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ABSTRACT - Let G be a finite, connected simple graph with p vertices and q edges. If G1, G2,…, Gn are 

connected edge-disjoint subgraphs of G with E(G) = E(G1)  E(G2)  … E(Gn), then {G1, G2, …, Gn} is said 

to be a decomposition of G. In this paper we  introduce a new concept  called Double power of 2 Decomposition 

of graphs. A graph G is said to have Double Power of 2 Decomposition if G can be  decomposed into subgraphs 

{2G1, 2G2, . . . , 2Gn}  such that each iG
2

 is connected and ,2)(
i

i
GE  for 1  i  n. Clearly, q = 4[2

n
 - 1]. In 

this paper, we investigate the necessary and sufficient condition for graphs such as J(m , 3) , Lm , Tm  and  Hm to 

accept Double  Power of 2 Decomposition.  
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I. INTRODUCTION 

Let G be a simple, connected graph with p vertices and q edges. If G1,G2,…,Gn are connected edge-disjoint 

subgraphs of G with E(G) = E(G1)  E(G2)  …  E(Gn), then {G1,G2,…,Gn}  is said to be a Decomposition of 

G. Different type of decomposition of G have been studied in the literature by imposing suitable conditions on 

the subgraphs Gi. In this paper we  introduce a new concept  called Double power of 2 Decomposition of graphs. 

A graph G is said to have Double Power of 2 Decomposition if G can be  decomposed into subgraphs {2G1, 

2G2, . . . , 2Gn}  such that each iG
2

 is connected and ,2)(
i

i
GE  for 1  i  n. Clearly, q = 4[2

n
 - 1]. In this 

paper, we investigate the necessary and sufficient condition for graphs such as J(m , 3) , Lm , Tm  and  Hm to 

accept Double  Power of 2 Decomposition. Terms not defined here are used in the sense of Harary [2] . 

 

II. PRELIMINARIES 

Definition 2.1. Let G be a simple graph of order p and size q. If G1,G2,…,Gn are edge-disjoint subgraphs of G 

such that E(G) = E(G1)  E(G2)  …  E(Gn), then {G1,G2,…,Gn} is said to be a Decomposition of G. 

Definition 2.2. A graph G is said to have Power of 2 Decomposition if G can be decomposed into n subgraphs 

{G1, G2, …, Gn} such that each Gi is connected and ,2)(
i

i
GE   for 1  i  n. Clearly ]12[2 

n
q  is the sum 

of 2, 2
2
, 2

3
,…,2

n
. Thus we denote the Power of 2 Decomposition as  nGGGG

2842
..,,.,, .   

Theorem 2.3. A graph G admit Power of 2 Decomposition  nGGGG
2842

..,,.,,  if and only if ]12[2 
n

q  

for each n  N.  

Definition 2.4. The Jelly Fish graph denoted by J(m, n) is a graph obtained from a 4-cycle (v1, v2 , v3 , v4 ) 

together with an edge v1v3 and appending m pendant edges to v4 and n pendant edges to v2.  

Definition 2.5. The Ladder graph Lm is defined as the cartesian product of path Pm with a complete graph K2. 

Definition 2.6. A triangular snake graph , denoted by Tm , is a graph obtained from a path u1u2 . . . un by joining 

ui and ui+1 to a new vertex vi , 1 ≤ i ≤ n-1. 

Definition 2.7. The Helm Hm is the graph obtained from wheel Wm by attaching pendant edges to each of its rim 

vertices. 
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III. DOUBLE POWER OF 2 DECOMPOSITION OF GRAPHS 
 

Definition 3.1.  A graph G is said to have Double Power of 2 Decomposition [DPo2D] if G can be decomposed 

into 2n subgraphs {2G1, 2G2, . . . , 2Gn} such that each Gi is connected and ,2)(
i

i
GE  1   i    n. 

 Clearly, q = 4[2
n
 - 1]. We denote the Double Power of 2 Decomposition [DPo2D] as {2G2, 2G2

2
, . . . , 

2G2
n
}.   

Example 3.2. Consider the graph G given in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

G 
The graph G admit Double Power of 2 Decomposition. The DPo2D of G is given in the following 

figure. 
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                                         IV. DOUBLE POWER OF 2 DECOMPOSITION OF J(m, 3) 

 

Lemma 4.1. Let n  ≡ 0 (mod 2). Then G can be decomposed into {2G2
 
, 2G2

2
, …, 2G2

n
}. Here 4[2

n
 - 1] = m + 8. 

