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ABSTRACT 

The present paper deals with the equations of motion of photo gravitational restricted three body 

problems in which the bigger primary is the source of radiation and the smaller one is an oblate 

spheroid. The idealized model of restricted three body problem is one of the most celebrated problems of 

celestial mechanics. The restricted problem specifies the motion of a body of infinitesimal mass under the 

gravitational attraction of two massive bodies moving about their centre of mass in circular orbit.  

KEYWORDS: photo gravitational restricted three body problem, Libration, Oblatness, Primary, Bigger, 

Triangular points. 

INTRODUCTION 

The photo gravitational restricted three body problem is a special case of restricted three body problem in 

which at least one of the interacting bodies is an intense emitter of radiation. In a model of restricted three 

body problem sun – planet – particle, the motion of material particle is subjected to the solar radiation 

pressure. There are several examples of the restricted problems in which either or both the primaries are 

sources of radiation. The effect of radiation of either or both the primaries on the motion and stability of 

the system was studied in considerable detail by Radzievsky (1950), Chernikov (1970), Simmons et. Al. 

(1985), Chaudhary (1985), Szzebehely (1967), and many others.  

 

Locations of the Equilibrium points: 

   The locations of the equilibrium points of the system are determined by the equations. . 
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Now, differentiating (1) partially with respect to x, we get 
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After using , it takes the form  
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Again differentiating (1) partially with respect to y, we obtain  
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which takes the form with the values substituted in from  
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Substituting these values and , we have the equations. 
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From second equation of (2), we get  
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Collinear Equilibrium Points: 

The collinear equilibrium points are the solutions of the equations
0x 

  and 
0y 

 

i.e., from (1.3.5), these points are the solutions of the equations: 
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and    y = 0    … … (4)  Since the collinear points lie on the 

x-axis i.e., the line joining the primaries. Hence in order to get the collinear solutions we put y = 0 and obtain  
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With these values substituted in, (4) takes the form  
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To obtain the position of the collinear points on the line joining the primaries, we consider the function:  
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       … … (5)  

Let h be an arbitrary number which is positive and very very small. We know that A>0, 1-q>0 and 0<μ<½. Hence 

we have  
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  Plotting the graph of f(x) as in the classical case we conclude that there are three solutions of the 

equations f(x) = 0 which correspond to three collinear solutions of the problem and these collinear points are 

denoted by L1, L2 and L3.  

CONCLUSION 

 Thus we observe that the photo gravitational restricted three body problem in which the smaller primary is an 

oblate spheroid and the bigger one is a source of radiation possesses five equilibrium points -two triangular which 

form nearly equilateral triangles with the primaries and three collinear which lie on the line joining the primaries. 

The oblateness of the smaller primary and the radiation of the bigger primary affect significantly the location of 

triangular as well as collinear equilibrium points. The result obtained are in accordance with those of szebehely 

when q = 0 and        A = 0. 
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