Rough Hyperideals in Meet hyperlattice

¹S.Ramalakshmi, ²B.Nanthini ³M.Iswarya, ⁴A.Remis,

^{[1][2][3][4]}Student, Department of Mathematics, Thassim Beevi Abdul Kader College for Women, Kilakarai.

Abstract:

In this paper, we consider a rough hyperideals in meet hyperlattice. Moreover, we investigate some theorems and properties for rough hyperideals in meet hyperlattice.

Keywords:

Rough hyperideals, Hyper congruences, Hyperlattices

Introduction:

In this section, we introduce the notion of rough hyperideals in meet hyperlattices and discuss some properties of them.

Given a hyperlattice *L*, by $P^*(L)$ we will denote the set of all nonempty subsets of *L*. If θ is an equivalence relation on

L, then, for every $a \in L$, [*a*] stands for the equivalence class of *a* with the represent θ . For any nonempty subset *A* of *L*, we denote $[A] = \{[a]_{\theta} | a \in A\}$. For any $A, B \in P^*(L)$, we denote $A\overline{\theta}B$ if the following conditions hold:

(1) for all $a \in A$, $\exists b \in B$ such that $\bar{a}\theta b$;

(2) for all $d \in B$, $\exists c \in A$ such that $c\theta d$.

Now, we can introduce the notion of hyper congruences on hyperlattices in the following manner.

Definition 1. Let (L, \vee, \wedge) be a hyperlattice. An equivalence relation θ on *L* is called a hyper congruence on *L* if for all a, a', b, b' \in L the following implication holds: $a\theta a'$, and $b\theta b'$ imply $(a \vee b) \overline{\overline{\theta}}(a \vee b)$ and $(a \wedge b) \overline{\overline{\theta}}(a \wedge b)$.

Obviously, an equivalence relation θ on (L, \vee, \wedge) is a hyper congruence if and only if for all $a, b, x \in L$, we have that $a\theta b$ implies $(a \vee x) \overline{\theta} (b \vee x)$ and $(a \wedge x)\overline{\theta} (b \wedge x)$.

Lemma 2. Let (L, \vee, \wedge) be a hyperlattice, and let θ be a hyper congruence on *L*. For all $a, b, \in L$, then $[a]_{\theta} \vee [b]_{\theta} \subseteq [a \vee b]_{\theta}$.

Proof. Suppose that $x \in [a]_{\theta} \vee [b]_{\theta}$, then there exist $x_1 \in [a]_{\theta}$ and $x_2 \in [b]_{\theta}$ such That $x \in x_1 \vee x_2 \in$. Since $a\theta x_1$, $b\theta x_2$, by Definition 1, we have $(a \vee b) \theta (x_1 \vee x_2)$. $x \in x_1 \vee x_2$ implies that there exists $y \in a \vee b$ such that $x\theta y$. Therefore, we have $x \in [a \vee b]_{\theta}$, which implies $[a]_{\theta} \vee [b]_{\theta} \subseteq [a \vee b]_{\theta}$. Similarly, we can prove that $[a]_{\theta} \wedge [b]_{\theta} \subseteq [a \wedge b]_{\theta}$.

A hyper congruence relation θ on (L, \vee, \wedge) is called \vee -complete if

 $[a]_{\theta} \lor [b]_{\theta} = [a \lor b]_{\theta}$ for all $a, b \in L$. Similarly, θ is called \land -complete if

 $[a]_{\theta} V [b]_{\theta} \subseteq [aVb]_{\theta}$ for all $a, b \in L$. We call θ complete if it is both V-complete

and Λ -Complete. Now, we briefly recall the rough set theory in Pawlak's sense.

Let θ be an equivalence relation on *L*, and let *A* be a nonempty subset of *L*.

Then, the sets $(A) = \{x \in L \mid [x]_{\theta} \cap A \neq \emptyset\}$ and $\underline{\theta}(A) = \{x \in L \mid [x]_{\theta} \subseteq A\}$ are

called, respectively, the upper and lower approximations of A with respect to θ . (A) = ($\underline{\theta}$ (A), $\overline{\theta}$ (A)) is called a rough set with respect to θ .

