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Stability and Hopf Branch of Partial Profit
Model with Three Time Delays

SU Xiao-ya “*, ZHAI Yan-hui™
25chool of mathematical science, TianGong University, Tianjin 300387, China

Abstract — This paper mainly investigated a partial profit model with three discrete time delays. With two
combinations of three time delays -, , z, ., r as bifurcation parameters, we investigated the local

stability of equilibrium point of the system and the sufficient condition for the existence of Hopf branch in
two cases. Furthermore, we obtained the direction of the Hopf bifurcation and the stability of the
bifurcating periodic solutions by using the center manifold theorem and normal form theory.At last, some

numerical simulation results are confirmed that the feasibility of the theoretical analysis.

Keywords—partial profit model, stability,time delays ,center manifold theorem,Hopf bifurcation

I. INTRODUCTION

Population dynamics is a very important branch of biomathematics. It has been widely used in ecology,
especially in the fields of animal and plant protection and ecological environment management and
development. Cooperative systems are very important to describe population interaction in the study of
population dynamics. In recent years, there have been a large number of excellent research achievements on
population cooperation system at home and abroad[1-9].Given the cooperation of the two species, there is a
special relationship:interspecific interactions benefits only one, and the other cannot survive independently.
Such a two-species cooperative system (partial profit system) is also an important aspect of cooperative system.
Jiang Q Y et al.[10] took into account that plants can survive independently, and the pollination of insects can
increase the growth rate of plants. Noting that insects feeding on pollen cannot live alone without plants, they
established the following model:

[ x(t) o,y (1)
X(t) = ylx(t)[l_ -+ 1—]1
Nl 2
x(1)  y(1) )
o

gy =y ymr-1s T 22

l NN,
where x(t) and y(t) denote the population density of the first and the second population at time

t ,respectively. ,,i = 1,2 is the intrinsic growth rate of the i-th population; N,,i = 1,2 represents the
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environmental capacity of the i-th population;and o, i = 1,2 describes the cooperation efficiency of the two
populations.

It is well known that the interactions between species in nature are delayed, and the delay effect complicates
the dynamical behavior of the system.. Jiang Y S et al. considered the partial profit cooperative system with the
following time-delay effects:

x(t) o,y(t-r1,)
+

X0 = 7x(O0-

1
1 N 2 (2)

F o X(t-7,)  y(t)

YO =70l -

where r, and z, represent growth time delay of the two populations respectively.

Since biological populations all have gestation period, this paper, based on models (2),this paper introduces
time delay = as the growth incubation time of the two populations ( the gestation period), and obtains a partial
profit model with three time delays. The specific model is as follows:

x(t-1) . o y(t-r7,)
N

X)) Yoo,
1

1 2

[X(t)=7lx(t)[1— I

@)

|y c
Ly(t)zyzy(t)[—1+

wherex(t) y(t) y,,i=12 N,i=12 o,i=12 7 andr, havethe same meaning as model (1),the

time delay = represents the incubation time of the two populations.

First, let the equilibrium point of model (3) be E (x,, y,) » so it satisfies the following equation:

1- 2+ =0 -1+ 22 =0
Nl NZ Nl 2
That is
N,1-0,) N,(c,-1)
o~ . Vo= -
l-o0,0, l-0,0,

Theorem 1. For system (3), if(H,) o, <1,0, >1,0,0, <150, the system has a unique positive
N. (1- N -1
equilibrium point E ( A-0,) R (o, ))

l-o0,0, l-o0,0,

1. STABILITY AND LOCAL HOPF BIFURCATION ANALYSIS

In this section, we focus on the problems of the Hopf bifurcation and stability for the system(3).

