Double Power of 2 Decomposition [DPo2D] of Graphs

S. Asha ${ }^{1}$ and V.G. Smilin Shali ${ }^{2}$
${ }^{1}$ Assistant Professor
${ }^{2}$ Research Scholar, Reg. No. 12609
Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Kanyakumari
District - 629 165, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India.

Abstract

Let G be a finite, connected simple graph with p vertices and q edges. If $G_{l}, G_{2}, \ldots, G_{n}$ are connected edge-disjoint subgraphs of G with $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup \ldots \cup E\left(G_{n}\right)$, then $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is said to be a decomposition of G. In this paper we introduce a new concept called Double power of 2 Decomposition of graphs. A graph G is said to have Double Power of 2 Decomposition if G can be decomposed into subgraphs $\left\{2 G_{1}, 2 G_{2}, \ldots, 2 G_{n}\right\}$ such that each $G_{2^{i}}$ is connected and $\left|E\left(G_{i}\right)\right|=2^{i}$, for $1 \leq i \leq n$. Clearly, $q=4\left[2^{n}-1\right]$. In this paper, we investigate the necessary and sufficient condition for graphs such as $J(m, 3), L_{m}, T_{m}$ and H_{m} to accept Double Power of 2 Decomposition.

KEYWORDS : Decomposition of Graph, Power of 2 Decomposition, Double Power of 2 Decomposition.

I. INTRODUCTION

Let G be a simple, connected graph with p vertices and q edges. If $G_{1}, G_{2}, \ldots, G_{n}$ are connected edge-disjoint subgraphs of G with $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup \ldots \cup E\left(G_{n}\right)$, then $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is said to be a Decomposition of G. Different type of decomposition of G have been studied in the literature by imposing suitable conditions on the subgraphs G_{i}. In this paper we introduce a new concept called Double power of 2 Decomposition of graphs. A graph G is said to have Double Power of 2 Decomposition if G can be decomposed into subgraphs $\left\{2 \mathrm{G}_{1}\right.$, $\left.2 \mathrm{G}_{2}, \ldots, 2 \mathrm{G}_{\mathrm{n}}\right\}$ such that each $G_{2^{i}}$ is connected and $\left|E\left(G_{i}\right)\right|=2^{i}$, for $1 \leq \mathrm{i} \leq \mathrm{n}$. Clearly, $\mathrm{q}=4\left[2^{\mathrm{n}}-1\right]$. In this paper, we investigate the necessary and sufficient condition for graphs such as $J(m, 3), L_{m}, T_{m}$ and H_{m} to accept Double Power of 2 Decomposition. Terms not defined here are used in the sense of Harary [2] .

II. PRELIMINARIES

Definition 2.1. Let G be a simple graph of order p and size q. If $G_{1}, G_{2}, \ldots, G_{n}$ are edge-disjoint subgraphs of G such that $\mathrm{E}(\mathrm{G})=\mathrm{E}\left(\mathrm{G}_{1}\right) \cup \mathrm{E}\left(\mathrm{G}_{2}\right) \cup \ldots \cup \mathrm{E}\left(\mathrm{G}_{\mathrm{n}}\right)$, then $\left\{\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{n}}\right\}$ is said to be a Decomposition of G .
Definition 2.2. A graph G is said to have Power of 2 Decomposition if G can be decomposed into n subgraphs $\left\{\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{n}}\right\}$ such that each G_{i} is connected and $\left|E\left(G_{i}\right)\right|=2^{i}$, for $1 \leq \mathrm{i} \leq \mathrm{n}$. Clearly $q=2\left[2^{n}-1\right]$ is the sum of $2,2^{2}, 2^{3}, \ldots, 2^{\mathrm{n}}$. Thus we denote the Power of 2 Decomposition as $\left\{G_{2}, G_{4}, G_{8}, \ldots, G_{2^{n}}\right\}$.
Theorem 2.3. A graph G admit Power of 2 Decomposition $\left\{G_{2}, G_{4}, G_{8}, \ldots, G_{2^{n}}\right\}$ if and only if $q=2\left[2^{n}-1\right]$ for each $\mathrm{n} \in \mathrm{N}$.
Definition 2.4. The Jelly Fish graph denoted by $J(m, n)$ is a graph obtained from a 4 -cycle $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ together with an edge $v_{1} v_{3}$ and appending m pendant edges to v_{4} and n pendant edges to v_{2}.
Definition 2.5. The Ladder graph L_{m} is defined as the cartesian product of path P_{m} with a complete graph K_{2}.
Definition 2.6. A triangular snake graph, denoted by $T m$, is a graph obtained from a path $u_{1} u_{2} \ldots u_{n}$ by joining u_{i} and u_{i+1} to a new vertex $v_{i}, 1 \leq i \leq n-1$.
Definition 2.7. The Helm H_{m} is the graph obtained from wheel W_{m} by attaching pendant edges to each of its rim vertices.

