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Abstract: 

 

In this paper, we have proposed as work, the study of a hollow tubular cylindrical structure which has as 

deformation an inflation in order to obtain an analytical solution of displacement and also to see solution 

components behaviors when the radius varies. A deformation kinematics governing this behavior has been given 

in order to be able to solve the problem analytically. From this resolution, we obtained from the kinematics 

principal components of the stress tensor, equilibrium equations and boundary conditions, the analytical 

solution of the displacement, a solution that has a complex component. The simulation of the real and imaginary 

parts of this component allowed us to see a different behavior between these two parts when the radius varies. 

This study showed us that the geometrical shapes that does not only modify the volume contributions, the 

porosity, the directions, the therml coating as well as the variation of the scalar products of the material vectors 

but also creates certain behaviors at the solution level when the radius varies. 
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I. Introduction 

On the human scale, which can be said to be macroscopic, the mechanical behavior of a material can be 

described from empirical parameters, directly measured during a test of the fabricated part, and without a 

detailed knowledge of its origins. 

At the microscopic scale, the mechanical properties can be related to physical mechanisms whose scale varies 

from the dimension of the atom to dimensions typical of the microstructure of the material. The relationships that 

characterize the physical properties of materials are commonly referred to as constitutive equations. Due to the 

variety of materials and loads, the study and development of these constitutive equations are certainly one of the 

most interesting and developed fields of mechanics. Although the theory of continuum mechanics has 

established some principles for the development of behavioral laws many studies based on empirical 

relationships confirm and verify this theory [1]. The equations governing this class of continuous environments 

result from the relationships between conservation laws and behavioral relations of elastic domains. The concept 

of continuous medium is a macroscopic physical modeling resulting from current experience, the relevance of 

which is proven according to the problems addressed and according to the scale of phenomena involved. 

In the classical mathematical formulation of this concept, a mechanical system is represented at the differential 

level by a volume consisting of particles. The geometrical state of these particles is characterized by the 

knowledge of their position. The continuity of the medium is expressed by the spatial and temporal continuity of 

the correspondence between the initial and current position of the particle. All physical quantities are then 

defined in this way with imposed conditions such as continuous differentiability.The study of materials in the 

theory of continuous media has therefore grown rapidly. Several types of models have been developed. This is 

the case, in a very felt past of functional quality materials (FGM). Among the first mentions and applications of 

the FGMs were the thermal problems in some materials such as ceramics. In Japan, for example, at the 

beginning of the nineteen eighties, the peculiarity of these materials consisted of their surface, a coating or 

thermal protection. This resulted in a fairly high temperature gradient, especially in terms of electronic structures 

[2,3]. Functional quality materials (FGM) are composite materials in which the shape, the direction of the 

elemental differences and the value of their concentration are taken into account. These different geometrical 

shapes influence the volume contributions, the porosity, the directions, the thermal coating as well as the 

variation of the scalar products of the material vectors (variation of angle and length) [4]. The analysis of FGMs 

structures involving thermal effects often led researchers to take into account the influence of temperature on the 

properties of each element constituting the composite material. Thus, if the effect of a nonuniform temperature 

on the properties is taken into account, the heat equations or the differential equations of the boundary problem 

involve temperature-dependent coefficients [5,6]. 

The structure of functional quality materials is attracting more and more attention from scientists in the field of 

analytical or applied physics. FGMs play a vital role in most integrated systems. Authors such as He et al. [7] 
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have studied the FGMs plates composed of piezoelectric sensors. These studies may lead to buckling of 

piezoelectric plates subjected to thermo-electro-mechanical loading. Yang et al. [8] studied the dynamic 

behavior of stresses in FGMs elastics cylinders and derived the inter-diffusion effect at the constituent elements 

of the material. Almajid and Taya [9] and Almajid et al. [10] have studied the displacement and stress fields in 

microstructure piezocomposite plates in application to piezoelectricity. 

It should also be noted that an exact three-dimensional solution was obtained from studies on anisotropic elastic 

[11] and piezoelectric plates [12] made of functional graded materials. 