Letx (t) = x(t) — x,,y(t) = y(t) - y, ,then the linearized approximation equation corresponding to model (3)
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at the equilibrium point E (x,,y,) is:

dx(t 1- _ N 1- _
(o) _nl-o)g, oy, Nnesl-od g
dt l-o0,0 N,1-0.0,)
dy (t) ( 1 21) N 2 (1 2 1) @
o, — — O o, — —
| ZA% T gy mefeTete ) gy
[ dt l-o0,0, N,l-0,0,)
The correspoding characteristic equation of system (3) is as follows.
2'2 + P/.Le—lr + Qe -2t _ Re—l(rl+rz) _ O (5)

Where

}/1(1_0-1) 72(0-2_1)
= +

>0,
l-0,0, l-0,0,

Q _ }/1}/2(1—0'1)(0'2—1) >0'

2
(1—0'10'2)

cgo,1l-0)(l-0
_717,9.0,( ( 2)<o

2
(l-0,0,)

In order to study the stability and branching of the equilibrium point e of the system, we only need to
discuss the distribution of the roots of the characteristic equation (5).1f all the roots of equation (5) have
negative real parts, the equilibrium point  is asymptotically stable. If one root of the equation contains
positive real parts, the equilibrium pointE is unstable. Since the dynamic properties of differential
equations with multiple delays are very complex, we discuss system (3) with two combinations of three

time .
Casel:r, #r,andz =7, +7, >0
Lemma 1. For system (3),whenz = 0 ,the equilibrium E is stable.

Proof. Whenz = 0 ,the characteristic equation of system (5) becomes
2°+PA+Q-R=0. (6)

It is known that the following formula is true wheno, <1,0, >1,0,0, <1 is satisfied,

}/1(1_01) }/2(02_1)
= +

P >0

l-o0,0, l-0,0,

_ }/1}/2(1—0'1)(0'2 _1) _ 7/17/20-10-2(1_0-1)(1_0-2) >0

2 2
l-o0,0,) l-o0,0,)

Q-R

’
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the two roots of equation (6) always have negative real parts. So when ¢ = 0, the equilibrium point of
system (3) is asymptotically stable.

Next, we discuss the distribution of the characteristic roots of equation (5) when z = 0 .

Lemma 2.1f(H ,) Q" - Q°R® < 0 is satisfied, the equation(7) has two pairs of purely imaginary roots

_ . 1 R
tio,whenr =7’ =7 wherer = —[arccos( ——)+2jzr] k =1,2,3,4;j=012, ;
’ a)k Q —C()k

=) = min{ Tkj 'k =1,234}j=012,---); @

Ko =o

0 ko "

Proof. Whenz = 0 ,the characteristic equation of system (3) becomes

-2t

A2+ (PA-R)e "+ Qe =0. 7)

First, we assume that 4 = i@ (@ > 0)is a root of the characteristic equation (7), then it satisfies the following

equation

—ior

0’ +ioe P +Q T —Re ' =0, ®)

That is —w’(cos wr +isin wr )+iwP + Q(cos wr —isin wr )— R = 0. 9

The separation of the real and imaginary parts, it follows

(a)Z—Q)cos wr = -R,
(10)
(a)2+Q)Sin ot = Pow.
From (10) we obtain
R (0" +Q) +P 0’ (0’ -Q) = (0" +Q) (0" -Q)". (12)
Simplify,we get o' +me’+me +me’+m, =0 (12)
where m,=-P*m,=2P°Q-R*°-2Q%m, =-2QR“-P’Q*;m,=Q " -Q°R".
Let u = w’ then (12) becomes
fuy=u'+mu’+mu’+mu+m, =0. (13)

Since lim f(u)=m, lim f(u) =+ ,aslongas m, =Q " - Q“R’ < 0, thatis, condition (H,) is true.
u—>0

u—0
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Then equation (13) has at least one positive real root.

The following assumes that the condition (H ,) is always satisfied, without loss of generality, suppose that
fourth-order equation (13) has 4 positive roots, denoted as u, (k =1,2,3,4) respectively, then equation (12)

has 4 positive roots @, = ,/u, (k =1,2,3,4) .

From(10), we can get

(14)

So

1 R
r)=—Jarccos( ————)+2jx], k=12,34;j=01,2,- 15
k 2

a)k Q _a)k

Sowhenr =z, equation (7) has a pair of pure virtual roots + i, .