Proposition 3. Let θ be a hyper congruence on a hyperlattice (L, \vee, \wedge) . If A, B are two nonempty subsets of L, then

(i) $\overline{\theta}(A) \lor \overline{\theta}(B) \subseteq \overline{\theta}(A \lor B)$. In particular, if θ is a $\lor -$ complete, then $\overline{\theta}(A) \lor \overline{\theta}(B) = \overline{\theta}(A \lor B)$.

 $\overline{\theta}(A) \wedge \overline{\theta}(B) \subseteq \overline{\theta}(A \wedge B)$. In particular, if θ is a \wedge -complete, then $\overline{\theta}(A) \wedge \overline{\theta}(B) = \overline{\theta}(A \wedge B)$. **(ii)**

Proof:

Suppose that $x \in \overline{\overline{\theta}}(A) \lor \overline{\theta}(B)$. There exist $x_1 \in \overline{\theta}(A)$ and $x_2 \in \overline{\theta}(B)$ such that

 $x \in x_1 \lor x_2$.

It follows that there exists a, $b \in L$ such that $a \in [x_1]_{\theta} \cap A$ and

 $b \in [x_2]_{\theta} \cap B$. Since θ is a hyper congruence on *l*, we have $a \lor b \subseteq [x_1]_{\theta} \lor [x_2]_{\theta} \subseteq [x_1 \lor x_2]_{\theta}$ by lemma 2.

On the other hand, since $a \lor b \subseteq A \lor B$, we obtain $a \lor b \subseteq [x_1 \lor x_2]_{\theta} \cap$

(A \vee B), which implies $x \in x_1 \vee x_2 \subseteq \overline{\overline{\theta}}(A \vee B)$. Therefore $\overline{\theta}(A) \vee \overline{\theta}(B) \subseteq \overline{\theta}(A \vee B)$.

If θ is \vee -complete, let $x \in \overline{\overline{\theta}}(A \vee B)$, then $[x]_{\theta} \cap (A \vee B) \neq \emptyset$. Therefore, there exists $y \in [x]_{\theta} \cap (A \vee B)$, and so for some $a \in A$ and $b \in B$, we have $y \in a \vee b$. Since θ is a \vee -complete, we can obtain $x \in [y]_{\theta} \subseteq [a \vee b]_{\theta} = [a]_{\theta} \vee b$. [b]_θ.

Thus, there exists $x_1 \in [a]_{\theta}$ and $x_2 \in [b]_{\theta}$ such that $x \in \underline{x}_1 \lor x_2$. It follows that $a \in [x_1]_{\theta} \cap A$ and $b \in \underline{x}_2]_{\theta} \cap B$. Hence, $x_1 \in \overline{\theta}(A)$ and $x_2 \in \overline{\overline{\theta}}(B)$, and we have $x \in x_1 \lor x_2 \subseteq \overline{\theta}(B)$. $\overline{\theta}(A) \lor \overline{\theta}(B)$. Therefore, $\overline{\theta}(A) \lor \overline{\theta}(B) = \overline{\theta}(A \lor B)$. (2) is similar to that of (1).

Proposition 4: Let θ be a hyper congruence on a hyperlattice (L, \vee, Λ) and A, B are two nonempty subsets of L, then

- If A and B are two V-hyperideals of L, then $\overline{\theta}(A) \vee \overline{\theta}(B) = \overline{\theta}(A \vee B)$. (i)
- If A and B are two \wedge -hyperideals of L, then $\overline{\theta}(A) \wedge \overline{\theta}(B) = \overline{\theta}(A \wedge B)$. (ii)
 - (1) Let $x \in \overline{\theta}(A \lor B)$, then there exist $a \in A$ and $b \in B$ such that $[x]_{\theta} \cap (a \lor b) \neq \emptyset$, which implies that there exists $t \in a \lor b$ such that $x \theta t$. Since A is a V-hyperideal of L, we have $a \lor b \subseteq A$. It follows that $t \in A$. A. Hence, we obtain that $[x]_{\theta} \cap A = [t]_{\theta} \cap A \neq \emptyset$, which implies $x \in \overline{\theta}(A)$. In a similar way, we have $x \in \overline{\theta}(B)$. Thus, $x \in x \lor x \subseteq \overline{\theta}(A) \lor \overline{\theta}(B)$.

