SEMI Δ -OPEN SETS IN TOPOLOGICAL

SPACES

T.M. Nour and AHMAD Mustafa JABER Department of Mathematics, University of Jordan, Amman-Jordan

ABSTRACT

In this paper, we introduce the class of semi Δ -open sets in Topology. It is obtained by generalizing Δ -open sets in the same way that semi-open sets were generalized open sets. We study some properties of semi Δ -open sets. We also define the semi Δ -interior and the semi Δ -closure of a set A in a space (X, τ).

Keywords: Δ -open sets, Δ -closed sets, semi Δ -open sets, semi Δ -closed sets, semi Δ -interior and semi Δ closure of a set in X.

2005 AMS Subject Classification: 54C05, 54C08, 54C10.

INTRODUCTION

Let (X, τ) be a topological space and let $A \subseteq X$. Then the closure of A and the interior of A will be denoted by cl(A) and int(A), respectively. A subset $A \subseteq X$ is said to be semi-open [3] if there exists $O \in \tau$ such that $O \subseteq A \subseteq cl(A)$. It is evident that A is semi-open if and only if $A \subseteq cl(int(A))$. The complement of a semi-open set is said to be semi-closed [1]. Δ -open sets are defined and studied by Veera [5]. A subset A of a space X is said to be Δ -open if $A = (B - C) \cup (C - B)$, where B and C are open subsets of X. The complement of a Δ -open set is said to be Δ -closed [5]. The notions of Δ -interior and Δ -closure of a set A in X [5] are defined analouge to interior and closure of a set A in X.

Definition 1. A subset S of a space (X, τ) is said to be semi Δ -open if $S = (A - B) \cup (B - A)$, where A and B are semi-open sets in X.

It is evident that every Δ -open set as also every semi-open set is semi Δ -open. But the converse implications are not true in general. Following is an example:

Example 1. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$ is a topology on X. Then $\{b\}$ is semi Δ -open. But is neigher Δ -open nor semi-open.

<u>Theorem 1</u>. If S is a semi Δ -open subset of a space (X, τ), then there exists a Δ -open set O such that $O \subseteq S \subseteq cl(O)$.

<u>**Proof.**</u> S is semi Δ -open, there exist semi-open sets A and B such that S = (A - B) \cup (B - A). Now, A and B are semi-open sets, it follows that there exist open sets U and V in X such that U \subseteq A \subseteq cl (U) and V \subseteq B \subseteq cl (V). This implies that

$$(\mathbf{U} - \mathbf{V}) \cup (\mathbf{V} - \mathbf{U}) \subseteq (\mathbf{A} - \mathbf{B}) \cup (\mathbf{B} - \mathbf{A})$$
$$\subseteq [\operatorname{cl}(\mathbf{U}) - \operatorname{cl}(\mathbf{V})] \cup [\operatorname{cl}(\mathbf{V}) - \operatorname{cl}(\mathbf{U})]$$
$$\subseteq \operatorname{cl}(\mathbf{U} - \mathbf{V}) \cup \operatorname{cl}(\mathbf{V} - \mathbf{U})$$
$$= \operatorname{cl}[(\mathbf{U} - \mathbf{V}) \cup (\mathbf{V} - \mathbf{U})].$$

Hence the result.

<u>Theorem 2</u>. If O is open and S is semi Δ -open in a space (X, τ) , then $O \cap S$ is semi Δ -open in X.

<u>Proof.</u> $O \cap S = O \cap [(A - B) \cup (B - A)]$, where A and B are semi-open sets in X.

$$= \left[O \cap (A - B) \right] \cup \left[O \cap (B - A) \right]$$
$$= \left[(O \cap A) - (O \cap B) \right] \cup \left[(O \cap B) - (O \cap A) \right]$$

which is semi Δ -open since $O \cap A$ and $O \cap B$ are semi open sets [2].

<u>Theorem 3.</u> A subset A of a space (X, τ) is semi Δ -open if and only if $A \subseteq cl(\Delta int(A))$.

