3. 

 

Proof. Let 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑚} and 𝑌 =  {𝑦1, 𝑦2, … , 𝑦𝑛} be two bipartite set of  𝐺.  

 

Let 𝑀 =  {𝑥1𝑦1, 𝑥2𝑦2}.  Then 𝑀 is a path induced edge-to-vertex monophonic set of 𝐺. Since < 𝑀 > has no 

Hamiltonian path, 𝑀 is not a path induced  

edge-to-vertex monophonic set of 𝐺 and so that 𝑝𝑖𝑚𝑒𝑣(𝐺) ≥ 3. Let 

𝑀′ = {𝑥1𝑦1, 𝑥2𝑦2, 𝑥1𝑦2}.  Then 𝑀′ is a path induced edge-to-vertex monophonic set of 𝐺 so that 𝑝𝑖𝑚𝑒𝑣(𝐺) = 3.   ∎ 

 

Theorem 2.17. For the wheel 𝐺 = 𝑊𝑝 = 𝐾1 + 𝐶𝑝−1, (𝑝 ≥  4), 𝑝𝑖𝑚𝑒𝑣(𝐺) = 2. 

 

Proof. Let 𝐶𝑝−1: 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑝−1, 𝑣1 
 be a cycle of length 𝑝 − 1. Then 

𝑀 = {𝑣1𝑣2, 𝑣2𝑣3} is a path induced edge-to-vertex monophonic set of 𝐺 so that 𝑝𝑖𝑚𝑒𝑣(𝐺) = 2.                               ∎ 

                                                                                                                                                                                      

Theorem 2.18. For a path induced edge-to-vertex monophonic graph of size 𝑞,  

2 ≤  𝑝𝑖𝑚𝑒𝑣(𝐺) ≤ 𝑞. 
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Proof. Any path induced edge-to-vertex monophonic set need at least two vertices. Therefore 𝑝𝑖𝑚𝑒𝑣(𝐺) ≥ 2. Since 

𝐺 is a path induced edge-to-vertex monophonic graph, 𝑀 = 𝑉 is a path induced edge-to-vertex monophonic set and 

so 𝑝𝑖𝑚𝑒𝑣(𝐺) ≤ 𝑞. Thus 2 ≤  𝑝𝑖𝑚𝑒𝑣(𝐺) ≤ 𝑞.                                                                                                               ∎ 

 

Remark 2.19. The bounds in Theorem 2.18 are sharp. For the graph  

𝐺 = 𝐶𝑝 (𝑝 ≥ 4),  𝑝𝑖𝑚𝑒𝑣(𝐺) = 2 and for 𝐺 = 𝑃𝑝 (𝑝 ≥ 3), 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑞. Also the bounds in Theorem 2.18 can be 

strict. For the graph 𝐺 given in Figure 2.1, 𝑝𝑖𝑚𝑒𝑣(𝐺) = 3, 𝑞 = 7.  Thus 2 <  𝑝𝑖𝑚𝑒𝑣(𝐺) < 𝑞.  

 

Theorem 2.20. Let 𝐺 be a path induced edge-to-vertex monophonic graph of size 𝑞 ≥ 3 which is not a path. Then  

𝑝𝑖𝑚𝑒𝑣(𝐺) ≤ 𝑞 − 1. 

 

Proof. Since 𝐺 is not a path, 𝐺 contains at least one cycle. Let 𝐶 be a cycle in 𝐺 and 𝑒 ∈ 𝐸(𝐺). Then 𝑀 = 𝐸(𝐺) −

𝑒 is a path induced edge-to-vertex monophonic set of 𝐺 and so 𝑝𝑖𝑚𝑒𝑣(𝐺) ≤ 𝑞 − 1.           ∎ 

 

Remark 2.21. The bound in Theorem 3.20 is sharp for the graph 𝐺 = 𝐾3 and so 𝑝𝑖𝑚𝑒𝑣(𝐺) = 2 = 𝑞 − 1. 

 

Theorem 2.22. Let 𝐺 be a path induced edge-to-vertex monophonic graph of size  

𝑞 ≥ 3. Then 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑞 if and only if 𝐺 is the path 𝑃𝑝. 

 

Proof. Let 𝐺 = 𝑃𝑝. Then by Theorem 2.13, 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑞. Conversely let 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑞. We prove that 𝐺 is the 

path 𝑃𝑝. On the contrary suppose 𝐺 is not the path 𝑃𝑝, then by Theorem 2.20, 𝑝𝑖𝑚𝑒𝑣(𝐺) ≤ 𝑞 − 1 , which is a 

contradiction. Therefore 𝐺 is a path. 

 

Denote ℑ by the two classes of graphs given in Figure 2.4 (a) and 2.4 (b) 

 
Figure 2.4 (a) 

𝐺 
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Figure 2.4 (b) 

 
Theorem 2.23. Let 𝐺 be a path induced edge-to-vertex monophonic graph of size  

𝑞 ≥ 4. Then 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑞 − 1 if and only if 𝐺 is the class of graphs given in family ℑ of Figure 2.4(a) and 2.4(b). 

