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Abstract:

In this research paper, we have proposed as a work to demonstrate the equiva-
lence between the rank 1 convexity and the polyconvexity of deformation energy
functions. The study is done in the three-dimensional deformation with a case
of a cylindrical hyperelastic incompressible isotropic tube. To achieve our objec-
tive, the kinematics with an isotropic and incompressible strain energy function
was used. We have state and demonstrate three propositions which allowed us
to show that there is an equivalence between the rank 1 convexity and the poly-
convexity of the energy potential which is a function of the gradient tensor. We
also obtain from this study, a new theorem on the convexity and polyconvexity
of energy functions in three dimensions.
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1 Introduction

In the theoretical research of solutions of nonlinear mechanical systems, a par-
ticular attention has been paid to the study of elliptic, parabolic and hyperbolic
equations in recent years. In structural mechanics, this attention has been fo-
cused on the ellipticity of the equations resulting from the study of compressible
or incompressible material systems [1]. Necessary and sufficient conditions have
been studied for the strong ellipticity in the isotropic case for any dimension
[2]. For an isotropic and compressible material, the loss of ellipticity criterion
depends on the determinant of the Hessian matrix of the energy potential and
therefore of the invariants of the Cauchy Green tensor [3]. Thus, the absence of
a stability criterion may lead to comparing the ellipticity condition considered
as a local stability criterion to the local form of classical stability analysis by
the Lyapunov theorem [4].
Others criterias such as rank 1 convexity and polyconvexity are properties that
play an important role in the theory of nonlinear hyperelasticity. The notion of
polyconvexity was introduced into the context of nonlinear elasticity theory by
John Ball [5].
A study shows that the rank 1 convexity implies the polyconvexity of energy
function of in case of a planar deformation [6].
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In this paper, we first study an isotropic and incompressible three-dimensional
deformation. Then we study the conditions of rank 1 convexity and polycon-
vexity of the energy functions in this same dimension.
From those conditions, we will abtain three propositions and one theorem what
will allow us to show the equivalence between rank 1 convexity and polyconvex-
ity of energy functions of deformation in three dimensions.

2 Preliminaries
Let’s consider here a continuous material body in which a material particule
is described by X(R,Θ, Z) in the undeformed reference configuration and by
x(r, θ, z) in the deformed configuration, what yields in a cylindrical coordinates
the general following kinematic:

r = r(R,Θ, Z), θ = θ(R,Θ, Z), z = z(R,Θ, Z). (1)

To describe the local deformation, we use the deformation gradient tensor F
which is the tangent linear application. This tensor allow to have the volume
change from his determinant which is always positive, so that

F = Grad x, det(F) ≥ 0; (2)

In our study case which is a three dimensional deformation, the gradient tensor
can be written as a function of eigenvalues (λ1, λ2, λ3):

F =

 λ1 0 0
0 λ2 0
0 0 λ3

 , (3)

In incompressible deformation, there is no volume change, so that:

det(F) = λ1λ2λ3 = 1. (4)

It is important to specify that from the previous deformation gradient tensor F,
we can have the familiar symetric tensors that are: right Cauchy-Green tensor
C and left Cauchy-Green B, with

C = FTF; B = FFT. (5)

In isotropic deformation, we can calculate the three first elementary invariants
which are:

I1 = tr(C) = tr(B);

I2 = tr(C∗) = tr(B∗); (6)

I3 = det(C) = det(B).
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where C∗ and B∗ are respectively the adjoint tensors of C and B, tr is the trace
operator and det is the determinant operator.
The behavior of a material is described by a thermodynamic potential called
deformation energy function which is a function of F, so a function of eigenvalues
λ1, λ2 and λ3, or a function of elementary invariants I1, I2 and I3.

W = W (F) = W (λ1, λ2, λ3) = W (I1, I2, I3). (7)

Let’s consider here the group GL+(3), which represents the set of matrices
defined by:

GL+(3) =
{

X ∈ R3 × R3/det(X) > 0
}
, (8)

and his subset SL+(3) defined by:

SL+(3) =
{

X ∈ R3 × R3/det(X) = 1
}
. (9)

There is also the orthogonal group O(3) which represents the set of matrices
defined by:

O(3) =
{

X ∈ R3 × R3/XTX = 1
}
, (10)

where 1 is the identity tensor.
The energy function of relation (7) will be called objective if for all two elements
Q1 and Q2 of O(3), we have:

W (Q1FQ2) = W (F),∀F ∈ GL+(3). (11)

Convexity is a criterion that must be verified by deformation energy functions.
Following a definition of Ball [5], W is rank-one convex on GL+(3) if for all
F ∈ GL+(3), θ ∈ [0, 1] and all ξ, η ∈ R3 with F + t.ξ