Proof .  We have n ≡ 0 (mod 2). Then n = 2r, r ≥ 1 and r  𝕫. Proof is by induction on r. when r = 1, n = 2. Then 

m + 8 = 12 can be decomposed into {2G2 , 2G2
2 
}. Hence the result is true for r = 1. 

              Assume that the result is true for r - 1. Then n = 2r - 2. Thus q' = m + 8 =   4[2
2r - 2

 -1] can be 

decomposed into {2G2 , 2G2
2
, . . . , 2G2

2r-2 
}. 

 Now, to prove the result is true for r.  We have to prove that q = m + 8 =    4[2
2r

 - 1] can be 

decomposed into {2G2, 2G2
2
, . . . , 2G2

2r
}. Define q = q'   (2r-1)  (2r). Then q = m + 8 = q' + 2[2

2r-1
 + 2

2r
] = 

4[2
2r

 - 1] can be decomposed into { 2G2, 2G2
2
, . . . , 2G2

2r 
}. Hence by induction hypothesis, the lemma is proved 

for all r. 
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Lemma 4.2. Let n - 1 ≡ 0 (mod 2). Then G can be decomposed into {2G2, 2G2
2
, . . . 2G2

n
}. Here       4[2

n
 -1] = 

m + 8. 

Proof.  We have n - 1 ≡ 0 (mod 2). Then n = 2r +1, r ≥ 1 and r  𝕫. Proof is by induction on r. When    r = 1, n = 

3. Then m + 8 = 28 can be decomposed into {2G2, 2G2
2
, 2G2

3
}. Hence the result is true        for r = 1. 

 Assume that the result is true for r - 1. Then n = 2r -1. Thus q' =  m + 8 = 4[ 2
2r-1

 - 1] can be 

decomposed into{2G2, 2G2
2
, . . . , 2G2

2r-1
}. 

 Now, to prove the result is true for r. We have to prove that q = m + 8 = 4[2
2r+1

 - 1] can be decomposed 

into {2G2, 2G2
2
, . . . , 2G2

2r+1
}. Define q = q'  (2r)  (2r + 1). Then q = m + 8 = q' + 2[2

2r
 + 2

2r+1
] = 4[2

2r+1
 -1] 

can be decomposed into {2G2, 2G2
2
, . . . , 2G2

2r+1 
}. Hence by induction hypothesis, the lemma is proved for all 

r. 

 

Theorem 4.3. For an even integer m, the Jelly fish graph J(m, 3) admit Double Power of 2 Decomposition {2G2, 

2G2
2
, . . . , 2G2

n
} if and only if there exists an integer n satisfying the following properties : 

(a)   n = 2r  or  2r+1,  r  1 and r  𝕫 

(b)   4[2
n
 – 1] = m + 8 

Proof.  Let G = J(m, 3). By the definition of G, q = m + 8. Assume that G admit Double Power of 2 

Decomposition. By the definition, q = 4[2
n
 -1]. Hence 4[2

n
 -1] = m+8. Clearly, m is an even integer. Now, 2

n
 = 

.
4

12m
 This implies n = 2r or 2r + 1, r  1 and r  𝕫. 

 Conversely, assume that n = 2r or 2r+1, r  1 and r  𝕫. Also, 4[2
n
 -1] = m+8. This implies that m is 

always even. By lemma 3.1 and 3.2 , q = m + 8 = 4[2
n
 -1] can be decomposed into {G2, G2

2
, . . . , G2

n
}. Hence G 

admit Double Power of 2 Decomposition.  