 

Proof. Let 𝐺 be the graph given in Figure 2.4(a) . It is easily verified that 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑞 −1. Conversely let 

𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑞 − 1. First we prove that 𝐺 is unicycle. If not let 𝐶1 and 𝐶2 be the two cycles in 𝐺. Let 𝑣 be a common 

vertex of 𝐶1 and 𝐶2. Let 𝑥 be a vertex in 𝐶1 and 𝑦 be a vertex in 𝐶2 such that 𝑣𝑥, 𝑣𝑦 ∈ 𝐸(𝐺). Then 𝑀 = 𝐸(𝐺) −

{𝑣𝑥, 𝑣𝑦} is a path induced edge-to-vertex monophonic set and so 𝑝𝑖𝑚𝑒𝑣(𝐺) ≤ 𝑞 − 2, which is a contradiction. Then 

𝐶1 and 𝐶2 has no vertex in common. Let 𝐶1 and 𝐶2 have a common edge 𝑢𝑣. Let 𝑥 ∈ 𝐶1 and 𝑦 ∈ 𝐶2 such that 

𝑢𝑥, 𝑢𝑦 ∈ 𝐸(𝐺), 𝑢, 𝑣 ≠ 𝑥. Then 𝑀1 = 𝐸(𝐺) − {𝑢𝑥, 𝑣𝑦} is a path induced edge-to-vertex monophonic set of 𝐺 so that 

𝑝𝑖𝑚𝑒𝑣(𝐺) ≤ 𝑞 − 2, which is a contradiction. Therefore 𝐶1 and 𝐶2 has no common edge. Suppose that 𝐶1 and 𝐶2 are 

connected by a path 𝑢0, 𝑢1, … , 𝑢𝑛 such that 𝑢0 ∈ 𝐶1 and 𝑢𝑛 ∈ 𝐶2. Let 𝑥 ∈ 𝐶1 such that 𝑢0𝑥 ∈ 𝐸(𝐺) and 𝑦 ∈ 𝐶2 such 

that 𝑢𝑛𝑦 ∈ 𝐸(𝐺). Then 𝑀2 = 𝐸(𝐺) − {𝑢0𝑥, 𝑢𝑛𝑦} is a path induced edge-to-vertex monophonic set of 𝐺 so that 

𝑝𝑖𝑚𝑒𝑣(𝐺) ≤ 𝑞 − 2, which is a contradiction. Therefore 𝐶1 and 𝐶2 are not connected by a path. Therefore 𝐺 is a 

unicyclic graph. Let 𝐶(𝐺) denotes the length of the longest cycle in 𝐺. Since 𝐺 is a unicyclic graph, 𝐺 contains 

either one or two vertices of degree 3. 

Case (i) Let 𝐺 contains only one vertex of degree 3, say 𝑢. Since 𝐺 is a unicyclic graph, 𝐺 contains exactly one end 

edge and all the edges in 𝐸(𝐺) − 𝐸(𝐶) are cut edges except the end edge. 

 

Case (ii) Suppose that 𝐶 contains two vertices 𝑢 and 𝑣 such that deg(𝑢) = deg(𝑣) = 3. Since 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑞 −

1, 𝑢𝑣 𝜖 𝐸(𝐺). Also since 𝑞 ≥ 4, 𝐸(𝐺) − 𝐸(𝐶) contains exactly two end edges and all the remaining edges are cut 

edges. Therefore 𝐺 is the family ℑ of graph given in Figure 2.4 (b). So we have done.                                              ∎ 

                                                                                                      

𝐺 
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Theorem 2.24. Let 𝐺 be a path induced edge-to-vertex geodetic graph. Then 𝐺 is a path induced edge-to-vertex 

monophonic graph. 

 

Proof. Let 𝐺 be a path induced edge-to-vertex geodetic graph. Let 𝑆 be a path induced geodetic set of 𝐺. Since every 

geodetic path is a monophonic path, 𝑆 is a path induced edge-to- vertex monophonic set of 𝐺. Therefore 𝐺 is a path 

induced edge-to-vertex monophonic graph.                                                                                                                  ∎ 

 
Theorem 2.25. Let 𝐺 be a path induced edge-to-vertex geodetic graph. Then 2 ≤  𝑝𝑖𝑚𝑒𝑣(𝐺) ≤ 𝑝𝑖𝑔𝑒𝑣(𝐺) ≤ 𝑞. 