 

II. Formulation of the problem 

In linear elasticity, it is established that there is a relationship between fear and deformation at each point in the 

body. This observation is well verified by experimental evidence, provided that the transformations remain 

sufficiently small. 

We will refer to this theoretical framework as linear elasticity and we will refer to the relation between 

constraints and constraints like Hooke's law. 

We assume the isotropic continuous medium. What is expressed in mathematical form by: 

If the strain 𝛆 corresponds to the stress 𝛔 as 

σij = aijkhεkh (2.1) 

 

then, at the deformation 𝛆′ = 𝐐𝛆𝐐T, where 𝐐 is an orthogonal matrix, it will correspond to the constraint 

𝛔′ = 𝐐𝛔𝐐T, 

where aijkh can be referred to as elastic stiffnesses, elastic constants, or elastic moduli. 

More generally, the elastic behavior is characterized by a linear relation between stresses and deformations. In 

the context of three-dimensional elasticity, this relation is written: 

 

{
σij = aijkhεkh
σ = a[ε]

               (2.2) 

 

or  

 

{
εij = Λijkhσkh
ε = Λ[σ]

 (2.3)

   

where aijkh and Λijkh are the components of two applications 𝐚 and 𝚲 which are inverse of each other, of the 

space of the symmetric tensors in itself. 

To solve a problem of elasticity, it is necessary to find a displacement field 𝐮 and a field of the stress 𝛔 verifying 

the problems of elasticity. Equations of movement or equilibrium depending on whether one is interested in the 

dynamic or quasi-static problem: 

 

σij,j + fi = ρ
∂2ui

∂t2
, or 0, (2.4) 

 

and the law of behavior defined in (2), 

with 

 

𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
), (2.5) 

 

 

We get a system of equations and the problem will be good posed, regular, and will admit a unique solution 

provided that it adds boundary conditions and possibly adequate initial conditions. 

Classically displacements-type conditions are defined at the border:  

 

𝑢𝑖∕𝜕Ω = 𝑢𝑖
𝑑,  (2.6) 

  

 or type of effort on the border: 

 

𝜎𝑖𝑗𝑛𝑗∕𝜕Ω = 𝑇𝑖
𝑑, (2.7) 
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To solve analytically a problem of elasticity, one postulates a priori a particular form for the solution then one 

tries to verify all the equations. If we succeed, then according to the uniqueness theorem for a regular problem, it 

is the solution of the problem. 

This results in two methods, depending on whether one tries a field of displacement or a field of stress. 

If we start from the displacement field 𝒖 we can calculate the tensor of the deformations by (2.5) and the stress 

tensor by the constitutive law (2.2). It remains only to verify that the equations of motion (2.4), the boundary 

conditions of type displacement and effort type and possibly the initial conditions. Reporter (2.2) and (2.5) in the 

equation of motion (2.4) makes it possible to write the equation which must be verified by the displacement field 

in dynamics or in static [13]: 

 

𝑎𝑖𝑗𝑘ℎ
𝜕2𝑢𝑘

𝜕𝑥𝑗𝜕𝑥ℎ
+ 𝑓𝑖 = 𝜌

𝜕2𝑢𝑖

𝜕𝑡2
, 𝑜𝑟 0  (2.8) 

 

where the symmetry of 𝑎𝑖𝑗𝑘ℎ is used and assuming the homogeneous material (the operator 𝒂 constant). In 

elasticity, time does not intervene in the law of behavior. It intervenes only in the equation of motion and 

disappears in quasi-static with the exception of friction problems, where it remains in the boundary condition 

(equations 2.6 and 2.7). In elasticity, one never speaks of quasi-static problems but only of static problems. To 

solve a quasi-static problem, it suffices to solve at each moment the corresponding static problem. 

In the context of the isotropic linear elasticity-classical elasticity-equation (2.8) becomes: 

 

(𝜆 + 𝜇)𝑢𝑖,𝑖𝑘 + 𝜇𝑢𝑖,𝑘ℎ + 𝑓𝑖 = 0,  (2.9) 

 

either, by introducing the operators of vector analysis: 

 
(𝜆 + 𝜇)𝑔𝑟𝑎𝑑(𝑑𝑖𝑣(𝑢)) + 𝜇Δ(𝑢) + 𝑓 = 0, (2.10) 

 

or equivalent 

 

(𝜆 + 2𝜇)grad(div(𝑢)) − 𝜇 rot(rot(𝑢)) + 𝑓 = 0. (2.11) 

 

This equation of Navier is, in particular, very useful if one knows that the displacement field 𝑢 sought is such 

that its rotational is zero. This comes from a symmetry property of the regular or well-posed problem. 