Proof. Let A be a semi Δ -open subset of X. Then there exists a Δ -open set U such that $U \subseteq A \subseteq cl(U)$. But $U = \Delta$ int(U) $\subseteq \Delta$ int(A) and so $cl(U) \subseteq cl(\Delta$ int(A)). Thus $A \subseteq cl(U) \subseteq cl(\Delta$ int(A)). Now, suppose $A \subseteq cl(\Delta$ int(A)). Put $U = \Delta$ int(A). Then U is Δ -open with $U \subseteq A \subseteq cl(\Delta$ int(A)). Hence $U \subseteq A \subseteq cl(U)$ and A is semi Δ -open. **<u>Theorem 4.</u>** If $\{A_{\alpha} : \alpha \in I\}$ is a family of semi Δ -open subsets of (X, τ) , then $\bigcup_{\alpha \in I} A_{\alpha}$ is semi Δ -

open.

<u>Proof.</u> For each $\alpha \in I$, there exists a semi Δ -open set U_{α} such that $U_{\alpha} \subseteq A_{\alpha} \subseteq cl(U_{\alpha})$. Now $\bigcup_{\alpha \in A} A_{\alpha} \subseteq \bigcup_{\alpha \in I} A_{\alpha} \subseteq \bigcup_{\alpha \in I} cl(U_{\alpha}) \subseteq cl\left(\bigcup_{\alpha \in I} U_{\alpha}\right)$. Then $\bigcup_{\alpha \in I} A_{\alpha}$ is semi Δ -open.

Definition 2. Let (X, τ) be a topological space and let $A \subseteq X$. Then the union of all semi Δ -open sets contained in A, denoted by $s\Delta$ int(A), is called the semi Δ -interior of A. It is clear that int(A) \subseteq sin $t(A) \subseteq s\Delta$ int(A), for any subset A of X. Recall that sint(A) is the semi-interior of A \subseteq X [2].

<u>Theorem 5.</u> Let A be a subset of a space (X, τ) . Then $s\Delta$ int $(A) = A \cap cl(\Delta int(A))$.

<u>Proof.</u> A \cap cl (Δ int(A)) \subseteq cl [Δ int(A \cap int(A))]

 $\subseteq \operatorname{cl} \left[\Delta \operatorname{int}(A \cap \operatorname{cl} (\Delta \operatorname{int}(A)) \right].$

Thus $A \cap cl(\Delta int(A))$ is semi Δ -open set contained in A. Hence $A \cap cl(\Delta int(A)) \subseteq s\Delta int(A)$. On the other hand, since $s\Delta int(A)$ is a semi Δ -open set, we have $s\Delta int(A) \subseteq cl(\Delta int(s\Delta int(A))) \subseteq cl(s\Delta int(A))$. Hence, $s\Delta int(A) = A \cap cl(\Delta int(A))$.

<u>Theorem 6</u>. Let (Y, τ_Y) be a subspace of a space (X, τ) and let $A \subseteq Y$. If A is semi Δ -open in X, then A is semi Δ -open in Y.

<u>Proof.</u> A is semi Δ -open in X, there exists a Δ -open set U in X such that $U \subseteq A \subseteq cl(U)$. Then $U = U \cap Y \subseteq A \subseteq cl(U) \cap Y = cl_{Y}(U)$. Thus A is semi Δ -open in Y.

<u>Theorem 7</u>. Let Y be a Δ -open set in a space (X, τ). If A \subseteq Y and A is semi Δ -open in Y, then A is semi Δ -open in X.

Proof. Let A be semi Δ -open in Y. Then there exists a Δ -open subset U of (Y, τ_Y) such that $U \subseteq A \subseteq cl_Y(U)$. Since Y is Δ -open in X, therefore, U is Δ -open in X and $U \subseteq A \subseteq cl_Y(U) \subseteq cl(U)$. Hence A is semi Δ -open in X.

Definition 3. A subset A of a space (X, τ) is said to be semi Δ -closed iff $X \square A$ is semi Δ -open.

<u>Remark 1</u>. Since all open sets are semi Δ -open, it follows that all closed sets are semi Δ -closed.

Definition 4. Let A be a subset of a space (X, τ) , then the semi Δ -closure of A, denoted by $s \Delta cl (A)$, is defined as the intersection of all semi Δ -closed subsets of X containing A.

<u>Remark 2</u>. $s \Delta cl(A) \subseteq scl(A)$ for any $A \subseteq X$.

