Double Power of 2 Decomposition [DPo2D] of Graphs

S. Asha¹ and V.G. Smilin Shali²

¹Assistant Professor ²Research Scholar, Reg. No. 12609 Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Kanyakumari District - 629 165, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India.

ABSTRACT - Let G be a finite, connected simple graph with p vertices and q edges. If $G_1, G_2, ..., G_n$ are connected edge-disjoint subgraphs of G with $E(G) = E(G_1) \cup E(G_2) \cup ... \cup E(G_n)$, then $\{G_1, G_2, ..., G_n\}$ is said to be a decomposition of G. In this paper we introduce a new concept called Double power of 2 Decomposition of graphs. A graph G is said to have Double Power of 2 Decomposition if G can be decomposed into subgraphs $\{2G_1, 2G_2, ..., 2G_n\}$ such that each G_{2^i} is connected and $|E(G_i)| = 2^i$, for $1 \le i \le n$. Clearly, $q = 4[2^n - 1]$. In this paper, we investigate the necessary and sufficient condition for graphs such as J(m, 3), L_m , T_m and H_m to accept Double Power of 2 Decomposition.

KEYWORDS : Decomposition of Graph, Power of 2 Decomposition, Double Power of 2 Decomposition.

I. INTRODUCTION

Let G be a simple, connected graph with p vertices and q edges. If $G_1, G_2, ..., G_n$ are connected edge-disjoint subgraphs of G with $E(G) = E(G_1) \cup E(G_2) \cup ... \cup E(G_n)$, then $\{G_1, G_2, ..., G_n\}$ is said to be a Decomposition of G. Different type of decomposition of G have been studied in the literature by imposing suitable conditions on the subgraphs G_i . In this paper we introduce a new concept called Double power of 2 Decomposition of graphs. A graph G is said to have Double Power of 2 Decomposition if G can be decomposed into subgraphs $\{2G_1, 2G_2, ..., 2G_n\}$ such that each G_{2^i} is connected and $|E(G_i)| = 2^i$, for $1 \le i \le n$. Clearly, $q = 4[2^n - 1]$. In this paper, we investigate the necessary and sufficient condition for graphs such as J(m, 3), L_m , T_m and H_m to accept Double Power of 2 Decomposition. Terms not defined here are used in the sense of Harary [2].

II. PRELIMINARIES

Definition 2.1. Let G be a simple graph of order p and size q. If $G_1, G_2, ..., G_n$ are edge-disjoint subgraphs of G such that $E(G) = E(G_1) \cup E(G_2) \cup ... \cup E(G_n)$, then $\{G_1, G_2, ..., G_n\}$ is said to be a Decomposition of G. **Definition 2.2.** A graph G is said to have Power of 2 Decomposition if G can be decomposed into n subgraphs $\{G_1, G_2, ..., G_n\}$ such that each G_i is connected and $|E(G_i)| = 2^i$, for $1 \le i \le n$. Clearly $q = 2[2^n - 1]$ is the sum of 2, 2^2 , 2^3 , ..., 2^n . Thus we denote the Power of 2 Decomposition as $\{G_2, G_4, G_8, ..., G_{2^n}\}$.

Theorem 2.3. A graph G admit Power of 2 Decomposition $\{G_2, G_4, G_8, ..., G_{2^n}\}$ if and only if $q = 2[2^n - 1]$ for each $n \in \mathbb{N}$.

Definition 2.4. The Jelly Fish graph denoted by J(m, n) is a graph obtained from a 4-cycle (v_1, v_2, v_3, v_4) together with an edge v_1v_3 and appending m pendant edges to v_4 and n pendant edges to v_2 .

Definition 2.5. The Ladder graph L_m is defined as the cartesian product of path P_m with a complete graph K_2 . **Definition 2.6.** A triangular snake graph , denoted by Tm , is a graph obtained from a path $u_1u_2 \ldots u_n$ by joining u_i and u_{i+1} to a new vertex v_i , $1 \le i \le n-1$.

Definition 2.7. The Helm H_m is the graph obtained from wheel W_m by attaching pendant edges to each of its rim vertices.

III. DOUBLE POWER OF 2 DECOMPOSITION OF GRAPHS

Definition 3.1. A graph G is said to have Double Power of 2 Decomposition [DPo2D] if G can be decomposed into 2n subgraphs $\{2G_1, 2G_2, \ldots, 2G_n\}$ such that each G_i is connected and $|E(G_i)| = 2^i$, $1 \le i \le n$.