 

In this case, we obtain the reduced form 

 

(𝜆 + 2𝜇)grad(div(𝒖)) + 𝒇 = 0. (2.12) 

 

Which necessarily implies that 

rot⃗⃗ ⃗⃗  ⃗(𝒖) = 𝟎, 

and so that 𝑓 derives from a potential 

 

𝑓 = −𝑔𝑟𝑎𝑑(𝜙). 

 

The reduced form equation above, then admits a first integral 

 

(𝜆 + 2𝜇)(div(𝑢)) + 𝜙 = 𝐶. (2.13) 

 

where 𝐶 is an integration constant, which simplifies the search for 𝒖. 

 

In this study, we consider a circular section hollow tube composed of two coaxial cylinders 𝑅𝑖 and 𝑅𝑜. The 

material is subjected to inflation through its wall, thus translating the loading into pressure 𝑝. The characteristic 

of this material domain that we study is that it is thick-walled in materials of functional quality and whose 

volume contribution of the cylinder 𝑅𝑖 is given by the function [14]: 

  

𝑐(𝑟) = 𝑐0[1 − 𝑘(𝑟 𝑟𝑖⁄ )𝑚]           (2.14) 

 

where 𝑟 is the radius and 𝑐𝑜 , 𝑘 and 𝑚 are the material parameters. 

With the form of the analytic function defined in (2.14), we can obtain several models to describe the nonlinear 

and continuous behavior of the functional quality material through the contribution of the volume ratio c(r). 
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We propose to study the boundary problem through a cylindrical tube. Classically, for small transformations the 

relations between radial and circumferential deformations on the one hand and displacement are given by: 

{
𝜀𝑟 =

𝑑𝑢

𝑑𝑟

𝜀𝜃 =
𝑢

𝑟

   (2.15) 

 

The structure of the material of which we make the analytical study, is of the type FGM. Using the law of Lamé 

in (2.2) and the deformation in (2.5), we can define the principal stresses by: 

{
 
 

 
 𝜎𝑟 = 𝜆̅

𝑢

𝑟
+ (𝜆̅ + 2�̅�)

𝑑𝑢

𝑑𝑟

𝜎𝜃 = (𝜆̅ + 2�̅�)
𝑢

𝑟
+ 𝜆̅

𝑑𝑢

𝑑𝑟

𝜎𝑧 = 𝜆̅ (
𝑢

𝑟
+

𝑑𝑢

𝑑𝑟
)

,  (2.16) 

 

 

where the coefficients of Lamé 𝜆̅ and �̅�  [14]in this current material configuration are defined as functions of the 

parameters in the reference configuration by the function defined in equation (2.14): 

 

{
𝜆̅ = 𝑐(𝑟)𝜆0 + [1 − 𝑐(𝑟)]𝜆1
�̅� = 𝑐(𝑟)𝜇0 + [1 − 𝑐(𝑟)]𝜇1

.  (2.17) 

 

 

The equation of equilibrium translating the problem to the limits, in a cartesian system is given by: 
𝑑

𝑑𝑟
(𝑟𝜎𝑟) − 𝜎𝜃 = 0.  (2.18) 

 

The function defining the volume contribution 𝑐(𝑟) is continuous, differentiable. By assuming that the 

cylindrical tube of basic components FGM, undergoes small disturbances, we can then linearize 𝑐(𝑟). By means 

of a development limited to order 1 around the inner radius 𝑅𝑖, we can then write, with Landeau's notation: 

 

𝑐(𝑟) = 𝑐(𝑅𝑖) + 𝑐
′(𝑅𝑖)(𝑟 − 𝑅𝑖) + 𝑜(𝑟 − 𝑅𝑖),  (2.191) 

 

that we can still write in the form: 

 

𝑐(𝑟) = 𝛼0𝑟 + 𝛽0,  (2.192) 

 

with (. )′ =
𝑑

𝑑𝑟
(. ). 