Illustration 4.4. As an illustration, let us decompose the Jelly Fish J(20, 3). The graph J(20, 3) is given in 

figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Jelly Fish Graph J(20, 3) 

 
Here m = 20. Thus, n = 3. Hence there will be two copies of three decompositions. The DPo2D of J(20, 

3) is {2G2, 2G2
2
, 2G2

3
} and the decompositions are given in the following figure. 
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Table 4.5.  List of first 10 J(m, 3)’s which accept DPo2D and their decompositions are given in the following 

table. 

m DPo2D 

4 2G2, 2G2
2
 

20 2G2, 2G2
2
, 2G2

3
 

52 2G2, 2G2
2
, …, 2G2

4
 

116 2G2, 2G2
2
, …, 2G2

5
 

244 2G2, 2G2
2
, …, 2G2

6
 

500 2G2, 2G2
2
, …, 2G2

7
 

1012 2G2, 2G2
2
, …, 2G2

8
 

2036 2G2, 2G2
2
, …, 2G2

9
 

4084 2G2, 2G2
2
, …, 2G2

10
 

8180 2G2, 2G2
2
, …, 2G2

11
 

 

                                  V. DOUBLE POWER OF 2 DECOMPOSITION OF Lm 

Theorem 5.1. For an even integer m, the ladder graph Lm admit Double Power of 2 Decomposition {2G2, 2G2
2
, 

…, 2G2
n
} if and only if there exists an integer n satisfying the following properties. 

1. n = 2r - 1,  r  1 and r 𝕫 

2. 4[2
n
 -1] = 3m-2 
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Proof .  Let G = Lm. By the definition of G, q = 3m-2. Assume that G admit Double Power of 2 Decomposition. 

By the definition, q = 4[2
n
 -1]. Hence 4[2

n
 -1] = 3m-2. Clearly, m is an even integer Now, 2

n
 = .

4

23 m
 This 

implies n = 2r - 1,  r  1 and r𝕫. 

            Conversely, assume that n = 2r - 1,  r  1 and r 𝕫. Also, 4[2
n
 -1] = 3m-2. We have to prove that G 

accept Double Power of 2 Decomposition. We prove this by induction on r.  when r = 1, n = 1. Then 3m-2 = 4 

can be decomposed into {2G2}. Hence the result is true for r = 1. 

 Assume that the result is true for r-1. Then n = 2r-3. Thus q' = 3m-2 = 4[2
2r-3

 -1] can be decomposed 

into {2G2, 2G2
2
, . . . , 2G2

2r-3
}. 

 Now, to prove the result is true for r.  We have to prove that q = 3m-2 = 4[2
2r-1

 – 1] can be decomposed 

into {2G2, 2G2
2
, . . . , 2G2

2r-1
 }. Define q = q' (2r -2)  (2r-1). Then q = 3m-2 = q' + 2[2

2r-2
 + 2

2r-1
] = 4[2

2r-1
 -1] 

can be decomposed into {2G2, 2G2
2
, . . . , 2G2

2r-1
}. Hence by induction hypothesis, G can be decomposed into 

{2G2, 2G2
2
, . . . , 2G2

n
} where n = 2r-1, r  1 and r𝕫. Thus G admit Double Power of 2 Decomposition. 

 

Illustration 5.2. As an illustration, let us decompose the ladder graph L10. The graph L10 is given in the 

following figure. 

 

 

 

 

 
Ladder Graph L10 

 

Here m = 10. Then n = 3. Hence there will be two copies of three decompositions. The DPo2D  of  L10  is {2G2, 

2G2
2
, 2G2

3
} and the decompositions are given in the following figure. 
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Table 5.3.  List of first 10 Lm’s that accept DPo2D and their decompositions are given in the following table. 

 

m DPo2D 

2 2G2 

10 2G2, 2G2
2
, 2G2

3
 

42 2G2, 2G2
2
, . . . , 2G2

5
 

170 2G2, 2G2
2
, . . . , 2G2

7
 

682 2G2, 2G2
2
, . . . , 2G2

9
 

2730 2G2, 2G2
2
, . . . , 2G2

11
 

10922 2G2, 2G2
2
, . . . , 2G2

13
 

43690 2G2, 2G2
2
, . . . , 2G2

15
 

174762 2G2, 2G2
2
, . . . , 2G2

17
 

699050 2G2, 2G2
2
, . . . , 2G2

19
 

 
VI. DOUBLE POWER OF 2 DECOMPOSITION OF Tm 

Theorem 6.1. For an odd integer m, the triangular snake graph Tm accept Double Power of 2 Decomposition 

{2G2, 2G2
2
, . . . , 2G2

n
} if and only if there exists an integer n satisfying the following properties. 