Let = rkjn =min{ 7k =1,2,34}j=012,) o, -

Then, the minimum value of z in equation (7) with a pure virtual rootis z° . This completes the proof.

Lemma 3. LetA(r')=a(r')+io (') be a root of the characteristic equation (7),which satisfies
) ) dA
a(r’)=0andw(r’) = ®, then we have the following transversality conditionRe(—)| , > 0'is
dr '"'°
satisfied.

Proof. By differentiating both sides of equation (7) with regard tor and applying the implicit function theorem,

we have :

da Qie ™ - 21%”

dr (22 + A%0)e” +P-Qre ™
Therefore,

(d/l . 22e" + P z

dz Qie ™ —a%™ 1
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So

dai
Re( —) 7|
dr

r=r!

: i 2 : i i i
_ (P-2w,sin o,c ' )(-Pw, +2Qw,sin ot )+ 2w,c0s ot (-Rw, +2Qw,cos w,r")

(—Pa)o2 +2Qw, sin a)orj)2 +(-Rw, +2Qwm, cos a)orj)2
P'os(Q-0l) +2R'0.(B3Q + 0. )w, +Q)°

B (i +Q)* (0! -Q)°[(-Pw. +2Qw,sin w,r')’ + (~Rw, +2Qw, cos o,r')’]

> 0,

Since sign [Re(d—l)}

o dA ] .
= sign LR e(—) J ,the proof is completed.
T

Theorem 2. For system (3), suppose that(H,) and (H,)are true. Whenz, = r,andz = 7, + z, > 0 ,the
following conclusions are true:

(@If r <[0,2°% , the equilibrium point E is asymptotically uniformly stable.;
(b)If = > z° model (3) is unstable at the equilibrium point E .
(©If z=7'(j=0,1,2,),model (3) generates Hopf branch at the equilibrium point E .

Case2:7. =7, =7>0

1 2

Suppose that (H , ) is true, then the characteristic equation of system (3) becomes

At -2t

AP+ 24Ae 7 + Be - 0. (16)

Where

1lya-o o, -1 1
1hy( LG ) .0,
2{1—0’10'2 1—0'10'2 J

_ 7172(1_0-1)(02 _1) _ 71720162(1_01)(1_62) >0

(1—(710'2)2 (1—6162)2

Lemma 4. Whenz = 0 ,both of the characteristic roots of equation (16) have negative real parts.

Proof. When z = 0 ,the characteristic equation (16) becomes

A2+ 2AA+ B = 0. (17)
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Therefore, the two characteristic roots of equation (17) are

A, =-A-VvA"-B <A, =-A+VA"-B <0. (18)

Obviously, the two roots of equation (17) always have negative real parts. So when z = 0, the equilibrium
point is asymptotically stable. The proof is completed.

Next, we discuss the distribution of the characteristic roots of equation (16) when 7 = 0 .

Lemma 5. For the system (3), assume that (H ,) is satisfied.

(i) WhenA® - B >0, then equation(16) has two pairs of purely imaginary roots +i2, when

7 =70, (k=12;j=012,),where

T(i)z—i(Zjﬂ+£\,(k:1,2;j:0,1,2,...) (19)
AL 2 )

k

(ii) When A* - B < 0, then equation(16) has two pairs of purely imaginary roots + i\/E when
r =7} (k=34;j=0212,),where

L}—arccos( 1—A—2W+2j72'—l,(j=o,l,2,“'), (20)
e (Ve )

T (L
r:r(“):ﬁt—arccosL 1—?J+(21+1)7zJ|,(1=O,1,2,~~). (21)

Proof. From equation (18), equation (16) can be transformed into

r=r
R D)

>

-t

(A-20")a -2, )=0. (22)
First, we assume that A = iw (@ > 0 )is a root of the equation (16), then it satisfies the following equation

(io-2e " )io-2,e"")=0. (23)

So io—-4e' =0oriw-21,e'" =0 (24)

(i) WhenA® - B >0, theni, < 4, < 0 ,equation(24) becomes
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io — A,(cos wr —isin or ) =0 (25)

or iw—A,(os or —isin wr )=0 (26)
The separation of the real and imaginary parts, it follows

(4, cos wr =0, (4, cos wr =0,
or} @7)
|@ +4;8in oz =0. |+ 4;sin or =0,

From (27) we obtain

: 1
a)1:—Al,r:r(i):——(Zjﬂ+£),(j:0,1,2,---). (28)
A\ 2)
. 1
a)z:—/12,'[:T(Jz):——(Zjﬂ'+£w,(j:0,1,2,~-), (29)
ZPN 2)

i i :
Because 1, <4, <0,80 7, <74,(j=0212,).