III. DOUBLE POWER OF 2 DECOMPOSITION OF GRAPHS

Definition 3.1. A graph G is said to have Double Power of 2 Decomposition [DPo2D] if G can be decomposed into 2 n subgraphs $\left\{2 \mathrm{G}_{1}, 2 \mathrm{G}_{2}, \ldots, 2 \mathrm{G}_{\mathrm{n}}\right\}$ such that each G_{i} is connected and $\left|E\left(G_{i}\right)\right|=2^{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.

Clearly, $\mathrm{q}=4\left[2^{\mathrm{n}}-1\right]$. We denote the Double Power of 2 Decomposition [DPo2D] as $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots\right.$, $2 \mathrm{G}_{2}{ }^{\mathrm{n}}$ \}.
Example 3.2. Consider the graph G given in the following figure.

The graph G admit Double Power of 2 Decomposition. The DPo2D of G is given in the following figure.

IV. DOUBLE POWER OF 2 DECOMPOSITION OF J(m, 3)

Lemma 4.1. Let $n \equiv 0(\bmod 2)$. Then G can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{\mathrm{n}}\right\}$. Here $4\left[2^{\mathrm{n}}-1\right]=\mathrm{m}+8$. Proof. We have $n \equiv 0(\bmod 2)$. Then $n=2 r, r \geq 1$ and $r \in \mathbb{Z}$. Proof is by induction on r. when $r=1, n=2$. Then $m+8=12$ can be decomposed into $\left\{2 G_{2}, 2 G_{2}{ }^{2}\right\}$. Hence the result is true for $r=1$.

Assume that the result is true for $\mathrm{r}-1$. Then $\mathrm{n}=2 \mathrm{r}-2$. Thus $\mathrm{q}^{\prime}=\mathrm{m}+8=4\left[2^{2 \mathrm{r}-2}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{2 \mathrm{rr}-2}\right\}$.

Now, to prove the result is true for r. We have to prove that $q=m+8=4\left[2^{2 r}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}^{2 \mathrm{r}}\right\}$. Define $\mathrm{q}=\mathrm{q}^{\prime} \cup(2 \mathrm{r}-1) \cup(2 \mathrm{r})$. Then $\mathrm{q}=\mathrm{m}+8=\mathrm{q}^{\prime}+2\left[2^{2 \mathrm{r}-1}+2^{2 \mathrm{r}}\right]=$ $4\left[2^{2 \mathrm{r}}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{2 \mathrm{r}}\right\}$. Hence by induction hypothesis, the lemma is proved for all r .

Lemma 4.2. Let $\mathrm{n}-1 \equiv 0(\bmod 2)$. Then G can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots 2 \mathrm{G}_{2}{ }^{\mathrm{n}}\right\}$. Here $4\left[2^{\mathrm{n}}-1\right]=$ $m+8$.
Proof. We have $n-1 \equiv 0(\bmod 2)$. Then $n=2 r+1, r \geq 1$ and $r \in \mathbb{Z}$. Proof is by induction on r. When $r=1, n=$ 3. Then $m+8=28$ can be decomposed into $\left\{2 G_{2}, 2 G_{2}{ }^{2}, 2 G_{2}{ }^{3}\right\}$. Hence the result is true for $r=1$.

Assume that the result is true for $\mathrm{r}-1$. Then $\mathrm{n}=2 \mathrm{r}-1$. Thus $\mathrm{q}^{\prime}=\mathrm{m}+8=4\left[2^{2 \mathrm{r}-1}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{2 \mathrm{rr-1}}\right\}$.