Clearly, $q = 4[2^n - 1]$. We denote the Double Power of 2 Decomposition [DPo2D] as $\{2G_2, 2G_2^2, \dots, 2G_2^n\}$.

Example 3.2. Consider the graph G given in the following figure.

The graph G admit Double Power of 2 Decomposition. The DPo2D of G is given in the following figure.

Lemma 4.1. Let $n \equiv 0 \pmod{2}$. Then G can be decomposed into $\{2G_2, 2G_2^2, ..., 2G_2^n\}$. Here $4[2^n - 1] = m + 8$. **Proof**. We have $n \equiv 0 \pmod{2}$. Then n = 2r, $r \ge 1$ and $r \in \mathbb{Z}$. Proof is by induction on r. when r = 1, n = 2. Then m + 8 = 12 can be decomposed into $\{2G_2, 2G_2^2\}$. Hence the result is true for r = 1.

Assume that the result is true for r - 1. Then n = 2r - 2. Thus q' = m + 8 = $4[2^{2r-2} - 1]$ can be decomposed into $\{2G_2, 2G_2^2, ..., 2G_2^{2r-2}\}$.

Now, to prove the result is true for r. We have to prove that $q = m + 8 = 4[2^{2r} - 1]$ can be decomposed into $\{2G_2, 2G_2^{2^r}, \ldots, 2G_2^{2^r}\}$. Define $q = q' \cup (2r-1) \cup (2r)$. Then $q = m + 8 = q' + 2[2^{2r-1} + 2^{2r}] = 4[2^{2r} - 1]$ can be decomposed into $\{2G_2, 2G_2^{2^r}, \ldots, 2G_2^{2^r}\}$. Hence by induction hypothesis, the lemma is proved for all r.

Lemma 4.2. Let $n - 1 \equiv 0 \pmod{2}$. Then G can be decomposed into $\{2G_2, 2G_2^2, \dots, 2G_2^n\}$. Here $4[2^n - 1] = m + 8$.

Proof. We have $n - 1 \equiv 0 \pmod{2}$. Then n = 2r + 1, $r \ge 1$ and $r \in \mathbb{Z}$. Proof is by induction on r. When r = 1, n = 3. Then m + 8 = 28 can be decomposed into $\{2G_2, 2G_2^2, 2G_2^3\}$. Hence the result is true for r = 1.

Assume that the result is true for r - 1. Then n = 2r -1. Thus q' = m + 8 = 4[2^{2r-1} - 1] can be decomposed into $\{2G_2, 2G_2^2, ..., 2G_2^{2r-1}\}$.

Now, to prove the result is true for r. We have to prove that $q = m + 8 = 4[2^{2r+1} - 1]$ can be decomposed into $\{2G_2, 2G_2^{2^{r+1}}\}$. Define $q = q' \cup (2r) \cup (2r + 1)$. Then $q = m + 8 = q' + 2[2^{2r} + 2^{2r+1}] = 4[2^{2r+1} - 1]$ can be decomposed into $\{2G_2, 2G_2^{2^{r+1}}\}$. Hence by induction hypothesis, the lemma is proved for all r.

Theorem 4.3. For an even integer m, the Jelly fish graph J(m, 3) admit Double Power of 2 Decomposition $\{2G_2, 2G_2^2, \ldots, 2G_2^n\}$ if and only if there exists an integer n satisfying the following properties :

- (a) n = 2r or 2r+1, $r \ge 1$ and $r \in \mathbb{Z}$
- (b) $4[2^n-1] = m+8$

Proof. Let G = J(m, 3). By the definition of G, q = m + 8. Assume that G admit Double Power of 2 Decomposition. By the definition, $q = 4[2^n - 1]$. Hence $4[2^n - 1] = m+8$. Clearly, m is an even integer. Now, $2^n = 1$

 $\frac{m+12}{4}$. This implies n = 2r or 2r + 1, $r \ge 1$ and $r \in \mathbb{Z}$.

Conversely, assume that n = 2r or 2r+1, $r \ge 1$ and $r \in \mathbb{Z}$. Also, $4[2^n - 1] = m+8$. This implies that m is always even. By lemma 3.1 and 3.2, $q = m + 8 = 4[2^n - 1]$ can be decomposed into $\{G_2, G_2^2, \ldots, G_2^n\}$. Hence G admit Double Power of 2 Decomposition.

