The Lattice Structure of The Subgroups of Order 27 In The Subgroup Lattices of 3 X 3 Matrices Over Z ${ }_{3}$

V. Durai murugan ${ }^{1}$, R. Seethalakshmi ${ }^{2}$, Dr.P.Namasivayam ${ }^{3}$
${ }^{1}$ Assistant Professor, Department of Mathematics, St, Joseph College of Arts and Science, Vaikalipatti, Tenkasi 627 808, Tamilnadu, India.
${ }^{2}$ Register No.:17221072092022, Research Scholar, Department of Mathematics, The MDT Hindu College, Pettai, ManonmaniamSundaranar University Abishekapatti, Tirunelveli 627 012, Tamilnadu, India.
${ }^{3}$ Associate Professor of Mathematics, The MDT Hindu College, Tirunelveli - 627010
Tamilnadu, India.

ABSTRACT

Let \mathcal{G} be the set of all 3×3 non-singular matrices $\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}$ are integers modulo p . Then $\boldsymbol{\mathcal { G }}$ is a group under matrix multiplication modulo p , of order $\left(p^{n}-1\right)\left(p^{n}-p\right)\left(p^{n}-p^{2}\right) \ldots \ldots\left(p^{n}-p^{n-1}\right)$. Let G be the subgroup of $\boldsymbol{\mathcal { G }}$ defined by $G=\left\{\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right) \in \mathcal{G}:\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=1\right\}$. Then G is of order $\frac{\left(p^{n}-1\right)\left(p^{n}-p\right)\left(p^{n}-p^{2}\right) \ldots . . .\left(p^{n}-p^{n-1}\right)}{p-1}$. Let $\mathrm{L}(\mathrm{G})$ be the lattice formed by all subgroups G . In this paper, we give the structure of the subgroups of order 27 of $\mathrm{L}(\mathrm{G})$ in the case when $\mathrm{P}=3$.

Keywords: Matrix group, subgroups, Lagrange's theorem, Lattice, Atom.

1. Introduction

Let $L(G)$ be the Lattice of Subgroups of G, where G is a group of 3×3 matrices over Z_{p} having determinant value 1 under matrix multiplication modulo p , where p is a prime number.

Let $\boldsymbol{\mathcal { G }}=\left\{\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right): a, b, c, d, e, f, g, h, i \in \mathrm{Z}_{\mathrm{p}},\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right| \neq 0\right\}$
Then \mathcal{G} is a group under matrix multiplication modulo p .
$\operatorname{Let} G=\left\{\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right) \in \mathcal{G}:\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=1\right\}$
Then G is a subgroup of \mathcal{G}.
we have, $o(\mathcal{G})=\left(p^{n}-1\right)\left(p^{n}-p\right)\left(p^{n}-p^{2}\right) \ldots \ldots\left(p^{n}-p^{n-1}\right)$
and $o(G)=\frac{\left(p^{n}-1\right)\left(p^{n}-p\right)\left(p^{n}-p^{2}\right) \ldots . . .\left(p^{n}-p^{n-1}\right)}{p-1}$.

In this paper, we give the structure of the subgroups of order 27 of $L(G)$ in the case when $\mathrm{P}=3$.

2.Preliminaries

In this section we give the definition needed for the development of the paper.

Definition 2.1

A partial order on a non-empty set P is a binary relation \leq on P that is reflexive, antisymmetric and transitive. The pair (P, \leq) is called a partially ordered set or poset. A poset. (P, \leq) is totally ordered if every $\mathrm{x}, \mathrm{y} \in \mathrm{P}$ are comparable, that is either $\mathrm{x} \leq \mathrm{y}$ or $\mathrm{y} \leq \mathrm{x}$. A non-empty subset S of P is a chain in P if S is totally ordered by \leq.

Definition 2.2

Let (P, \leq) be a poset and let $\mathrm{S} \subseteq \mathrm{P}$. An upper bound of S is an element $\mathrm{x} \in \mathrm{P}$ for which $\mathrm{s} \leq \mathrm{x}$ for all $\mathrm{s} \in \mathrm{S}$. The least upper bound of S is called the supremum or join of S.A lower bound for S is an element $x \in P$ for which $x \leq s$ for all $s \in S$. The greatest lower bound of S is called the infimum or meet of S.