Therefore, we have the following conclusions:ifz e [0,1(02)) , all characteristic roots of equation (16) have

0

negative real parts;Ifr = Ty

equation (16) has a pair of pure virtual roots + i1, , while the other characteristic

0

roots have negative real parts.Ifr > ¢ (2)

equation (16) has at least one characteristic root with a positive real

part.

(ii) WhenA® - B < 0,50 4, and 2, are a pair of conjugate complex roots, equation(24) becomes
iw+(A—i\/B—A2)(cos wr —isin wr )=0 (30)

or io+ (A+iVB - A®)(cos wr —isin wr)=0 (31)

The separation of the real and imaginary parts, it follows

jACOSa)T—\/B—AZSin wr =0, jACOSa)‘r +VB - A%sin or =0
or
|Asin @r + VB - A®cos wor =w. |Asin or —VB - A”cos wr =

(32)

[
°
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From (32) we obtainew = \/E

[ 2 ]
r:r(js):L|arccos ( 1—A—W+2j7r lL(j=01,2,-), (33)
Yo (Ve

=z —L|r—arccos (Wll—A—zlu(Z'Jrl) —}('—012---) (34)
_(4)—\/EL L BJ J JxJ—,,, .

So T("s) < T(L),(j =01,2,-).

Therefore, we have the following conclusions:Ifr [0,1(03)) , all characteristic roots of equation (16) have

0

* ,equation (16) has a pair of pure virtual roots + i\/E, while the other

negative real parts;if r = ¢
characteristic roots have negative real parts. Ifz > ¢ (03) ,equation (16) has at least one characteristic root with a
positive real part.

Lemma 6. Assume that (H,) is satisfied, we have the following transversality condition

da L
Re(—)| , > 0 issatisfied.
dr 1777w

Proof.Let A(r)=a(r)+iw(r) be a root of the -characteristic equation (16) near

r=14,(k=1234;j=012,) Wwhich satisfies a(r,)=0 o(r),) =2 (k=12)
i . . . dAi .
o(t4,) = \B (k = 3,4) ,then we have the following transversality condition R e(—) . >0is
, dr 77w
satisfied.

Theorem 3. For system (3), suppose that (H,) is true. Whenz, = r, = r > 0 ,the following conclusions are
true:

(@When A’ -B >0 .If r e [0,1(02)) , the equilibrium point E is asymptotically uniformly stable; If

&y Ty} model (3) generates Hopf branch at the equilibrium point € ; If 7 > 7

(2y model (3) is unstable

re{r

at the equilibrium point E .

(b)When A - B <0 .If r e [0,1(03)) , the equilibrium point E is asymptotically uniformly stable; If

J

T e {1(3),1(14)} ,model (3) generates Hopf branch at the equilibrium pointE ; Ifz > 1(03) ,model (3) is unstable
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at the equilibrium point E .

I11. DIRECTION AND STABILITY OF THE HOPF BIFURCATION

In the analysis in the above section, we have obtained the conditions for the system to generate Hopf branch.
In this section we focus on case 2,we shall study the direction and stability of the bifurcating periodic solutions
by applying the normal form theory and center manifold theorem introduced by Hassard et al.[11] .According

to Theorem 3, the system (3) generates a Hopf branch at the branch point

T = r(jk)(k =1,2,3,4; j=0,,2,---) . For the convenience of discussion,replace ' with 7, and mark the

i
(k)

characteristic root of the characteristic equation (16) as +iw, .