By referring the expression of (2.192) in the system (2.17) and considering the equations defined in (2.16), the 

equation of equilibrium (2.18) is transformed into: 

 

𝑟2 (𝛼1 +
𝛼2

𝑟
)
𝑑2𝑢

𝑑𝑟2
+ (𝛼2 + 2𝛼1𝑟)

𝑑𝑢

𝑑𝑟
+ (𝛼3 −

𝛼2

𝑟
) 𝑢 = 0,  (2.20) 

 

where the expressions of the different constants are: 

 

{
 
 

 
 

𝛼0 = 𝑐′(𝑅𝑖) 

𝛽0 = 𝑐(𝑅𝑖) − 𝛼0𝑅𝑖 + 𝑜(𝑟 − 𝑅𝑖)

𝛼1 = 𝛼0(𝜆0 − 𝜆1) + 2𝛼0(𝜇0 − 𝜇1)

𝛼2 = 𝛽0(𝜆0 − 𝜆1) + 𝜆1 + 2(𝛽0(𝜇0 − 𝜇1) + 𝜇1)

𝛼3 = −2𝛼0(𝜇0 − 𝜇1)

. 

 

III. Results and discussion 

Very few ordinary differential equations have exact analytical solutions. This is not easy, not because ingenuity 

has failed, but because the repertoire of standard functions for the expression of solutions is very limited. Even if 

a solution can be found, the formula is often too complicated to clearly display the main features of the solution. 

This is particularly the case for implicit solutions and solutions that come in the form of integrals or infinite 

series. This is the case, in general, in nonlinear mechanics, where the boundary problem is in the form of one or 

more Bessel equations or Liouville equations. 

The analytical expressions obtained are often series of functions to which the asymptotic behavior must be 

studied. 
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A. Exact analytical solution 

The recurrent movements fall into two types, one of them being explicitly representable by means of continuous 

and periodic functions of the variables they contain. This first type is called continuous type and seems to 

include all the recurrent movements whose existence has been established. In this paper, we choose the form of 

displacement as follows: 

 

𝑢(𝑟) = 𝑓(𝑟)cos (𝑤𝑟),  (3.1) 

 

Equation (2.20) then becomes: 

 

[𝑟2 (𝛼1 +
𝛼2
𝑟
) (𝑓′′(𝑟) − 𝑤2𝑓(𝑟)) + (𝛼2 + 2𝛼1𝑟)𝑓

′(𝑟) + (𝛼3 −
𝛼2
𝑟
) 𝑓(𝑟)] cos(𝑤𝑟) 

−𝑤 [𝑟2 (𝛼1 +
𝛼2

𝑟
) 𝑓′(𝑟) + (𝛼2 + 2𝛼1𝑟)𝑓(𝑟)] sin(𝑤𝑟) = 0. 

 

We get two decoupled equations, which gives the system: 

 

{
𝑟2 (𝛼1 +

𝛼2

𝑟
) (𝑓′′(𝑟) − 𝑤2𝑓(𝑟)) + (𝛼2 + 2𝛼1𝑟)𝑓

′(𝑟) + (𝛼3 −
𝛼2

𝑟
) 𝑓(𝑟) = 0

𝑟2 (𝛼1 +
𝛼2

𝑟
) 𝑓′(𝑟) + (𝛼2 + 2𝛼1𝑟)𝑓(𝑟) = 0

, (3.2) 

 

 

 

The differential equation (3.1a) admits an exact analytical solution: 

 

f(r) = C0exp(F(r)) + C1,   (3.31) 
 

with 

 

F(r) = (
w2α2

2

α1
2 −

α3

α1
) log(α2 + 2α1r) + log (

2α1

α2r
2 −

2

r3
) + 2log (

4α1r

α2(α1r+α2)
+

2

α1r+α2
) −                

w2

2
r (r +

α2

α1
),

   (3.32) 
 

In the theory of differential equations, an important theoretical question is to know the number of solutions. The 

answer to this question is provided by the existence and uniqueness theorem. 