Definition 2.3

Poset (P, \leq) is called a lattice if every pair x, y elements of P has a supremum and an infimum, which are denoted by $\mathrm{x} \vee \mathrm{y}$ and $\mathrm{x} \wedge \mathrm{y}$ respectively.

Definition 2.4

For two elements a and b in P , a is said tocover b or b is said to be covered by a (in notation, $\mathrm{a}>\mathrm{b}$ or $\mathrm{b}<\mathrm{a}$) if and only if $\mathrm{b}<\mathrm{a}$ and, for no $\mathrm{x} \in \mathrm{P}, \mathrm{b}<\mathrm{x}<\mathrm{a}$.

Definition 2.5

An element $\mathrm{a} \in \mathrm{P}$ is called an atom, if $\mathrm{a}>0$ and it is a dual atom, if $\mathrm{a}<1$.

Theorem 2.6

If G is a finite group and H is a subgroup of G , then the order of H is a divisor of the order of G.

Theorem 2.7

If G is a finite group and $a \in G$, then the order of ' a ' is a divisor of the order of G.

Theorem 2.8

Let G be a finite group and let p be any prime number that divides the order of G . Then G contains an element of order p .

Theorem 2.9

If p is a prime number and $p^{\alpha} \mathrm{lo}(\mathrm{G}), p^{\alpha+1} \nmid \mathrm{o}(\mathrm{G})$, then G has a subgroup of order p^{α}, called a p-sylow subgroup.

Theorem 2.10

The number of p-sylow subgroups in G, for a given prime p, is of the form $1+k p$.

3. Arrangement of elements of G according to their orders :

The number of elements of order 2 is 117 . The number of elements of order 3 is 728 . The number of elements of order 4 is 702 . The number of elements of order 6 is 936 . The number of elements of order 8 is 1404 . The number of elements of order 13 is 1728 .

4. Subgroups of G of different orders :

The number of subgroups of order 2 is 117 . The number of subgroups of order 3 is 364. The number of subgroups of order 4 is 351 . The number of subgroups of order 6 is 468 .

The number of subgroups of order 8 is 468 . The number of subgroups of order 9 is 117 . The number of subgroups of order 13 is 144 . The number of subgroups of order 16 is 351 . The number of subgroups of order 27 is 52 .

5. Lattice structure of some lower interals of subgroups of order 16 in $L(G)$ over Z_{3}

Let R be an arbitrary subgroup of order 27. Then the elements of U must have orders 1,3 or 9 .

We tabulate the subgroups of order 27 in L (G)

Table 5.1: Intervals [$\{e\}, V_{i}$] in $L(G), i=1,2 \ldots . . .52$

Order	Subgroups
27	$\mathrm{~V}_{1}$
9	$\mathrm{O}_{2}, \mathrm{O}_{26}, \mathrm{O}_{36}$
3	$\mathrm{~K}_{232}, \mathrm{~K}_{234}, \mathrm{~K}_{236}$
1	$\{\mathrm{e}\}$

Order	Subgroups
27	$\mathrm{~V}_{2}$
9	$\mathrm{O}_{21}, \mathrm{O}_{107}, \mathrm{O}_{112}$
3	$\mathrm{~K}_{353}, \mathrm{~K}_{359}, \mathrm{~K}_{363}$
1	$\{\mathrm{e}\}$

Order	Subgroups
27	V_{3}
9	$\mathrm{O}_{6}, \mathrm{O}_{67}, \mathrm{O}_{68}$
3	$\mathrm{K}_{353}, \mathrm{~K}_{359}, \mathrm{~K}_{364}$
1	\{e\}
Order	Subgroups
27	V_{5}
9	$\mathrm{O}_{20}, \mathrm{O}_{45}, \mathrm{O}_{46}$
3	$\mathrm{K}_{359}, \mathrm{~K}_{363}, \mathrm{~K}_{364}$
1	\{e\}
Order	Subgroups
27	V_{7}
9	$\mathrm{O}_{26}, \mathrm{O}_{51}, \mathrm{O}_{52}$
3	$\mathrm{K}_{120}, \mathrm{~K}_{198}, \mathrm{~K}_{243}$
1	\{e\}
Order	Subgroups
27	V_{9}
9	$\mathrm{O}_{9}, \mathrm{O}_{55}, \mathrm{O}_{56}$
3	$\mathrm{K}_{247}, \mathrm{~K}_{252}, \mathrm{~K}_{254}$
1	\{e\}
Order	Subgroups
27	V_{11}
9	$\mathrm{O}_{9}, \mathrm{O}_{39}, \mathrm{O}_{40}$
3	$\mathrm{K}_{33}, \mathrm{~K}_{342}, \mathrm{~K}_{345}$
1	\{e\}