Now, to prove the result is true for r . We have to prove that $\mathrm{q}=\mathrm{m}+8=4\left[2^{2 r+1}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}^{2 \mathrm{r}+1}\right\}$. Define $\mathrm{q}=\mathrm{q}^{\prime} \cup(2 \mathrm{r}) \cup(2 \mathrm{r}+1)$. Then $\mathrm{q}=\mathrm{m}+8=\mathrm{q}^{\prime}+2\left[2^{2 \mathrm{r}}+2^{2 \mathrm{r}+1}\right]=4\left[2^{2 \mathrm{r}+1}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{2 \mathrm{r}+1}\right\}$. Hence by induction hypothesis, the lemma is proved for all r.

Theorem 4.3. For an even integer m, the Jelly fish graph $J(m, 3)$ admit Double Power of 2 Decomposition $\left\{2 G_{2}\right.$, $\left.2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{\mathrm{n}}\right\}$ if and only if there exists an integer n satisfying the following properties :
(a) $\mathrm{n}=2 \mathrm{r}$ or $2 \mathrm{r}+1, \mathrm{r} \geq 1$ and $\mathrm{r} \in \mathbb{Z}$
(b) $4\left[2^{\mathrm{n}}-1\right]=m+8$

Proof. Let $G=J(m, 3)$. By the definition of $G, q=m+8$. Assume that G admit Double Power of 2 Decomposition. By the definition, $q=4\left[2^{n}-1\right]$. Hence $4\left[2^{n}-1\right]=m+8$. Clearly, m is an even integer. Now, $2^{n}=$ $\frac{m+12}{4}$. This implies $\mathrm{n}=2 \mathrm{r}$ or $2 \mathrm{r}+1, \mathrm{r} \geq 1$ and $\mathrm{r} \in \mathbb{Z}$.

Conversely, assume that $n=2 r$ or $2 r+1, r \geq 1$ and $r \in \mathbb{Z}$. Also, $4\left[2^{n}-1\right]=m+8$. This implies that m is always even. By lemma 3.1 and $3.2, q=m+8=4\left[2^{\mathrm{n}}-1\right]$ can be decomposed into $\left\{\mathrm{G}_{2}, \mathrm{G}_{2}{ }^{2}, \ldots, \mathrm{G}_{2}{ }^{\mathrm{n}}\right\}$. Hence G admit Double Power of 2 Decomposition.
Illustration 4.4. As an illustration, let us decompose the Jelly Fish $\mathbf{J}(20,3)$. The graph $\mathbf{J}(20,3)$ is given in figure.

Jelly Fish Graph J(20, 3)

Here $m=20$. Thus, $n=3$. Hence there will be two copies of three decompositions. The DPo2D of J (20, $3)$ is $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, 2 \mathrm{G}_{2}{ }^{3}\right\}$ and the decompositions are given in the following figure.

Table 4.5. List of first $10 \mathrm{~J}(\mathrm{~m}, 3)$'s which accept DPo2D and their decompositions are given in the following table.

m	DPo2D
4	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}$
20	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, 2 \mathrm{G}_{2}{ }^{3}$
52	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{4}$
116	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{5}$
244	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{6}$
500	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{7}$
1012	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{8}$
2036	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{9}$
4084	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{10}$
8180	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{11}$

V. DOUBLE POWER OF 2 DECOMPOSITION OF L_{m}

Theorem 5.1. For an even integer m, the ladder graph L_{m} admit Double Power of 2 Decomposition $\left\{2 G_{2}, 2 G_{2}{ }^{2}\right.$, $\left.\ldots, 2 \mathrm{G}_{2}{ }^{\mathrm{n}}\right\}$ if and only if there exists an integer n satisfying the following properties.