⊗
η ∈ GL+(3) for all

t ∈ [0, 1], and as

W (F + (1− θ) ξ ⊗ η) = W (θF + (1− θ) (F + ξ ⊗ η)) ,

then:
W (F + (1− θ) ξ ⊗ η) ≤ θW (F) + (1− θ)W (F + ξ ⊗ η) . (12)

where ξ ⊗ η denotes the dyadic product.
Let’s now suppose a deformation energy function W : R3 × R3 −→ R ∪ {+∞}.
W is polyconvex if for all F ∈ R3 × R3, it exist a convex function
P : Rn −→ R∪{+∞} with 1 ≤ n ≤ 3 and M(F) a minor of the gradient tensor
F, so that:

W (F) = P (M(F)). (13)

The Frobenius norm [7] of the deformation gradient tensor is defined by:

‖ F ‖=

√√√√ 3∑
i,j=1

| Fij |. (14)
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3 Formulation of the problem
Let’s consider a continuous cylindrical hyperelastic tube where a material point
occupies the position (R,Θ, Z) before the deformation and the position (r, θ, z)
after deformation and which is represented by the following kinematic

r = R, θ = Θ, z = Z + γR. (15)

where γ represents a positive constant.
From (15), the gradient tensor of deformation gives :

F =

 1 0 0
0 1 0
γ 0 1

 , (16)

It’s follows the symmetrical right and left Cauchy-Green tensors which are

C =

 1 + γ2 0 γ
0 1 0
γ 0 1

 , (17)

and

B =

 1 0 γ
0 1 0
γ 0 γ2 + 1

 . (18)

From (17) or (18), we can then calculate the first three isotropic elementary
invariants of deformation

I1 = 3 + γ2;

I2 = 3 + γ2; (19)

I3 = 1.

Remark:
relations (19) yield us an interesting result of the volume change given by I3 = 1.
This means that for our kinematics defined in (15), the deformation will always
be incompressible.
The Frobenius norm of the deformation gradient tensor becomes:

‖ F ‖=
√

3 + γ2. (20)
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4 Equivalence between rank 1 Convexity and
Polyconvexity

in this section, we give three new propositions and a new theorem on the energy
deformation function that we will prove in three dimension.
As it has been recently shown that the rank 1 convexity implies the polycon-
vexity of energy functions for a planar incopressible deformation, we have set
ourselves to broaden this result in three dimension. The objective is to show the
equivalence between rank 1 convexity and polyconvexity in three-dimensional
incompressible and isotropic deformation.

4.1 Proposition 1
Let’s W : SL+(3) −→ R be an isotropic and twice differentiable objective
function such that there are two unique functions, pairs ϕ : [3,+∞] −→ R,
φ : [0,+∞] −→ R with

W (F) = ϕ(I) = φ(γ), I =‖ F ‖,∀F ∈ SL+(3), (21)

then the following hypotheses are equivalent:
i) W is rank 1 convex.
ii) φ is non decreasing and convex on [0,+∞].
iii) dϕ

dI ≥ 0 and 2(I − 2)d
2ϕ
dI2 + dϕ

dI ≥ 0 for all I ∈ [3,+∞].

Proof :
i) =⇒ ii)
Let’s consider our deformation gradient tensor

F =

 1 0 0
0 1 0
γ 0 1

 ,

we can see that det(F) = 1,∀γ ∈ [0,+∞]; so the rank 1 convexity of W implies
that

γ −→W

 1 0 0
0 1 0
γ 0 1

 ,

is convex, what’s gives the convexity of φ.
Let’s show that φ is not decreasing on [0,+∞].
Let’s consider 0 ≤ t1 ≤ t2, so t1 is lies in the convex hull of −t2 and t2, what’s
means that for all value of s ∈ [0, 1], we can pose:

t1 = s(−t2) + (1− s)t2;
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so,

φ(t1) = φ(s(−t2) + (1− s)t2) ≤ sφ(−t2) + (1− s)φ(t2) = φ(t2),
φ(t1) ≤ φ(t2),

then φ is not decreasing on [0,+∞].
Hence i) =⇒ ii.
ii) =⇒ iii
In our three-dimensional incompressible objective energy function case, we have

I =‖ F ‖=
√

3 + γ2,

what yields

γ =
√
I − 3.

With the existence of two functions pairs that are twice differentiable
ϕ : [3,+∞] −→ R, φ : [0,+∞] −→ R, as

W (F) = ϕ(I) = φ(γ) = φ(
√
I − 3),∀F ∈ SL+(3),

it’s easy to see that for γ =
√
I − 3 , we are getting:

dϕ
dI = dφ

dγ
1

2
√
I−3 = 1

2γ
dφ
dγ =⇒ dφ

dγ = 2γ dϕdI

and
d2ϕ
dI2 = 1

4γ2
d2φ
dγ2 − 1

4γ3
dφ
dγ =⇒ d2φ

dγ2 = 2(I − 3)d
2ϕ
dI2 + dϕ

dI .