Let u, (t) = x(zt) — x, , u,(t) = y(zst) — y, ,we consider the Taylor expansion of model (3) at the

equilibrium point E ,

u, (t-1) N o—luz(t—l)]
N

t-1 t-1
(1) = o7, (u, () + y,yp 2D 2D,
| N, N,

(u'l(t) =77, (U (1) + x)[-

(35)

Let z =7 + u,u(t) = (u,(t),u,(t)" ,then x = 0 represents the Hopf branch parameter of system
(3).Then the model (3) is equivalent to the following Functional Differential Equation (FDE) system

U(t)=L,u +F(u,u) (36)
L,(¢)=1Bo(-1) (37)
and
-a,0,(0)p,(-1)+a,e, (0)p,(-1)
F (g u) = r[ J (38)
321602(0)(01(*1)* 322(/72(0)(02(*1)
Where

By the Riesz representation theorem, there exists a bounded variation functionr (6, ) » 6 € [-1,0], such

that
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Ly¢:jild77(9,/4)¢(9)’ peC. (39)
In fact, we can choose
(0, 0 e (-1,0],
n(0,u)=1 (40)
-8, 6=0

For ¢ e C ([-1,0], R?), the operators A and R are defined as follow

|(d (¢(6’)) 0 [-1.0),
A @) =4 ¢ (41)
[ msm).  o-0.
(0, 0 e[-1,0),
R(u)e(0) =4 (42)
|F(u.0), 0 =0.
Hence the system (3) can be written as the following form:
U, = A(u)u, + R(u)u, (43)

Where u, =u(t+6),0 [-1,0).
For v e C [0,1] , we define the adjoint operator A*(0) of A(0) as

|[ av (s) se(01],

A*y(s)={ @ (44)
| 0

L-[ d(n' (s.0)y (=s)), s = 0.

For ¢ € C ([-1,0], R®)andy e C [0,1], we define a Bilinear form

<y b=y @O - [ [y (E-0)dn(0)s(E)dE. (45)

where 7 (8) =17(6,0)

andq”(s) = D(p, 1) """

iw,70

Lemma 7. The eigenvectors q(6) = (1, pl)T e are respectively the

eigenvectors corresponding to the eigenvalues io,z and -iw,r of A(0) and A" (0),and
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<q,g>=1, <q,q>=0,

where

iw_ e +a

io,7

X . a e —iw
u O)T,(pl = 2 Yo T

270 a'21 yOe

D=[p,+p, +7e “ (p, DB p)' 1"

proof. +iw 7 are the eigenvalues of A(0),so they are also the eigenvalues of A" (0) .In order to

determine the standard form of the operator A (0) ,we assume that the eigenvectorsq(#) andq, (s) are

respectively the eigenvectors corresponding to the eigenvalues iw,r and -iw,r of A(0) and
A" (0) .We can obtain

[ A(0)q(9) =iw,rq(9)

A . . (46)
A (0)g, (s) = -lw,7q, (s)
From (39) and (41), (46) can be written as
dg(¢) . _
= 9), o -1,0).
1o iw,7q(0) el ) (a7)
L,a(0) =iw,rq(0), 6 =0.
therefore q(8) = q(0)e" ", 6 e [-1,0]

Where q(0) = (q,(0),q,(0)) " e C *is a constant vector, obtained from (37), (46)

Be '“*"q(0) = im,lq (0)

1
By direct calculate, we get q(0) = [ ]

then q(0) = p,) e’

For non-zero vectors g, (s), s < [0,1], we have Be “°"q. (0) = —iw,Iq_ (0)
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. (azz y,e” —ia)ow
mi * p1 iw,7
Slmllarly q, (0) = [ ] = L a, y,e 0 J y
1

1

iw,7s iw s

then g, (s) = (p, 1) e " ,wemake q (s)=D(p, 1) """,

Now let's prove that < q ,q >=1and < q ,q >= 1, from equation (45), we get

(aa)

—T @ 9] [ & -0)dn@)a)ds.

o

[ (e dn @) p) e d g

=—1J¢

= D(p, D) - [

- — —. O o,
=Dlp,+p, ~(p, D] 0" dn(0)1 p) ]

:5[p1+,5;+2'_e

*

T B 1B A1 (48)

Let D =[p,+p, +7e “ (p. 1)B(1,p,) 1", wecanget <q ,q>=1.By
<l//,A(p>= <A*y/,¢>,weobtain

cioy7 (a7 @)= (a7 A7) = (A'0".7) = (~io,7a",q) = i0,7 (a".7). (49)
So < q,q >= 0. The proof is completed.