1. $\mathrm{n}=2 \mathrm{r}-1, \mathrm{r} \geq 1$ and $\mathrm{r} \in \mathbb{Z}$
2. $4\left[2^{n}-1\right]=3 m-2$

Proof. Let $\mathrm{G}=\mathrm{L}_{\mathrm{m}}$. By the definition of $\mathrm{G}, \mathrm{q}=3 \mathrm{~m}-2$. Assume that G admit Double Power of 2 Decomposition. By the definition, $q=4\left[2^{n}-1\right]$. Hence $4\left[2^{n}-1\right]=3 m-2$. Clearly, m is an even integer Now, $2^{n}=\frac{3 m+2}{4}$. This implies $\mathrm{n}=2 \mathrm{r}-1, \mathrm{r} \geq 1$ and $\mathrm{r} \in \mathbb{Z}$.

Conversely, assume that $n=2 r-1, r \geq 1$ and $r \in \mathbb{z}$. Also, $4\left[2^{n}-1\right]=3 m-2$. We have to prove that G accept Double Power of 2 Decomposition. We prove this by induction on r. when $r=1, n=1$. Then $3 m-2=4$ can be decomposed into $\left\{2 \mathrm{G}_{2}\right\}$. Hence the result is true for $\mathrm{r}=1$.

Assume that the result is true for $\mathrm{r}-1$. Then $\mathrm{n}=2 \mathrm{r}-3$. Thus $\mathrm{q}^{\prime}=3 \mathrm{~m}-2=4\left[2^{2 \mathrm{r}-3}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{2 \mathrm{r}-3}\right\}$.

Now, to prove the result is true for r . We have to prove that $\mathrm{q}=3 \mathrm{~m}-2=4\left[2^{2 r-1}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}^{2 \mathrm{r}-1}\right\}$. Define $\mathrm{q}=\mathrm{q}^{\prime} \cup(2 \mathrm{r}-2) \cup(2 \mathrm{r}-1)$. Then $\mathrm{q}=3 \mathrm{~m}-2=\mathrm{q}^{\prime}+2\left[2^{2 \mathrm{r}-2}+2^{2 \mathrm{r}-1}\right]=4\left[2^{2 \mathrm{r}-1}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{2 \mathrm{r}-1}\right\}$. Hence by induction hypothesis, G can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{\mathrm{n}}\right\}$ where $\mathrm{n}=2 \mathrm{r}-1, \mathrm{r} \geq 1$ and $\mathrm{r} \in \mathbb{Z}$. Thus G admit Double Power of 2 Decomposition.

Illustration 5.2. As an illustration, let us decompose the ladder graph L_{10}. The graph L_{10} is given in the following figure.

Here $\mathrm{m}=10$. Then $\mathrm{n}=3$. Hence there will be two copies of three decompositions. The DPo2D of L_{10} is $\left\{2 \mathrm{G}_{2}\right.$, $\left.2 \mathrm{G}_{2}{ }^{2}, 2 \mathrm{G}_{2}{ }^{3}\right\}$ and the decompositions are given in the following figure.

Table 5.3. List of first $10 \mathrm{~L}_{\mathrm{m}}$'s that accept DPo2D and their decompositions are given in the following table.

m	DPo2D
2	$2 \mathrm{G}_{2}$
10	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, 2 \mathrm{G}_{2}{ }^{3}$
42	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{5}$
170	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{7}$
682	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{9}$
2730	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{11}$
10922	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{13}$
43690	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{15}$
174762	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{17}$
699050	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{19}$

VI. DOUBLE POWER OF 2 DECOMPOSITION OF T m_{m}

Theorem 6.1. For an odd integer m, the triangular snake graph T_{m} accept Double Power of 2 Decomposition $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{\mathrm{n}}\right\}$ if and only if there exists an integer n satisfying the following properties.

1. $\mathrm{n}=2 \mathrm{r}, \mathrm{r} \geq 1$ and $\mathrm{r} \in \mathbb{Z}$
2. $4\left[2^{n}-1\right]=3 m-3$

Proof. Let $\mathrm{G}=\mathrm{T}_{\mathrm{m}}$. By the definition of $\mathrm{G}, \mathrm{q}=3 \mathrm{~m}-3$. Assume that G admit Double Power of 2 Decomposition. By the definition, $\mathrm{q}=4\left[2^{\mathrm{n}}-1\right]$. Hence $4\left[2^{\mathrm{n}}-1\right]=3 \mathrm{~m}-3$. Clearly, m is an odd integer. Now, $2^{\mathrm{n}}=\frac{3 m+1}{4}$. This implies $\mathrm{n}=2 \mathrm{r}, \mathrm{r} \geq 1$ and $\mathrm{r} \in \mathbb{Z}$.