An axial symmetry state is thus considered in the problem of a thick-walled tube subjected to an internal 

pressure 𝑝. The boundary conditions are [14]: 

 

 

{
𝜎𝑟(𝑅𝑖) = −𝑝

𝜎𝑟(𝑅𝑜) = 0
,  (3.4) 

 

Taking into account the boundary conditions (3.4), the nature of the function (3.3), we obtain the general 

solution of the elasticity problem (2.18) or (3.2) by: 

 

𝑢(𝑟) = [C0exp(F(r)) + C1]cos (𝑤𝑟),  (3.5) 

 

with the integration constants whose expressions are given by: 

{
C0 = −𝑝

𝐵′

𝐴𝐵′−𝐴′𝐵

C1 = 𝑝
𝐴′

𝐴𝐵′−𝐴′𝐵

. 

 

where: 
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{
  
 

  
 𝐴 = [

𝜎𝑖1

𝑅𝑖
cos(𝑤𝑅𝑖) + 𝜎𝑖2𝐹

′(𝑅𝑖) cos(𝑤𝑅𝑖) − 𝑤𝜎𝑖2sin (𝑤𝑅𝑖)] 𝑒𝑥𝑝(𝐹(𝑅𝑖))

𝐵 =
𝜎𝑖1

𝑅𝑖
cos(𝑤𝑅𝑖) − 𝑤𝜎𝑖2 sin(𝑤𝑅𝑖)

𝐴′ = [
𝜎𝑜1

𝑅𝑜
cos(𝑤𝑅𝑜) + 𝜎𝑜2𝐹

′(𝑅𝑜) cos(𝑤𝑅𝑜) − 𝑤𝜎𝑜2sin (𝑤𝑅𝑜)] 𝑒𝑥𝑝(𝐹(𝑅𝑜))

𝐵′ =
𝜎𝑜1

𝑅𝑜
cos(𝑤𝑅𝑜) − 𝑤𝜎𝑜2 sin(𝑤𝑅𝑜)

, 

 

with: 

{
𝜎𝑖1 = 𝛼0(𝜆0 − 𝜆1)𝑅𝑖 + 𝜆0𝛽0 + 𝜆1 − 𝛽0𝜆1
𝜎𝑜1 = 𝛼0(𝜆0 − 𝜆1)𝑅𝑜 + 𝜆0𝛽0 + 𝜆1 − 𝛽0𝜆1

, 

 

{
𝜎𝑖2 = 𝜎𝑖1 + 2𝛼0(𝜇0 − 𝜇1)𝑅𝑖 + 2(𝛽0𝜇0 + 𝜇1 − 𝛽0𝜇1)

𝜎𝑜2 = 𝜎𝑜1 + 2𝛼0(𝜇0 − 𝜇1)𝑅𝑜 + 2(𝛽0𝜇0 + 𝜇1 − 𝛽0𝜇1)
, 

 

Remark 

We can also examine the case of a particular solution to the boundary problems in (2.18). 

In the limited development in equation (2.191), passing to the limit:(𝑜(𝑟 − 𝑅𝑖) → 0), we can deduce that 

(𝛼2 → 0). 

Under these conditions, the equilibrium equation (2.20) becomes: 

 

𝑢"(𝑟) +
2

𝑟
𝑢′(𝑟) +

𝛼3

𝛼1

𝑢(𝑟)

𝑟2
= 0.  (3.6) 

 

Following the sign of  
𝛼3

𝛼1
, this equation can be put in the form: 

 

𝑢"(𝑟) +
2

𝑟
𝑢′(𝑟) ± 𝑘2

𝑢(𝑟)

𝑟2
= 0,  (3.7) 

 

The characteristic equation is written: 

 

    𝑟2 + 𝑟 ± 𝑘2 = 0,  (3.8) 

 

where we pose:  
𝛼3

𝛼1
= ±𝑘2 

We thus obtain the solution of equation (3.7) according to the shape of the roots of the characteristic equation. 

i. 𝑢(𝑟) = 𝑐0𝑟
𝑟1 + 𝑐1𝑟

𝑟2 ,  

if (3.8) admits two real roots: 𝑟1, 𝑟2, 

 

ii. 𝑢(𝑟) = 𝑟𝑎[𝑐0 cos(𝑏. 𝑙𝑛(𝑟)) + 𝑐1 sin(𝑏. 𝑙𝑛(𝑟))],             (3.9) 

if (3.8) admits two conjugated complex roots: 𝑎 ± 𝑖𝑏    
 

iii. 𝑢(𝑟) =
1

√𝑟
[𝑐0 + 𝑐1 ln(𝑟)] 

if (3.8) admits a double root. 