Next, we will use the same notations as in Hassard et al., we first compute the coordinates to describe the
center manifold C, at x = 0. Define

z(t)=<q ,u, > (50)

and W (t,0) =u (0)-2Re{z(t)q(6)}. (51)
On the center manifold C , we have

W (t,0) =W (z(t),z(1),0) (52)
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2 -2

— z _ z
Where W (2,7,0)=W, (8)—+W_(0)2Z +W,(8) —+---.
2 2

For the central epidemicC , z andz respectively represent the local coordinates of the central epidemic in
the direction of q and q". Note that W is real if u, is real, therefore we only real solutions. Since

u =0 ,itiseasy to see that
Z(t)=iw,7 z(t)+ q (0) f (W (z,Z,0) + 2Re{z(t) q(0)})

A

=io,cz()+q " f,(z,2). (53)
Let 2(t) =iyt 2+ 9(2,2), (54)
z° z°
Where 9(z,2) = g207+ 9,,22 + 9027+---, (55)
from (43) and (55), we have
W i i oy AW -2Req " (0)f,(z,2)q(8), 0 e[-1,0), (56)

|AW - 2Re{q " (0)f,(z,2)a(0)}+ f,(z,2), 6 =0.

Which can be rewritten as

W = AW + H (2,7.0) (57)
where
ZZ Z—Z
H(z,z,0)=H, (0)—+H, (0)zz +H ,(6) —+ - (58)
2 2
On the other hand, on C,
W=W i+W_7 (59)

Using (53) and (55) to replace W, and z and their conjugates by their power series expansions, we obtain

W = io,7W,, (0)2° — 0,7 W,,(0)Z° + . (60)
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Comparing the coefficients of the above equation with those of (58) and (60), we get

[(A-2io,r )W, (8)=-H, (),
JAWM(G):—HM(H), (61)
{(A +2iw, T )W ,(0) = —-H ,(0).

Notice that u (6) =W (z(t),Z(t),6) + zq + zq and q(0) = (1, p,) """, we get

(w®az,z,0)) (1) ., (1) ..
u @) =| | + ZL Je"”°”+zL_Je"””€. (62)
(W " (z,2,0)) P, .
SO
ZZ Z—2
$,(0) = 7 + z_+W2(01)(0)?+W1(11)(0)zz_+wo(21)(0)7+"'
ZZ Z—Z
$,(0) = zp, +2p, + W, (0) —+w P (0)2z +W ) (0) —+
2 2
2 -2
—iw,T — w7 z — YA
g (-1)=ze""" + 7" W () —+wW P (-n2z+w (1) —+
2 2
2 —_2

- - z z
—iwyT —— _iw,7 (2) (2) - (2)
¢, (-1)=1zp,e +zp,.€ +W.,, (—1)—2 +W, (-1 zz + W (—1)—2 +

From (38 ), we obtain

2 = =2 2=
[ K,z"+K,zz+ K,z  +K,z°z

f,(z,2) =<
K.z’ +K 2z+K,z°+K_2°7
5 6 7 8

where

_ w7 —iw,r
K,=-a;e +a,p,e ,
K ) — _all (e*I{A)DI + el(l)of ) + alz (p_lel(UOT + pleflwﬂi) .