Conversely, assume that $n=2 r, r \geq 1$ and $r \in \mathbb{Z}$. Also, $4\left[2^{n}-1\right]=3 m-3$. We have to prove that G accept Double Power of 2 Decomposition. We prove this by induction on r.

When $\mathrm{r}=1, \mathrm{n}=2$. Then $3 \mathrm{~m}-3=12$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}\right\}$. Hence the result is true for $r=1$.

Assume that the result is true for $\mathrm{r}-1$. Then $\mathrm{n}=2 \mathrm{r}-2$. Thus $\mathrm{q}^{\prime}=3 \mathrm{~m}-3=4\left[2^{2 \mathrm{r}-2}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{2 \mathrm{r}-2}\right\}$.

Now, to prove the result is true for r . We have to prove that $\mathrm{q}=3 \mathrm{~m}-3=4\left[2^{2 \mathrm{r}}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}^{2 \mathrm{r}}\right\}$. Define $\mathrm{q}=\mathrm{q}^{\prime} \cup(2 \mathrm{r}-1) \cup(2 \mathrm{r})$. Then $\mathrm{q}=3 \mathrm{~m}-3=\mathrm{q}^{\prime}+2\left[2^{2 \mathrm{r}-1}+2^{2 \mathrm{r}}\right]=$ $4\left[2^{2 \mathrm{r}}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{2 \mathrm{r}}\right\}$. Hence by induction hypothesis, G can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{\mathrm{n}}\right\}$ where $\mathrm{n}=2 \mathrm{r}, \mathrm{r} \geq 1$ and $\mathrm{r} \in \mathbb{Z}$. Thus G admit Double Power of 2 Decomposition.

Illustration 6.2. As an illustration, let us decompose the triangular snake graph T_{21}. The graph T_{21} is given in the following figure.

Triangular Snake Graph \mathbf{T}_{21}

Here $\mathrm{m}=21$. Then $\mathrm{n}=4$. Thus there will be two copies of four decompositions. The DPo2D of T_{21} is $\left\{2 \mathrm{G}_{2}\right.$, $\left.2 \mathrm{G}_{2}{ }^{2}, 2 \mathrm{G}_{2}{ }^{3}, 2 \mathrm{G}_{2}{ }^{4}\right\}$ and the decomposition are given in the following figure.
G_{2} :

$\mathrm{G}_{2}{ }^{3}:$

Table 6.3. List of first 10 Tm 's that accept Double Power of 2 Decomposition and their decompositions are given in the following table.

m	DPo2D
5	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}$
21	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, 2 \mathrm{G}_{2}{ }^{3}, 2 \mathrm{G}_{2}{ }^{4}$
85	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{2}$
341	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{8}$

1365	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{10}$
5461	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{12}$
21845	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{14}$
87381	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{16}$
349525	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{18}$
1398101	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{20}$

VII. DOUBLE POWER OF 2 DECOMPOSITION OF H_{m}

Theorem 7.1. For an even integer m, the helm H_{m} accept Double Power of 2 Decomposition $\left\{2 G_{2}, 2 G_{2}{ }^{2}, \ldots\right.$, $\left.2 \mathrm{G}_{2}{ }^{\mathrm{n}}\right\}$ if and only if there exists an integer n satisfying the following properties :

1. $\mathrm{n}=2 \mathrm{r}, \mathrm{r} \geq 1$ and $\mathrm{r} \in \mathbb{Z}$
2. $4\left[2^{n}-1\right]=3 m$

Proof. Let $G=H_{m}$. By the definition of $G, q=3 m$. Assume that G accept Double Power of 2 Decomposition. By the definition, $q=4\left[2^{n}-1\right]$. Hence $4\left[2^{n}-1\right]=3 \mathrm{~m}$. Clearly, m is an even integer. Now, $2^{n}=\frac{3 m+4}{4}$. This implies $n=2 r, r \geq 1$ and $r \in \mathbb{Z}$.