Order	Subgroups
27	V_{4}
9	$\mathrm{O}_{10}, \mathrm{O}_{103}, \mathrm{O}_{104}$
3	$\mathrm{K}_{353}, \mathrm{~K}_{363}, \mathrm{~K}_{364}$
1	\{e\}
Order	Subgroups
27	V_{6}
9	$\mathrm{O}_{24}, \mathrm{O}_{49}, \mathrm{O}_{50}$
3	$\mathrm{K}_{70}, \mathrm{~K}_{161}, \mathrm{~K}_{164}$
1	\{e\}
Order	Subgroups
27	V_{8}
9	$\mathrm{O}_{29}, \mathrm{O}_{59}, \mathrm{O}_{60}$
3	$\mathrm{K}_{176}, \mathrm{~K}_{186}, \mathrm{~K}_{286}$
1	\{e\}
Order	Subgroups
27	V_{10}
9	$\mathrm{O}_{9}, \mathrm{O}_{47}, \mathrm{O}_{48}$
3	$\mathrm{K}_{134}, \mathrm{~K}_{138}, \mathrm{~K}_{142}$
1	\{e\}
Order	Subgroups
27	V_{12}
9	$\mathrm{O}_{9}, \mathrm{O}_{13}, \mathrm{O}_{14}$
3	$\mathrm{K}_{36}, \mathrm{~K}_{37}, \mathrm{~K}_{38}$
1	\{e\}

Order	Subgroups
27	$\mathrm{~V}_{13}$
9	$\mathrm{O}_{1}, \mathrm{O}_{24}, \mathrm{O}_{25}$
3	$\mathrm{~K}_{99}, \mathrm{~K}_{102}, \mathrm{~K}_{105}$
1	$\{\mathrm{e}\}$
Order	Subgroups
27	$\mathrm{~V}_{15}$
9	$\mathrm{O}_{24}, \mathrm{O}_{38}, \mathrm{O}_{42}$
3	$\mathrm{~K}_{324}, \mathrm{~K}_{339}, \mathrm{~K}_{342}$
1	$\{\mathrm{e}\}$
Order	Subgroups
27	$\mathrm{~V}_{17}$
9	$\mathrm{O}_{26}, \mathrm{O}_{37}, \mathrm{O}_{41}$
3	$\mathrm{~K}_{324}, \mathrm{~K}_{342}, \mathrm{~K}_{345}$
1	$\{\mathrm{e}\}$
Order	Subgroups
27	$\mathrm{~V}_{19}$
9	$\mathrm{O}_{20}, \mathrm{O}_{57}, \mathrm{O}_{58}$
3	$\mathrm{~K}_{212}, \mathrm{~K}_{276}, \mathrm{~K}_{278}$
1	$\{\mathrm{e}\}$

Order	Subgroups
27	$\mathrm{~V}_{14}$
9	$\mathrm{O}_{3}, \mathrm{O}_{4}, \mathrm{O}_{20}$
3	$\mathrm{~K}_{7}, \mathrm{~K}_{11}, \mathrm{~K}_{17}$
1	$\{\mathrm{e}\}$
Order	Subgroups
27	$\mathrm{~V}_{16}$
9	$\mathrm{O}_{20}, \mathrm{O}_{43}, \mathrm{O}_{44}$
3	$\mathrm{~K}_{324}, \mathrm{~K}_{339}, \mathrm{~K}_{345}$
1	$\{\mathrm{e}\}$
Order	Subgroups
27	$\mathrm{~V}_{18}$
9	$\mathrm{O}_{24}, \mathrm{O}_{53}, \mathrm{O}_{54}$
3	$\mathrm{~K}_{260}, \mathrm{~K}_{264}, \mathrm{~K}_{271}$
1	$\{\mathrm{e}\}$
Order	Subgroups
27	$\mathrm{O}_{16}, \mathrm{O}_{93}, \mathrm{O}_{94}$
9	$\mathrm{~K}_{176}, \mathrm{~K}_{186}, \mathrm{~K}_{348}$
1	$\{\mathrm{e}\}$
2	
1	