Illustration 4.4. As an illustration, let us decompose the Jelly Fish J(20, 3). The graph J(20, 3) is given in figure.

Jelly Fish Graph J(20, 3)

Here m = 20. Thus, n = 3. Hence there will be two copies of three decompositions. The DPo2D of J(20, 3) is $\{2G_2, 2G_2^2, 2G_2^3\}$ and the decompositions are given in the following figure.

Table 4.5. List of first 10 J(m, 3)'s which accept DPo2D and their decompositions are given in the following table.

m	DPo2D
4	$2G_2, 2G_2^2$
20	$2G_2, 2G_2^2, 2G_2^3$
52	$2G_2, 2G_2^2,, 2G_2^4$
116	$2G_2, 2G_2^2,, 2G_2^5$
244	$2G_2, 2G_2^2,, 2G_2^6$
500	$2G_2, 2G_2^2,, 2G_2^7$
1012	$2G_2, 2G_2^2,, 2G_2^8$
2036	$2G_2, 2G_2^2,, 2G_2^9$
4084	$2G_2, 2G_2^2,, 2G_2^{10}$
8180	$2G_2, 2G_2^2,, 2G_2^{11}$

V. DOUBLE POWER OF 2 DECOMPOSITION OF $L_{\rm m}$

Theorem 5.1. For an even integer m, the ladder graph L_m admit Double Power of 2 Decomposition $\{2G_2, 2G_2^2, ..., 2G_2^n\}$ if and only if there exists an integer n satisfying the following properties.

- $1. \quad n=2r\text{ }1, \ r\geq 1 \ and \ r\in \mathbb{Z}$
- 2. $4[2^n 1] = 3m 2$

Proof. Let $G = L_m$. By the definition of G, q = 3m-2. Assume that G admit Double Power of 2 Decomposition. By the definition, $q = 4[2^n - 1]$. Hence $4[2^n - 1] = 3m-2$. Clearly, m is an even integer Now, $2^n = \frac{3m+2}{4}$. This implies n = 2r - 1, $r \ge 1$ and $r \in \mathbb{Z}$.

Conversely, assume that n = 2r - 1, $r \ge 1$ and $r \in \mathbb{Z}$. Also, $4[2^n - 1] = 3m-2$. We have to prove that G accept Double Power of 2 Decomposition. We prove this by induction on r. when r = 1, n = 1. Then 3m-2 = 4 can be decomposed into $\{2G_2\}$. Hence the result is true for r = 1.

Assume that the result is true for r-1. Then n = 2r-3. Thus $q' = 3m-2 = 4[2^{2r-3}-1]$ can be decomposed into $\{2G_2, 2G_2^2, \ldots, 2G_2^{2r-3}\}$.

Now, to prove the result is true for r. We have to prove that $q = 3m-2 = 4[2^{2r-1} - 1]$ can be decomposed into $\{2G_2, 2G_2^{2^r}, \ldots, 2G_2^{2^{r-1}}\}$. Define $q = q' \cup (2r - 2) \cup (2r - 1)$. Then $q = 3m-2 = q' + 2[2^{2r-2} + 2^{2r-1}] = 4[2^{2r-1} - 1]$ can be decomposed into $\{2G_2, 2G_2^{2^r}, \ldots, 2G_2^{2^r}, \ldots, 2G_2^{2^{r-1}}\}$. Hence by induction hypothesis, G can be decomposed into $\{2G_2, 2G_2^{2^r}, \ldots, 2G_2^{n^r}\}$ where $n = 2r-1, r \ge 1$ and $r \in \mathbb{Z}$. Thus G admit Double Power of 2 Decomposition.

Illustration 5.2. As an illustration, let us decompose the ladder graph L_{10} . The graph L_{10} is given in the following figure.

Here m = 10. Then n = 3. Hence there will be two copies of three decompositions. The DPo2D of L_{10} is $\{2G_2, 2G_2^2, 2G_2^3\}$ and the decompositions are given in the following figure.

m	DPo2D
2	2G ₂
10	$2G_2, 2G_2^2, 2G_2^3$
42	$2G_2, 2G_2^2, \ldots, 2G_2^5$
170	$2G_2, 2G_2^2, \ldots, 2G_2^7$
682	$2G_2, 2G_2^2, \ldots, 2G_2^9$
2730	$2G_2, 2G_2^2, \ldots, 2G_2^{11}$
10922	$2G_2, 2G_2^2, \ldots, 2G_2^{13}$
43690	$2G_2, 2G_2^2, \ldots, 2G_2^{15}$
174762	$2G_2, 2G_2^2, \ldots, 2G_2^{17}$
699050	$2G_2, 2G_2^2, \ldots, 2G_2^{19}$

Table 5.3. List of first 10 L_m's that accept DPo2D and their decompositions are given in the following table.