1. n = 2r ,  r  1 and r 𝕫 

2. 4[2
n
 – 1] = 3m - 3 

Proof .  Let G = Tm. By the definition of G, q = 3m-3. Assume that G admit Double Power of 2 Decomposition. 

By the definition, q = 4[2
n
 -1]. Hence 4[2

n
 – 1] = 3m – 3. Clearly, m is an odd integer. Now,  2

n
 = .

4

13 m
 This 

implies n = 2r , r  1 and r  𝕫. 

                     Conversely, assume that n = 2r, r  1 and r𝕫. Also, 4[2
n
-1] = 3m -3. We have to prove that G 

accept Double Power of 2 Decomposition. We prove this by induction on r.  

                   When r = 1, n = 2. Then 3m - 3 = 12 can be decomposed into {2G2, 2G2
2
}. Hence the result is true 

for r = 1.  

                     Assume that the result is true for r - 1. Then n = 2r-2. Thus q' = 3m-3 = 4[2
2r-2

 -1] can be 

decomposed into {2G2, 2G2
2
, . . . , 2G2

2r-2
}.  

                       Now, to prove the result is true for r. We have to prove that q = 3m-3 = 4[2
2r

-1] can be 

decomposed into {2G2, 2G2
2
, . . . , 2G2

2r
}. Define q = q'  (2r-1)  (2r). Then q = 3m-3 = q' + 2[2

2r-1
 + 2

2r 
] = 

4[2
2r

 -1] can be decomposed into{2G2, 2G2
2
, . . ., 2G2

2r
}. Hence by induction hypothesis, G can be decomposed 

into {2G2, 2G2
2
, …, 2G2

n
}  where n = 2r,  r  1 and r𝕫. Thus G admit Double Power of 2 Decomposition. 
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Illustration 6.2.  As an illustration, let us decompose the triangular snake graph T21. The graph T21 is given in 

the following figure. 

 

 

 

 

                                            

 

 

 
Triangular  Snake  Graph T21 

 

Here m = 21. Then n = 4. Thus there will be two copies of four decompositions. The DPo2D  of  T21 is {2G2, 

2G2
2
, 2G2

3
, 2G2

4
} and the decomposition are given in the following  figure. 
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Table 6.3. List of first 10 Tm’s that accept Double Power of 2 Decomposition and their decompositions  are 

given in the following  table. 

m DPo2D 

5 2G2, 2G2
2
 

21 2G2, 2G2
2
, 2G2

3
, 2G2

4
 

85 2G2, 2G2
2
, …, 2G2

6
 

341 2G2, 2G2
2
, …, 2G2

8
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1365 2G2, 2G2
2
, …, 2G2

10
 

5461 2G2, 2G2
2
, …, 2G2

12
 

21845 2G2, 2G2
2
, …, 2G2

14
 

87381 2G2, 2G2
2
, …, 2G2

16
 

349525 2G2, 2G2
2
, …, 2G2

18
 

1398101 2G2, 2G2
2
, …, 2G2

20
 

                              

VII. DOUBLE POWER OF 2 DECOMPOSITION OF Hm 

Theorem 7.1. For an even integer m, the helm Hm accept Double Power of 2 Decomposition {2G2, 2G2
2
, . . . , 

2G2
n
} if and only if there exists an integer n satisfying the following properties : 

1. n  =  2r ,  r  1 and r 𝕫 

2. 4[2
n
 – 1]  =  3m 

Proof. Let G = Hm. By the definition of G, q = 3m. Assume that G accept Double Power of 2 Decomposition. 

By the definition, q = 4[2
n
 -1]. Hence 4[2

n
 -1] = 3m. Clearly, m is an even integer. Now, 2

n
 = 

4

43 m
. This 

implies n = 2r, r  1 and r𝕫. 

Conversely, assume that n = 2r, r  1 and r𝕫. Also, 4[2
n
 -1] = 3m. We have to prove that G accept 

Double Power of 2 Decomposition. We prove this by induction on r. When r = 1, n = 2. Then 3m = 12 can be 

decomposed into {2G2, 2G2
2
}. Hence the result is true for r = 1. Assume that the result is true for r-1. Then n = 

2r-2. Thus q' = 3m = 4[2
2r-2

 – 1] can be decomposed into {2G2, 2G2
2
, . . . , 2G2

2r-2
}. Now, to prove the result is 

true for r. We have to prove that q = 3m = 4[2
2r

 – 1] can be decomposed into {2G2, 2G2
2
, . . . , 2G2

2r
}. Define q = 

q'  (2r-1) (2r). Then q = 3m = q' + 2[2
2r-1 

+ 2
2r

] = 4[2
2r

 – 1] can be decomposed into {2G2, 2G2
2
, . . . , 2G2

2r
}. 