Proof. Every path induced edge-to-vertex monophonic set has at least two edges  

and so 𝑝𝑖𝑚𝑒𝑣(𝐺) ≥ 2. Since every path induced edge-to-vertex monophonic set  

is a path induced edge-to-vertex geodetic set and so 𝑝𝑖𝑚𝑒𝑣(𝐺) ≤ 𝑝𝑖𝑔𝑒𝑣(𝐺). Also the set of all edges of 𝐺 is a path 

induced edge-to-vertex geodetic set of 𝐺 so that  𝑝𝑖𝑔𝑒𝑣(𝐺) ≤ 𝑞.                                 ∎ 

 

Remark 2.26. The bounds in Theorem 2.25 are sharp for the graph  

𝐺 = 𝐶4,  𝑝𝑖𝑚𝑒𝑣(𝐺) = 2 and for the graph 𝐺 = 𝐾4 , 𝑝𝑖𝑚𝑒𝑣(𝐺) = 3 = 𝑝𝑖𝑔𝑒𝑣(𝐺). For the path 𝐺 = 𝑃𝑝 , 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑞. 

The inequalities in Theorem 3.25 can be strict. For the graph 𝐺 given in Figure 2.1, 𝑝𝑖𝑚𝑒𝑣(𝐺) = 3,  𝑝𝑖𝑔𝑒𝑣(𝐺) = 4 

and 𝑞 = 7 so that 2 < 𝑝𝑖𝑚𝑒𝑣(𝐺) < 𝑝𝑖𝑔𝑒𝑣(𝐺) < 𝑞. 

 

Theorem. 2.27. For every pair 𝑎 and 𝑏 of integers with 4 ≤ 𝑎 ≤ 𝑏, there exists a connected path induced edge-to-

vertex geodetic graph 𝐺 such that 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑎 and  𝑝𝑖𝑔𝑒𝑣(𝐺) = 𝑏. 

 

Proof: Let 𝑃𝑎: 𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑎 be a path of size 𝑎 and 𝑄𝑏−𝑎:  𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑏−𝑎 be a path of size 𝑏 − 𝑎. Let 𝐺 be the 

graph obtained from 𝑃𝑎  𝑎𝑛𝑑 𝑄𝑏−𝑎 by introducing the edges 𝑣0𝑢1 and 𝑣𝑏−𝑎𝑢3. The graph 𝐺 is shown in Figure 2.5. 

 

 

 

  

                                          Figure 2.5  
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 𝑢𝑎−1 

 
 

𝑢𝑎 

 
 

𝑣1 

 
 

𝐺 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 66 Issue 8 - Aug 2020 

 

ISSN: 2231-5373                                 http://www.ijmttjournal.org                                     Page 91 

First we show that 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑎. Let 𝑀 = {𝑢0𝑢1,  𝑢3𝑢4, … , 𝑢𝑎−1𝑢𝑎} be the set of end edges and cut-edges of 𝐺. 

Then by Corollary 2.9 and Theorem 2.12 𝑀 is a subset of every path induced edge-to-vertex monophonic set of 𝐺 

and so 𝑝𝑖𝑚𝑒𝑣(𝐺) ≥ 𝑎 − 2. Since 𝐽𝑒𝑒[𝑀] ≠ 𝑉, 𝑀 is not a path induced edge-to-vertex monophonic set of 𝐺. Also 

𝐽𝑒𝑒[𝑀 ∪ {𝑒}] ≠ 𝑉 where 𝑒 ∉ 𝑀, and so 𝑝𝑖𝑚𝑒𝑣(𝐺) ≥ 𝑎. Now 𝑀 ∪ {𝑢1𝑢2 , 𝑢2𝑢3} is a path induced edge-to-vertex 

monophonic set of 𝐺 so that 𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑎. Next, we prove that 𝑝𝑖𝑔𝑒𝑣(𝐺) = 𝑏. Let 𝑍 = {𝑢0𝑢1, 𝑢3𝑢4, … , 𝑢𝑎−1𝑢𝑎} 

be the set of end edges and cut-edges of 𝐺. By Theorem 1.2 , 𝑍 is a subset of every path induced edge-to-vertex 

geodetic set of 𝐺. Since 𝐼𝑒𝑒[𝑍] ≠ 𝑉, 𝑍 is not a path induced edge-to-vertex geodetic set of 𝐺. It is easily observed 

that every path induced edge-to-vertex geodetic set of 𝐺 contains 𝑍1 = {𝑢1𝑣0,  𝑢3𝑣𝑏−𝑎} ∪ 𝑉(𝑄𝑏−𝑎) and so 

𝑝𝑖𝑚𝑒𝑣(𝐺) ≥ 𝑎 − 2 + 𝑏 − 𝑎 + 2 = 𝑏. Since 𝑆 = 𝑍 ∪ 𝑍1 is a path induced edge-to-vertex geodetic set of 𝐺, we have 

𝑝𝑖𝑚𝑒𝑣(𝐺) = 𝑏. Also, since 𝐺 contains a path induced edge-to-vertex geodetic set , 𝐺 is a path induced edge-to-

vertex geodetic graph.                                                                                                                          ∎ 
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