_ iw,r iw,r
K,=-a,e a,p,e )
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io,7

1 o
@ e Ciwyry,, (@) )
K, = 7an[Tw20 (0) + W (-1 +e " w, U 0)+ W, T (-1)] +

p.€ W 1 (2) Clogry,, @ (2)
a,l 12 W, (0)+ZW2° (-1)+ pe W, (0)+ W, T (-1)]

ioy7

_ —iw,r 2 -
Kg=a,pe —app € ’

io,7 — eyt

Ke=a,(p.e +p,e )—a, (ppie

@y

r — —iw,r
+p,p8 ")

—2 oyt

_ — lwy7
K =a,p,® —a,p. € ’

~

io,7

s —

1 o
(2) — e Ciwg,,  (2) @
W, (O)+;p1W20 (-1)+e W, (0)+ p W, "(-1)] -

— _io,r

1 .
(2) — @ Ciwgr,, (2) ()
W, (0) + ;plw 2 (-1)+ p,e W, (0)+ p W, (-1)]
Fromg ™" (0) = D (5,,1) , we obtain

9(z,2)=q" " (0)f,(z,2)

— . (K2 +K,2z+ K, 7+ K27
D (p, 1)

2 - -2 2 =
Kyz"+K,zz+ K,z + K,z"z

tD[(p, K+ Kz  +(p, K, +K)zz+(p, K, +K)Z2" +(p, K, + K, )27 2]

Comparing the cofficients of the above equation with those in (55), we get

9. =2TD(p K. +K.),g. =7D(p. K, + K ),
20 1 1 5 11 1 2 6 (63)

9, =27D(p, K, +K,) g, =2rD(p, K, +K,).

In order to determine the value of g,,, we also need to compute the values of W, (¢) and W, (&) ,from

0 € [-1,0) ,we obtain

H(z,2,0)=-2Re[q " (0)f,(z,2)q(0)]

=—(gzo(«9)z?+g“zz‘+goz%+-~-)q(9) (64)

2 -2

_ 2t _ _ _ 1 _
—(920(9)?+ 91122+9027+“')Q(9)-

ISSN: 2231-5373 http://www.ijmttjournal.org Page 94



http://www.ijmttjournal.org/

International Journal of Mathematics Trends and Technology (IJMTT) — Volume 66 Issue 9 - Sep 2020

Comparing the coefficients with (58), we gives that

H 20(9) = _gzoq(g) - g_oza(e)v

s (65)
H,,(0)=-9,,0(0)-9,,9(8).

When ¢ =0, we have

H(z,2,0)=-2 Re[q_*T (0) fo(Z,Z_)q(O)]+ fO(Z,Z_)
2’ _ 7’
:7(920_4— gllzz+g02_+”')q(0)
2 2

_ 2t _ _ _ 7 _ (K2 + K22+ K, 27+ K, 2°7)
_(gzo(g)_+gllzz+g02_+'“)q(0)+7| 2 — —_2 22— I
2 2 kKsz +K,zz +K,z" + K,z z)

Comparing the coefficients with (58), we have

_ _(K

H,,(0)=-9,,d(0) - g,,9(0) + 27| « B
_ _ _(K,)
H,,(0)=-9,,d(0)-9,,q(0)+ 7 | E
(K )

(66)

Using (61), (65), we obtain

ig 0,70 ig,, — iw,70 210,70
W, (0) = —2q(0)e + —2-q(0)e +Ee )
®,T 3w,T

_ i (67)
W, (0) = - q0)e™” + L g(0)e 7 + E

w,T w,T

2"

Where E, e R*,E, ¢ R are two two-dimensional vectors.

From the definition of A(0) and (61), we have

j?ldn(e)wzo(a) = 2iw,tW,,(0) - H,,(0)
[ 2dn (@)W, () = ~H ,(0)
and (io,7 1 - J‘iolei“"’ﬁ)dr](e))q(O) =0

(—iw, 71 - IU e dn(0))7(0) = 0.
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Hence, we can get