Conversely, assume that $n=2 r, r \geq 1$ and $r \in \mathbb{Z}$. Also, $4\left[2^{n}-1\right]=3 \mathrm{~m}$. We have to prove that G accept Double Power of 2 Decomposition. We prove this by induction on r . When $\mathrm{r}=1, \mathrm{n}=2$. Then $3 \mathrm{~m}=12$ can be decomposed into $\left\{2 G_{2}, 2 G_{2}{ }^{2}\right\}$. Hence the result is true for $r=1$. Assume that the result is true for $r-1$. Then $n=$ $2 \mathrm{r}-2$. Thus $\mathrm{q}^{\prime}=3 \mathrm{~m}=4\left[2^{2 \mathrm{r}-2}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{2 \mathrm{r}-2}\right\}$. Now, to prove the result is true for r . We have to prove that $\mathrm{q}=3 \mathrm{~m}=4\left[2^{2 \mathrm{r}}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{2 \mathrm{r}}\right\}$. Define $\mathrm{q}=$ $\mathrm{q}^{\prime} \cup(2 \mathrm{r}-1) \cup(2 \mathrm{r})$. Then $\mathrm{q}=3 \mathrm{~m}=\mathrm{q}^{\prime}+2\left[2^{2 \mathrm{r}-1}+2^{2 \mathrm{r}}\right]=4\left[2^{2 \mathrm{r}}-1\right]$ can be decomposed into $\left\{2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}^{2 \mathrm{r}}\right\}$. Hence by induction hypothesis, G can be decomposed into $\left\{2 G_{2}, 2 G_{2}{ }^{2}, \ldots, 2 G_{2}{ }^{n}\right\}$ where $n=2 r, r \geq 1 \& r \in \mathbb{Z}$. Thus G admit Double Power of 2 Decomposition.

Illustration 7.2. As an illustration, let us decompose the helm H_{20}. The graph H_{20} is given in the following figure.

The Graph \mathbf{H}_{20}

Here $m=20$. Hence $n=4$. Thus there will be two copies of four decompositions. The DPo2D of H_{20} is $\left\{2 G_{2}\right.$, $\left.2 \mathrm{G}_{2}{ }^{2}, 2 \mathrm{G}_{2}{ }^{3}, 2 \mathrm{G}_{2}{ }^{4}\right\}$ and the decompositions are given in the following figure.

Table 7.3. List of first $10 \mathrm{H}_{\mathrm{m}}$'s that accept Double Power of 2 Decomposition and their decompositions are given in the following table.

m	DPo 2 D
4	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}$
20	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, 2 \mathrm{G}_{2}{ }^{3}, 2 \mathrm{G}_{2}{ }^{4}$
84	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{6}$
340	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{8}$
1364	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{10}$
5460	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{12}$
21844	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{14}$
87380	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{16}$
349524	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{18}$
1398100	$2 \mathrm{G}_{2}, 2 \mathrm{G}_{2}{ }^{2}, \ldots, 2 \mathrm{G}_{2}{ }^{20}$

REFERENCES

[1] S. Asha and V . G. Smilin Shali, Power of 2 Decomposition of Some Trees and a Spider Tree, Journal of Information and Computational Science, ISSN : 1548-7741, Volume 10, Issue 3, 2020.
[2] Frank Harary, (1972), Graph Theory, Addison-Wesley Publishing Company.
[3] V.G. Smilin Shali and S. Asha, (2019), Double Arithmetic Odd Decomposition [DAOD] of Some Complete 4-Partite Graphs, International Journal of Innovative Technology and Exploring Engineering, Vol. 9, Issue - 2, December 2019, 3902-3907.
[4] V. G. Smilin Shali and S. Asha, Power of 2 Decomposition of a Complete Tripartite Graph $K_{2,4, m}$ and a Special Butterfly Graph , International Journal of Engineering and Advanced Technology (IJEAT), ISSN : 2249-8958, Volume 9, Issue 3, February, 2020 .
[5] V. G. Smilin Shali and S. Asha, Double Arithmetic Odd Decomposition [DAOD] of Graphs, Journal of Xidian University , ISSN : 1001-2400, Volume 14, Issue 3, 2020.