<u>Theorem 8.</u> A subset F of a space (X, τ) is semi Δ -closed if and only if int $(\Delta \operatorname{cl}(F)) \subseteq F$.

Proof. Obvious.

<u>Theorem 9</u>. If A is a subset of a space (X, τ) , then $s \Delta cl(A) = A \cup int(\Delta cl(A))$.

<u>Proof.</u> int $[\Delta cl(A \cup int(\Delta clA))] \subseteq int [\Delta cl(A \cup cl(A))]$

$$= \operatorname{int} \left[\Delta \operatorname{cl} (A) \right] \subseteq A \cup \operatorname{int} \left[\Delta \operatorname{cl} (A) \right].$$

Thus by Theorem 8, $A \cup int (\Delta cl(A))$ is a semi Δ -closed set containing A and so $s\Delta cl(A) \subseteq A \cup int (\Delta cl(A))$.

On the other hand, since $s \Delta cl(A)$ is semi Δ -closed, therefore, int $[\Delta cl(s \Delta clA)] \subseteq s \Delta cl(A)$. Hence int $[\Delta cl(A)] \subseteq$ int $[\Delta cl(s \Delta cl(A))] \subseteq s \Delta cl(A)$ and consequently $A \cup$ int $(\Delta clA) \subseteq s \Delta cl(A)$. Thus $s \Delta cl(A) = A \cup$ int (ΔclA) .

 $\underline{\text{Theorem 10}}. \text{ Let } A \text{ is a subset of } (X,\tau). \text{ Then } s \Delta cl \left(A\right) \subseteq \ scl \left(A\right) \cap \ \Delta cl \left(A\right).$

<u>Proof.</u> $s \Delta cl(A) = A \cup int(\Delta cl(A))$

$$\subseteq$$
 int $(cl(A)) = scl(A)$ (Theorem 1.5 of [2]).

Also, $s \Delta cl(A) \subseteq A \cup \Delta cl(A) = \Delta cl(A)$. Therefore, $s \Delta cl(A) \subseteq scl(A) \cap \Delta cl(A)$.

<u>Remark 3.</u> The equality in Theorem 10 does not hold. Following is an example:

Example 2. Let $X = \{a, b, c\}$ and let $\tau = \{X, \phi, \{a, c\}, \{c\}\}$ be a topology on X. Then scl $(\{a, c\}) = X = \Delta cl(\{a, c\})$ but $s\Delta cl(\{a, c\}) = \{a, c\}$.

<u>Theorem 11</u>. If F is closed and S is semi Δ -closed in a space (X, τ), then F \cup S is semi Δ -closed.

<u>Proof.</u> $(X \Box F)$ is open and $(X \Box S)$ semi Δ -open. Then by Theorem 2, $(X - F) \cap (X - S)$ is

semi Δ -open. That is $X - (F \cup S)$ is semi Δ -open. Hence $F \cup S$ is semi Δ -closed.

<u>Theorem 12</u>. Let (X, τ) be a topological space and $A \subseteq X$. Then:

- (a) A is semi Δ -open iff A = s Δ int(A).
- (b) A is semi Δ -closed iff A = s Δ cl (A).
- (c) $s\Delta$ int $(X A) = X s\Delta cl(A)$.
- (d) $s \Delta cl (X A) = X s \Delta int(A)$.

Theorem 13. If A is a subset of a space (X, τ) , then the following are equivalent:

- (a) A is a dense subset of X.
- (b) $s \Delta cl (A) = X$.
- (c) If F is a semi Δ -closed subset of X and $U \subseteq F$, then F = X.
- (d) For any non-empty Δ -open subset S of (X, τ) , S $\cap A \neq \phi$.
- (e) $s\Delta$ int $(X A) = \phi$.

Proof. Same proof as Theorem [4].

References

- [1] S.G. Crossley and S.K. Hildebrand: Semi-closure, Texas J. Sci. 22(1971), 99-112.
- [2] P. Das: Note on some applications on semi-open sets, progress. Math. 7(1973), 33-44.
- [3] N. Levine: Semi-open and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [4] T.M. Nour: A note on some applications of semi-open sets, Internat. J. Math. Sci. 21(1) (1998), 205-207.
- [5] M. Veera Kumar: On Δ -open sets in topology, To appear.