VI. DOUBLE POWER OF 2 DECOMPOSITION OF $\mathrm{T_m}$

Theorem 6.1. For an odd integer m, the triangular snake graph T_m accept Double Power of 2 Decomposition $\{2G_2, 2G_2^2, \ldots, 2G_2^n\}$ if and only if there exists an integer n satisfying the following properties.

- $1. \quad n=2r \ , \ r\geq 1 \ and \ r\in \ {\mathbb Z}$
- 2. $4[2^n 1] = 3m 3$

Proof. Let $G = T_m$. By the definition of G, q = 3m-3. Assume that G admit Double Power of 2 Decomposition.

By the definition, $q = 4[2^n - 1]$. Hence $4[2^n - 1] = 3m - 3$. Clearly, m is an odd integer. Now, $2^n = \frac{3m + 1}{2}$. This

implies n=2r , $r\geq 1$ and $r\in \mathbb{Z}.$

Conversely, assume that n = 2r, $r \ge 1$ and $r \in \mathbb{Z}$. Also, $4[2^n-1] = 3m - 3$. We have to prove that G accept Double Power of 2 Decomposition. We prove this by induction on r.

When r = 1, n = 2. Then 3m - 3 = 12 can be decomposed into $\{2G_2, 2G_2^2\}$. Hence the result is true for r = 1.

Assume that the result is true for r - 1. Then n = 2r-2. Thus $q' = 3m-3 = 4[2^{2r-2} - 1]$ can be decomposed into $\{2G_2, 2G_2^2, ..., 2G_2^{2r-2}\}$.

Now, to prove the result is true for r. We have to prove that $q = 3m-3 = 4[2^{2r}-1]$ can be decomposed into $\{2G_2, 2G_2^{2^r}, \ldots, 2G_2^{2^r}\}$. Define $q = q' \cup (2r-1) \cup (2r)$. Then $q = 3m-3 = q' + 2[2^{2r-1} + 2^{2r}] = 4[2^{2r}-1]$ can be decomposed into $\{2G_2, 2G_2^{2^r}, \ldots, 2G_2^{2^r}\}$. Hence by induction hypothesis, G can be decomposed into $\{2G_2, 2G_2^{2^r}, \ldots, 2G_2^{n^r}\}$ where n = 2r, $r \ge 1$ and $r \in \mathbb{Z}$. Thus G admit Double Power of 2 Decomposition.

Illustration 6.2. As an illustration, let us decompose the triangular snake graph T_{21} . The graph T_{21} is given in the following figure.

Triangular Snake Graph T₂₁

Here m = 21. Then n = 4. Thus there will be two copies of four decompositions. The DPo2D of T_{21} is $\{2G_2, 2G_2^2, 2G_2^3, 2G_2^4\}$ and the decomposition are given in the following figure.

Table 6.3. List of first 10 Tm's that accept Double Power of 2 Decomposition and their decompositions are given in the following table.

m	DPo2D
5	$2G_2, 2G_2^2$
21	$2G_2, 2G_2^2, 2G_2^3, 2G_2^4$
85	$2G_2, 2G_2^2,, 2G_2^6$
341	$2G_2, 2G_2^2,, 2G_2^8$

1365	$2G_2, 2G_2^2,, 2G_2^{10}$
5461	$2G_2, 2G_2^2,, 2G_2^{12}$
21845	$2G_2, 2G_2^2,, 2G_2^{14}$
87381	$2G_2, 2G_2^2,, 2G_2^{16}$
349525	$2G_2, 2G_2^2,, 2G_2^{18}$
1398101	$2G_2, 2G_2^2,, 2G_2^{20}$

VII. DOUBLE POWER OF 2 DECOMPOSITION OF H_m

Theorem 7.1. For an even integer m, the helm H_m accept Double Power of 2 Decomposition $\{2G_2, 2G_2^2, \ldots, 2G_2^n\}$ if and only if there exists an integer n satisfying the following properties :

- $1. \quad n \ = \ 2r \ , \ r \ge 1 \ and \ r \in \mathbb{Z}$
- 2. $4[2^n 1] = 3m$

Proof. Let $G = H_m$. By the definition of G, q = 3m. Assume that G accept Double Power of 2 Decomposition.