— 0 2iw,70 —(K
(2ia)or|—jlile °dn(9))E1=2rLKJ

([ dn@)E, =

Therefore, we have

_(
e

1

2

((2ie,+a, x,e 2" —a,x,e \|E ) 2|[ K1\|
-2iw,7 . —2iw,7 1
-a, y.e ° 2io +a,,y,e ° K
JK 2170 0 2270 ) k 5) (68)
||(7a11X0 a;,%, \|E (Kz\|
, = -
{K Y —85Y,) kKG)
By calculation we can get
. —2iw,7 —2iw,7 -t
E 2|(2|a)0+a11)(06l ’ —a,,X,¢ ’ ) (K1\
17 —2iw,r . —2iw,r | |
-a,ye °° 2im +a,y.e " ° K
k 2170 0 2270 } K 5) (69)
-1
E |(7a11Xo a5, X, \‘ |(K2\|
2 = 7 .
K 2, Y, _azzyﬂj kK6)
Based on the above analysis, we can get the following parameter values:
i 2 1 2 g
C,(0) = Zwoz__(gzogn -2 |g11| - ;|goz| )+ f’
Re{C,(0)}
Hy=——"—"—— >
Re{l ()}
B, =2Re{C (0)},
I m{C, (0)}+ u,(1 m{A (7
- {C,(0)} uz_( { (T)})_ (70)

a)or
Theorem 4. In the case of system (3), the conclusion holds

a) The direction of the Hopf bifurcation is determined by the parameter x,. If 4, >0, the Hopf

bifurcation is supercritical . If x, < 0, the Hopf bifurcation is subcritical .

b) g, determines the stability of the bifurcating periodic solution. If g, < 0, the bifurcating periodic

solutions is stable; if g, > 0, the bifurcating periodic solutions is unstable.
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c) The period of the bifurcating periodic solution is decided by the parameter T,. If T, > 0(< 0), the
period increases(decreases).

IV.NUMERICAL SIMULATION
In this section, focus on case 2,we present numerical results to confirm the analytical predictions obtained in

the previous section.
For system (3) , We take the parameters: y, =3.6,7, =4.5,N, =1,N, =3.5,06, =050, =1.2.

According to the previous analysis, we get that the equilibrium point of the system (3) is
E = (1.25,1.75) .And these coefficients satisfy conditions(H ,) and A® - B =7.3406 > 0 then it can be

calculated from the formula of lemma 6:

o = 0.6656 ,7 )—23598 T

(2

)—11 7991 , 7 )—21 2384 7 )—30.6777, ------

(2 (2 (2

Figure 1 shows that when ¢ < ¢, , the equilibrium pointE = (1.25,1.75) of the system (3) is locally

(2)"

asymptotically stable.Figure 2 shows that when r > z° , the positive equilibrium point E = (1.25,1.75)

()

becomes unstable and generates a periodic solution with a small amplitude, which vibrates near the positive

equilibrium point.

10

o 14
1o ; A 10
0 20 40 &0 &0 100 0 20 %0 o0 0 1o
i o
r=2<23598 =1,
Figure 1 Waveform of system (3) when 2

40 40

R
| o "l'mtln‘« m.lml ll. "S.I l{.‘m. ,Llﬁ.q‘

0 20 40 o) 0 100 0 o «w o L] 1)
th h

~

o

. =2.6>2.358 =7’
Figure 2 Waveform of system (3) when )
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V. CONCLUSIONS

In this paper, a partial profit model with three discrete time delays is studied. When (H ,) is satisfied,that is,
there is a unique positive equilibrium point in model (3).Firstly,ifz = z, + =, > 0, If the coefficients in model

(3) satisfy condition (H ,) ,the sufficient conditions for the equilibrium stability of the system are obtained,
and the existence conditions of the linear stability region and Hopf branch of the system are given.Then, if

r, =7, =7 > 0,when the hysteresisz reaches a certain critical value, it will affect the stability of the

1

equilibrium point of the model and lead to the emergence of branches.It can be seen that the partial profit
cooperative system of the two groups can maintain a dynamic ecological balance under certain conditions, that
is, the two groups can coexist and their numbers will oscillate periodically as the delayz increases. This
indicates that the stability of the system may be damaged by the introduction of time delay - or by the
excessively large time delayr .Therefore, the existence of periodic solutions under certain conditions has

important practical significance, which enables species in nature to coexist for a long time without extinction.
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