Order	Subgroups
27	V_{21}
9	$\mathrm{O}_{34}, \mathrm{O}_{108}, \mathrm{O}_{111}$
3	$\mathrm{K}_{260}, \mathrm{~K}_{271}, \mathrm{~K}_{338}$
1	\{e\}
Order	Subgroups
27	V_{23}
9	$\mathrm{O}_{28}, \mathrm{O}_{79}, \mathrm{O}_{80}$
3	$\mathrm{K}_{247}, \mathrm{~K}_{252}, \mathrm{~K}_{326}$
1	\{e\}
Order	Subgroups
27	V_{25}
9	$\mathrm{O}_{19}, \mathrm{O}_{113}, \mathrm{O}_{115}$
3	$\mathrm{K}_{212}, \mathrm{~K}_{276}, \mathrm{~K}_{336}$
1	\{e\}
Order	Subgroups
27	V_{27}
9	$\mathrm{O}_{31}, \mathrm{O}_{105}, \mathrm{O}_{106}$
3	$\mathrm{K}_{260}, \mathrm{~K}_{264}, \mathrm{~K}_{338}$
1	\{e\}
Order	Subgroups
27	V_{29}
9	$\mathrm{O}_{28}, \mathrm{O}_{114}, \mathrm{O}_{116}$
3	$\mathrm{K}_{120}, \mathrm{~K}_{198}, \mathrm{~K}_{351}$
1	\{e\}

Order	Subgroups
27	V_{22}
9	$\mathrm{O}_{10}, \mathrm{O}_{101}, \mathrm{O}_{102}$
3	$\mathrm{K}_{264}, \mathrm{~K}_{271}, \mathrm{~K}_{338}$
1	\{e\}
Order	Subgroups
27	V_{24}
9	$\mathrm{O}_{21}, \mathrm{O}_{77}, \mathrm{O}_{78}$
3	$\mathrm{K}_{247}, \mathrm{~K}_{254}, \mathrm{~K}_{326}$
1	\{e\}
Order	Subgroups
27	V_{26}
9	$\mathrm{O}_{16}, \mathrm{O}_{99}, \mathrm{O}_{100}$
3	$\mathrm{K}_{212}, \mathrm{~K}_{278}, \mathrm{~K}_{336}$
1	\{e\}
Order	Subgroups
27	V_{28}
9	$\mathrm{O}_{31}, \mathrm{O}_{63}, \mathrm{O}_{64}$
3	$\mathrm{K}_{252}, \mathrm{~K}_{254}, \mathrm{~K}_{326}$
1	\{e\}
Order	Subgroups
27	V_{30}
9	$\mathrm{O}_{30}, \mathrm{O}_{31}, \mathrm{O}_{32}$
3	$\mathrm{K}_{232}, \mathrm{~K}_{234}, \mathrm{~K}_{327}$
1	\{e\}

Order	Subgroups
27	V_{31}
9	$\mathrm{O}_{6}, \mathrm{O}_{7}, \mathrm{O}_{8}$
3	$\mathrm{K}_{232}, \mathrm{~K}_{236}, \mathrm{~K}_{327}$
1	\{e\}
Order	Subgroups
27	V_{33}
9	$\mathrm{O}_{31}, \mathrm{O}_{75}, \mathrm{O}_{76}$
3	$\mathrm{K}_{276}, \mathrm{~K}_{278}, \mathrm{~K}_{336}$
1	\{e\}
Order	Subgroups
27	V_{35}
9	$\mathrm{O}_{34}, \mathrm{O}_{85}, \mathrm{O}_{86}$
3	$\mathrm{K}_{186}, \mathrm{~K}_{286}, \mathrm{~K}_{348}$
1	\{e\}
Order	Subgroups
27	V_{37}
9	$\mathrm{O}_{34}, \mathrm{O}_{81}, \mathrm{O}_{82}$
3	$\mathrm{K}_{134}, \mathrm{~K}_{138}, \mathrm{~K}_{325}$
1	\{e\}
Order	Subgroups
27	V_{39}
9	$\mathrm{O}_{6}, \mathrm{O}_{65}, \mathrm{O}_{66}$
3	$\mathrm{K}_{138}, \mathrm{~K}_{142}, \mathrm{~K}_{325}$
1	\{e\}