Hence by induction hypothesis, G can be decomposed into {2G2 , 2G2
2
, . . . , 2G2

n
} where n = 2r,  r  1 & r 𝕫. 

Thus G admit Double Power of 2 Decomposition. 

Illustration 7.2.  As an illustration, let us decompose the helm H20. The graph H20 is given in the following 

figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

The Graph H20 
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Here m = 20. Hence n = 4. Thus there will be two copies of four decompositions. The DPo2D of H20  is {2G2 , 

2G2
2
 , 2G2

3
 , 2G2

4
 } and the decompositions are given in the following figure. 
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Table 7.3. List of first 10 Hm’s that accept Double Power of 2 Decomposition and their decompositions are 

given in the following table. 

 

m DPo2D 

4 2G2, 2G2
2 

20 2G2, 2G2
2
, 2G2

3
, 2G2

4
 

84 2G2, 2G2
2
, …, 2G2

6
 

340 2G2, 2G2
2
, …, 2G2

8
 

1364 2G2, 2G2
2
, …, 2G2

10
 

5460 2G2, 2G2
2
, …, 2G2

12
 

21844 2G2, 2G2
2
, …, 2G2

14
 

87380 2G2, 2G2
2
, …, 2G2

16
 

349524 2G2, 2G2
2
, …, 2G2

18
 

1398100 2G2, 2G2
2
, …, 2G2

20
 

 

v

1 v

2 
v

3 

v

3 v

4 
v

5 

v

5 

v

6 

v

7 

v

8 

v

9 
v

9 

v

1

0 

v

1

1 

v

1

2 

v

1

3 

v

1 
v

2

0 

v

1

9 

v

1

8 

v

1

7 

v

1

6 

v

1

5 

v

1

4 

v

1

3 

w

1 w

2 

w

3 

w

4 

v

4 

v

3 

v

2 

v

1 

u 

u 

w

1

3 

v

1

3 

w

1

4 

v

1

4 

v

1

5 

w

1

5 

w

1

6 

v

1

6 

w

1

7 

w

1

8 

v

1

7 

v

1

8 

w

1

9 v

1

9 

v

2

0 

w

2

0 

u 

v

1

2 

v

1

1 

v

1

0 

v

9 

v

8 

v

7 

v

6 

v

5 

w

5 

w

6 

w

7 

w

8 w

9 

w

1

0 

w

1

1 

w

1

2 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 66 Issue 9 - Sep 2020 

ISSN: 2231-5373                                 http://www.ijmttjournal.org                              Page 131 

REFERENCES 

 
[1] S. Asha and V . G. Smilin Shali , Power of 2 Decomposition of  Some Trees and a Spider Tree , Journal of  Information and 

Computational Science , ISSN : 1548 – 7741 , Volume 10 , Issue 3, 2020.  

[2] Frank Harary, (1972), Graph Theory, Addison-Wesley Publishing Company.  

[3] V.G. Smilin  Shali and S. Asha , (2019), Double Arithmetic Odd Decomposition [DAOD] of Some Complete 4-Partite Graphs, 

International Journal of Innovative Technology and Exploring Engineering, Vol. 9, Issue - 2, December 2019, 3902-3907. 

[4] V. G. Smilin Shali and S. Asha , Power of 2 Decomposition of a Complete Tripartite Graph K2,4,m  and a Special Butterfly Graph 

, International Journal of Engineering and Advanced Technology (IJEAT) , ISSN : 2249 – 8958 , Volume 9 , Issue 3 , February, 

2020 . 

[5] V. G. Smilin Shali and S. Asha , Double Arithmetic Odd  Decomposition [DAOD] of  Graphs, Journal of Xidian University , 

ISSN : 1001 – 2400 , Volume 14 , Issue 3, 2020. 

 

 

http://www.ijmttjournal.org/