 

The integration constants are determined under the same conditions as the problem at the limits of the preceding 

general case. 

 

La fonction 𝐹(𝑟) définie en (3.32) est une fonction complexe : 

 𝐹(𝑟) = 𝑟𝑒𝑎𝑙(𝐹) + 𝑖(𝑖𝑚𝑎𝑔(𝐹)). 
Les figures (1), (2) montrent les allures des parties réelles et imaginaires en fonction du rayon. 

Nous  remarquons que plus le rayon est grand, plus la partie réelle tend vers 0 et la partie imaginaire de l’ordre 

de +103. 

 

Compte tenu de la forme des fonctions 𝐹 et 𝑓, des équations (3.1), (3.2) et (3.3), nous en déduisons la forme du 

déplacement 𝑢(𝑟) solution de (2.20) : 

𝑢(𝑟) = [𝐶0cos (𝑖𝑚𝑎𝑔(𝐹))𝑒
𝑟𝑒𝑎𝑙(𝐹) + 𝐶1] cos (𝑤𝑅) 
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B. Simulation and interpretation 

 
Figure1                                                    Figure2 

 
Figure 3 

We find in Figure 1 that when the radius increases, the real part of 𝐹 decreases exponentially between 0 and 

−5000 for values of 𝑟 between 1 and 2.25 before changing the variation follow a logarithmic growth after 

𝑟 = 2.25 in tend to 500, a value that is reached for a radius equal to 7, before approaching asymptotically the 

value zero as the ray continues to grow. 

 

Figure 2 shows us that as the radius increases we have the imaginary part of 𝐹 that is zero for values of 𝑟 

between 1 and 2.25. But for 𝑟 = 2.25 this imaginary part leaves zero to reach the value 2500 and becomes 

constant in stabilizing itself in this value for 𝑟 greater than 2.25. 

 

The graphical representation of the imaginary part as a function of the real part of F (Figure 3) shows that for 

values of the real part less than -5000 we have the imaginary part which is zero. For a real part between −5000 

and −4250, we find a rectilinear and very fast growth of the imaginary part. When the real part reaches the 

value −4250, the imaginary part reaches the value 2500 by stabilizing itself in this value for larger imaginary 

values. 

 

Summarized, these figures obtained showed us that when the radius varies between 0 and 7, the real part of 𝐹 

follows the pace of a thin cone reverse with a spade obtained for 𝑟 = 2.25 while its imaginary part follows a 

pace shaped staircase. 

 

Conclusion: 
 

In our study, we considered a hollow circular tubular section which is composed of two coaxial cylinders, The 

material is subjected to swelling across its wall with a boundary problem. After we gave the kinematics of 

deformation describing the behavior of the material subjected to inflation, many mathematical objects have been 

calculated for the resolution of the problem. 
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The main components of the stress tensor and the equilibrium equations allowed us to have a Navier equation, so 

then a differential equation and from this equation we obtained an exact solution of the displacement. This 

solution obtained contains a component which is a complex function. 

We are interested in the behavior of the real and imaginary parts of the complex component as a function of the 

radius. This allowed us to see that the imaginary part which follows the shape of a thin taper reverse with a spike 

obtained for 𝑟 = 2.25 behaves differently from the imaginary part which follows a stair-like shape. 

Finally, this study showed us that the geometrical material shapes does not only modify criterias as the volume 

contributions, the porosity, the directions, the thermal coating as well as the variation of the scalar products of 

the material vectors but also creates certain behaviors of the material when it is subjected to inflation as the 

solution shown us at the level of the complex component when the radius varies. 
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