Order	Subgroups
27	V_{32}
9	$\mathrm{O}_{10}, \mathrm{O}_{89}, \mathrm{O}_{90}$
3	$\mathrm{K}_{120}, \mathrm{~K}_{243}, \mathrm{~K}_{351}$
1	\{e\}
Order	Subgroups
27	V_{34}
9	$\mathrm{O}_{21}, \mathrm{O}_{91}, \mathrm{O}_{92}$
3	$\mathrm{K}_{176}, \mathrm{~K}_{286}, \mathrm{~K}_{348}$
1	\{e\}
Order	Subgroups
27	V_{36}
9	$\mathrm{O}_{6}, \mathrm{O}_{69}, \mathrm{O}_{70}$
3	$\mathrm{K}_{70}, \mathrm{~K}_{161}, \mathrm{~K}_{352}$
1	\{e\}
Order	Subgroups
27	V_{38}
9	$\mathrm{O}_{19}, \mathrm{O}_{83}, \mathrm{O}_{84}$
3	$\mathrm{K}_{134}, \mathrm{~K}_{142}, \mathrm{~K}_{325}$
1	\{e\}
Order	Subgroups
27	V_{40}
9	$\mathrm{O}_{28}, \mathrm{O}_{109}, \mathrm{O}_{110}$
3	$\mathrm{K}_{70}, \mathrm{~K}_{164}, \mathrm{~K}_{352}$
1	\{e\}

Order	Subgroups
27	V_{41}
9	$\mathrm{O}_{19}, \mathrm{O}_{87}, \mathrm{O}_{88}$
3	$\mathrm{K}_{198}, \mathrm{~K}_{243}, \mathrm{~K}_{351}$
1	\{e\}
Order	Subgroups
27	V_{43}
9	$\mathrm{O}_{05}, \mathrm{O}_{18}, \mathrm{O}_{19}$
3	$\mathrm{K}_{102}, \mathrm{~K}_{105}, \mathrm{~K}_{320}$
1	\{e\}
Order	Subgroups
27	V_{45}
9	$\mathrm{O}_{10}, \mathrm{O}_{11}, \mathrm{O}_{12}$
3	$\mathrm{K}_{36}, \mathrm{~K}_{37}, \mathrm{~K}_{323}$
1	\{e\}
Order	Subgroups
27	V_{47}
9	$\mathrm{O}_{27}, \mathrm{O}_{28}, \mathrm{O}_{29}$
3	$\mathrm{K}_{7}, \mathrm{~K}_{11}, \mathrm{~K}_{317}$
1	\{e\}
Order	Subgroups
27	V_{49}
9	$\mathrm{O}_{71}, \mathrm{O}_{72}, \mathrm{O}_{117}$
3	$\mathrm{K}_{7}, \mathrm{~K}_{17}, \mathrm{~K}_{317}$
1	\{e\}

Order	Subgroups
27	V_{42}
9	$\mathrm{O}_{21}, \mathrm{O}_{22}, \mathrm{O}_{23}$
3	$\mathrm{K}_{99}, \mathrm{~K}_{102}, \mathrm{~K}_{320}$
1	\{e\}
Order	Subgroups
27	V_{44}
9	$\mathrm{O}_{16}, \mathrm{O}_{97}, \mathrm{O}_{98}$
3	$\mathrm{K}_{161}, \mathrm{~K}_{164}, \mathrm{~K}_{352}$
1	\{e\}
Order	Subgroups
27	V_{46}
9	$\mathrm{O}_{15}, \mathrm{O}_{16}, \mathrm{O}_{17}$
3	$\mathrm{K}_{36}, \mathrm{~K}_{38}, \mathrm{~K}_{323}$
1	\{e\}
Order	Subgroups
27	V_{48}
9	$\mathrm{O}_{33}, \mathrm{O}_{34}, \mathrm{O}_{35}$
3	$\mathrm{K}_{11}, \mathrm{~K}_{17}, \mathrm{~K}_{317}$
1	\{e\}
Order	Subgroups
27	V_{50}
9	$\mathrm{O}_{61}, \mathrm{O}_{62}, \mathrm{O}_{117}$
3	$\mathrm{K}_{37}, \mathrm{~K}_{38}, \mathrm{~K}_{323}$
1	\{e\}