The monotonicity of φ is equivalent to:

dϕ
dI (I) ≥ 0,∀I ∈ [3,+∞].

The convexity of φ is equivalent to:

2(I − 3)d
2ϕ
dI2 (I) + dϕ

dI (I) ≥ 0,∀I ∈ [3,+∞].

So we have ii) =⇒ iii)
iii) =⇒ i)
When we consider the inequalities

dϕ
dI (I) ≥ 0 and 2(I − 3)d

2ϕ
dI2 (I) + dϕ

dI (I) ≥ 0,∀I ∈ [3,+∞];

with the condition W (F) = ϕ(I) = φ(γ), φ(
√
I − 3),∀F ∈ SL+(3), we obtain:

dϕ
dI = dφ

dγ
1

2
√
I−3 = 1

2γ
dφ
dγ
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and
d2ϕ
dI2 = 1

4γ2
d2φ
dγ2 − 1

4γ3
dφ
dγ .

The condition iii) and the two previous relations gives us the convexity of φ.
According to W (F) = ϕ(I) = φ(γ), φ(

√
I − 3),∀F ∈ SL+(3), the convexity of

φ implies the rank 1 convexity of W .
Hence iii) =⇒ i).

4.2 Proposition 2
Let’s W : SL+(3) −→ R be an isotropic and twice differentiable objective
function such that there is a unique function, pair φ : [0,+∞] −→ R with

W (F) = φ(γ), I =‖ F ‖,∀F ∈ SL+(3), (22)

then the following hypotheses are equivalent:
i) φ is non decreasing and convex on [0,+∞].
ii) W is polyconvex.

Proof :
i) =⇒ ii)
φ is non decreasing and convex on [0,+∞], what implies according to the propo-
sition 1 that W is rank 1 convex.
With

F =

 1 0 0
0 1 0
γ 0 1

 ,

we obtain

W (F) = W

 1 0 0
0 1 0
γ 0 1

 = φ(γ),

W (F) = φ(γ).

And as γ is a minor of F by deleting the 2 first lines and the 2 last column, we
can conclude that W is polyconvex.
So i) =⇒ ii)
ii) =⇒ i)
W is polyconvex; according to the definition of polyconvexity, there will be a
convex function φ with

W (F) = W

 1 0 0
0 1 0
γ 0 1

 = φ(γ),
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hence the confirmation that φ is convex.
And when we consider the convexity of φ, we showed previously that for
0 ≤ t1 ≤ t2 and s ∈ [0, 1], as t1 = s(−t2) + (1− s)t2, we have:

φ(t1) ≤ φ(t2),

then φ is not decreasing on [0,+∞].
Hence ii) =⇒ i.

4.3 Proposition 3
Let’s W : SL+(3) −→ R be an isotropic and twice differentiable objective
function such that there are two unique functions, pairs ϕ : [3,+∞] −→ R,
φ : [0,+∞] −→ R with

W (F) = ϕ(I) = φ(γ), I =‖ F ‖,∀F ∈ SL+(3), (23)

then the following hypotheses are equivalent:
i) W is rank 1 convex.
ii) φ is non decreasing and convex on [0,+∞].
iii) W is polyconvex.

Proof :
the proof of this previous proposition is given by the proposition 1 and the
proposition 2.

4.4 Theorem
Let’s consider F, the deformaion gradient tensor of the following kinematic in
cylindrical coordinates:

r = R, θ = Θ, z = Z + γR. (24)

Let’s W : SL+(3) −→ R be an isotropic, twice differentiable, objective function
which is rank 1 convex; let’s the existence of two unique functions, pairs:
ϕ : [3,+∞] −→ R, φ : [0,+∞] −→ R, with

W (F) = ϕ(I) = φ(γ), I =‖ F ‖,∀F ∈ SL+(3), (25)

Then:
i) φ is non decreasing and convex on [0,+∞].
ii) dϕ

dI ≥ 0, 2(I − 2)d
2ϕ
dI2 + dϕ

dI ≥ 0 for all I ∈ [3,+∞].
iii) W is polyconvex.

Proof :
the proof of this theorem is also obtained from the three previous propositions.
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5 Conclusion
In this research work, we have proposed to study the equivalence between the
rank 1 convexité and the polyconvexity of deformation energy functions on
SL+(3). A kinematic of deformation was given and from it, the deformation
gradient tensor, its norm of Frobenius, its Cauchy-Green tensors and its isop-
tropic elementary invariants was calculated.
From the calculated expressions, we have obtained three propositions which al-
lowed us to show that there is an equivalence between the rank 1 convexity and
the polyconvexity of the energy potential which is a function of the gradient
tensor. finaly, this allowed us to obtain a theorem on this convexity and poly-
convexity in three dimensions.
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