Combining proposition 3, we have $\overline{\theta}(A) \vee \overline{\theta}(B) = \overline{\theta}(A \vee B)$.

(2) The proof is similar to that of (1).

Proposition 5: Let θ be a hypercongurence relation on a hyperlattice (L, V, A). If A and B are V -hyperideals (A hyperideals) of L, then $\overline{\theta}(A \cap B) = \overline{\theta}(A) \cap \overline{\theta}(B)$.

Proof: Let $x \in \overline{\theta}(A) \cap \overline{\theta}(B)$, we have $[x]_{\theta} \cap A \neq \emptyset$ and $[x]_{\theta} \cap B \neq \emptyset$. Then, there exist $x_1 \in A$ and $x_2 \in B$ such that $x_1 \theta x$ and $x_2 \theta x$. It follows from θ which is a hyper congruence relation that $x_1 \lor x_2 \overline{\theta} x \lor x$, which implies that there exists $t \in x_1 \lor x_2$ such that t θx . Since A and B are V-hyperideals of L, we have $x_1 \lor x_2 \subseteq A \cap B$. So, $t \in A \cap B$. It follows that $[x]_{\theta} \cap (A \cap B) = A \cap B$. $[t]_{\theta} \cap (A \cap B) \neq \emptyset$, which implies $x \in \overline{\theta}(A \cap B)$. Hence, $\overline{\theta}(A) \cap \overline{\theta}(B) \subseteq \overline{\theta}(A \cap B)$. On the other hand, it is clear that $\overline{\theta}(A \cap B)$. $\subseteq \overline{\theta}(A) \cap \overline{\theta}(B)$. Therefore, $\overline{\theta}(A \cap B) = \overline{\theta}(A) \cap \overline{\theta}(B)$. In a similar way, if A and B are \wedge -hyperideals of L, we can also obtain $\overline{\theta}(A \cap B) = \overline{\theta}(A) \cap \overline{\theta}(B).$

Next, we will introduce and investigate a new algebraic structure called rough hyperideals in meet hyper lattices. Let us begin with introducing the following definitions.

Definition 6: Let θ be a hypercongruence on a hyperlattice (L, V, Λ), and let A be a non empty subset of L. A is called a lower (an upper)rough sub hyperlattice of L if $\theta(A)(\overline{\theta}(A))$ is a sub hyperlattice of L. A is called a rough sub hyperlattice of L if A is both a lower rough sub hyperlattice and an upper rough sub hyperlattice of L.

Similarly, A is called a lower (an upper) rough V -hyperideal of L if $(\underline{A})(\overline{\theta}(A))$ is a V-hyperideal of L.

And we call A as rough V-hyperideal of L if A is both a lower rough V-hyperideal and an upper rough V-hyperideal of L. In a similar way, a rough \wedge -hyperideal of L can be defined.

Example 7: Let $L = \{a, b, c, d\}$ be the hyperlattice. Let θ be a hyper congruence relation on the hyperlattice L with the following equivalent classes: $[a]_{\theta} = \{a, b\}, [c]_{\theta} = \{c, d\}$. Considering $A = \{a, b, c\}$, we can obtain that $\underline{(A) = \{a, b\}}, \overline{\theta}(A) = L$.

Notice that $\{a, b\}$ and L are V-hyperideals, so A is a rough V-hyperideal of L. If $A = \{b, c, d\}$, we have that $(A) = \{c, d\}$ and $\overline{\theta}(A) = L$. we obtain that $\{c, d\}$ and L are A-hyperideals, so A is a rough A-hyperideal of L.

Example 8: In example 7, $A = \{a, b, c\}$ is a rough \land -hyperideal of (L, \lor, \land) , but A is not a \lor -hyperideal of L.

Conclusion:

Hence, we have successfully introduced the Rough hyperideals in meet hyperlattice. And we investigated some of their properties.

Reference:

- [1] https://www.researchgate.net/publication/340109245_Fuzzy_Soft_Hyperideals_In_meet_Hyperlattices
- [2] https://www.researchgate.net/search?context=publicSearchHeader&q=