Order	Subgroups
27	$\mathrm{~V}_{51}$
9	$\mathrm{O}_{73}, \mathrm{O}_{74}, \mathrm{O}_{117}$
3	$\mathrm{~K}_{99}, \mathrm{~K}_{105}, \mathrm{~K}_{320}$
1	$\{\mathrm{e}\}$

Order	Subgroups
27	$\mathrm{~V}_{52}$
9	$\mathrm{O}_{95}, \mathrm{O}_{96}, \mathrm{O}_{117}$
3	$\mathrm{~K}_{234}, \mathrm{~K}_{236}, \mathrm{~K}_{327}$
1	$\{\mathrm{e}\}$

We display one typical interval $\left[\{\mathrm{e}\}, \mathrm{V}_{1}\right]$ of $\mathrm{L}(\mathrm{G})$ in the following diagram.

Fig. 5.1: The Interval[\{e\}, $\left.\mathbf{V}_{1}\right]$

CONCLUSION

In this paper, we produced the lattice structure of subgroups of order 27 in the subgroup lattices of 3×3 matrices over Z_{3}.

REFERENCES

[1] Bourbaki N. Elements of Mathematics, Algebra I, Chapter 1-3 Springer Verlag Berlin Heidelberg, New York, London Paris Tokio. 1974.
[2] Fraleigh. J.B, A first course in Abstract Algebra, Addison - Wesley,London, 1992.
[3] Gardiner. C.F, A first course in group theory, Springer-Verlag, Berlin, 1997.
[4] Gratzer. G, General Lattice theory :BirkhauserVeslag, Basel,1998.
[5] Herstien I.N, Topics in Algebra, John Wiley and sons, New York, 1975.
[6] JebarajThiraviam .D, A Study on some special types of lattices, Ph.D thesis, ManonmaniamSundaranar University,2015.
[7] Vethamanickam. A., and JebarajThiraviam., On Lattices of Subgroups, Int.Journal of Mathematical Archiv-6(9), 2015,111.
[8] Vethamanickam. A., and DuraiMurugan. V., On The Lattice of Subgroups of 3×3 Matrices over Z_{2} Int.Journal of Scientific Research and Reviews-8(2), 2019, 4107-4128.
[9] Bashir Humera and Zahid Raza, On subgroups lattice of Quasidihedral group, International journal of Algebra, Vol. 6., 2012, no.25, 1221-1225.
[10] Chajda, I., Radeleczki, S., O-conditions and Tolerance schemes, Acta Math. Univ. Comenianae, LXX11,2, 177-184 (2003).
[11] R. Dedekind. Über die Anzahlder Ideal -classen in den verschiedenenOrdnungeneinesendlichenkörpers. Festschrift zurSaecularfeier des Geburtstages von C.F. Gauss, Vieweg, Braunschweig, 1877, 1-55; see Ges. Werke, Band I, Vieweg, Braunschweig, 1930, 105-157.
[12] Karen M. Gragg and P.S. Kung Consistent Dually semimodular lattices, J. Combinatorial Theory, Ser. A 60 (1992) 246263.
[13] Michio Suzuki, On the lattice of subgroups of finite groups, Tokyo university, Tokyo, Japan, page 345-371.
[14] O. Ore. Structures and group theory, I- II. Duke Math. J. 3 (1937), 149-174; 4(1938), 247-269.
[15] P. Pudlak and J. Tuma. Every finite lattice can be embedded in a finite partition lattice. Algebra Universalis 10 (1980), 7495.
[16] Rosenfeld. A., Fuzzy groups, J. Math Anal. and App. 35(1971),512-517.
[17] A. Rottlaender. Nachweis der Existenznicht-isomorpher Gruppen von gleicherSituation der Untergruppen. Math. Z. 28 (1928), 641-653.
[18] R. Sulaiman, Subgroup lattice of the symmetric group S_{4}, International Journal of Algebra, Vol.6, 2012, no.1, 29-35.
[19] Vethamanickam. A, Topics in universal Algebra, Ph.D thesis, Madurai Kamaraj University, 1994.
[20] Vijay K. Khanna, S.K. Bhambri, A. Course in Abstract Algibra, Fifth Edition, vikas Publishing House Pvt.Ltd., New Delhi-110 005.