By the definition, $q = 4[2^n - 1]$. Hence $4[2^n - 1] = 3m$. Clearly, m is an even integer. Now, $2^n = \frac{3m + 4}{4}$. This

implies $n = 2r, r \ge 1$ and $r \in \mathbb{Z}$.

Conversely, assume that n = 2r, $r \ge 1$ and $r \in \mathbb{Z}$. Also, $4[2^n - 1] = 3m$. We have to prove that G accept Double Power of 2 Decomposition. We prove this by induction on r. When r = 1, n = 2. Then 3m = 12 can be decomposed into $\{2G_2, 2G_2^{2^2}\}$. Hence the result is true for r = 1. Assume that the result is true for r-1. Then n = 2r-2. Thus $q' = 3m = 4[2^{2r-2} - 1]$ can be decomposed into $\{2G_2, 2G_2^{2^r}, \ldots, 2G_2^{2^{r-2}}\}$. Now, to prove the result is true for r. We have to prove that $q = 3m = 4[2^{2r} - 1]$ can be decomposed into $\{2G_2, 2G_2^{2^r}, \ldots, 2G_2^{2^{r-2}}\}$. Now, to prove the result is true for r. We have to prove that $q = 3m = 4[2^{2r} - 1]$ can be decomposed into $\{2G_2, 2G_2^{2^r}, \ldots, 2G_2^{2^r}\}$. Define $q = q' \cup (2r-1) \cup (2r)$. Then $q = 3m = q' + 2[2^{2r-1} + 2^{2r}] = 4[2^{2r} - 1]$ can be decomposed into $\{2G_2, 2G_2^{2^r}, \ldots, 2G_2^{2^r}\}$. Hence by induction hypothesis, G can be decomposed into $\{2G_2, 2G_2^{2^r}, \ldots, 2G_2^{n^r}\}$ where n = 2r, $r \ge 1$ & $r \in \mathbb{Z}$. Thus G admit Double Power of 2 Decomposition.

Illustration 7.2. As an illustration, let us decompose the helm H_{20} . The graph H_{20} is given in the following figure.

The Graph H₂₀

Here m = 20. Hence n = 4. Thus there will be two copies of four decompositions. The DPo2D of H_{20} is $\{2G_2, 2G_2^2, 2G_2^3, 2G_2^3, 2G_2^4\}$ and the decompositions are given in the following figure.

Table 7.3. List of first 10 H_m 's that accept Double Power of 2 Decomposition and their decompositions are given in the following table.

m	DPo2D
4	$2G_2, 2G_2^2$
20	$2G_2, 2G_2^2, 2G_2^3, 2G_2^4$
84	$2G_2, 2G_2^2,, 2G_2^6$
340	$2G_2, 2G_2^2,, 2G_2^8$
1364	$2G_2, 2G_2^2, \dots, 2G_2^{10}$
5460	$2G_2, 2G_2^2,, 2G_2^{12}$
21844	$2G_2, 2G_2^2,, 2G_2^{14}$
87380	$2G_2, 2G_2^2,, 2G_2^{16}$
349524	$2G_2, 2G_2^2,, 2G_2^{18}$
1398100	$2G_2, 2G_2^2,, 2G_2^{20}$

REFERENCES

- [1] S. Asha and V. G. Smilin Shali, *Power of 2 Decomposition of Some Trees and a Spider Tree*, Journal of Information and Computational Science, JSSN: 1548 7741, Volume 10, Issue 3, 2020.
- [2] Frank Harary, (1972), Graph Theory, Addison-Wesley Publishing Company.
- [3] V.G. Smilin Shali and S. Asha, (2019), Double Arithmetic Odd Decomposition [DAOD] of Some Complete 4-Partite Graphs, International Journal of Innovative Technology and Exploring Engineering, Vol. 9, Issue - 2, December 2019, 3902-3907.
- [4] V. G. Smilin Shali and S. Asha, Power of 2 Decomposition of a Complete Tripartite Graph K_{2,4m} and a Special Butterfly Graph , International Journal of Engineering and Advanced Technology (IJEAT), ISSN : 2249 – 8958, Volume 9, Issue 3, February, 2020.
- [5] V. G. Smilin Shali and S. Asha, *Double Arithmetic Odd Decomposition [DAOD] of Graphs*, Journal of Xidian University, ISSN: 1001-2400, Volume 14, Issue 3, 2020.