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I. Introduction 

 

 Many types of topological indices such as degree based graph indices, distance based graph 

indices and counting related graph indices are explored during past recent years. Among distance 

based graph indices Wiener index [1] is the oldest one and studied well. In this paper, we introduce 

and study ABC status neighborhood index, GA status neighborhood index, AG status neighborhood 

index of a graph. 

 Let G be a finite, simple, connected graph. Let V(G) and E(G) be its vertex and edge sets 

respectively. The degree dG(u) of a vertex u is the number of vertices adjacent to u. The distance d(u, 

v) between any two vertices u and v is the length of shortest path connecting u and v. The status (u) 

of a vertex u in a graph G is the sum of distances of all other vertices from u in G. Let 

N(v)=NG(v)={v:uvE(G)}. Let    

 

 



 n

u N v

u u  be the status sum of neighbor vertices. For 

undefined term and notation, we refer [2]. 

 The first and second status neighborhood indices of a graph are introduced by Kulli in [3], 

defined as 

      

 

1
, 



    n n

u v E G

S N G u v       

 

2
. 



  n n

u v E G

S N G u v  

 Some of the research works on the status and status neighborhood indices can be found in [4, 

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. 

 We now introduce the ABC status neighborhood index, GA status neighborhood index, AG 

status neighborhood index of a graph G as follows: 

 The atom bond connectivity (ABC) status neighborhood index of a graph G is defined as 
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 The geometric-arithmetic (GA) status neighborhood index of a graph G is defined as 
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 The arithmetic-geometric (AG) status neighborhood index of a graph G is defined as 
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 Recently many different graph indices were studied, for example, in [16, 17, 18, 19, 20, 21, 

22, 23, 24]. 

 The harmonic status neighborhood index of a graph G is defined as 
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n nu v E G

H S N G
u v

 

 Considering the harmonic status neighborhood index, we define the harmonic status 

neighborhood polynomial of a graph G as 
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 The symmetric division status neighborhood index of a graph G is defined as 
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 Considering the symmetric division status neighborhood index, we define the symmetric 

division status neighborhood polynomial of a graph G as 
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 The inverse sum indeg status neighborhood index of a graph G is defined as 

  
   

   
 

.
 

 






n n

n nu v E G

u v
IS S N G

v u
 

 Considering the inverse sum indeg status neighborhood index, we define the inverse sum 

indeg status neighborhood polynomial of a graph G as 
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            The augmented status neighborhood index of a graph G is defined as 
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            Considering the augmented status neighborhood index, we define the augmented status 

neighborhood polynomial of a graph G as 
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 In this paper, some newly defined status neighborhood indices of some standard graphs, 

friendship graphs are determined. 

  

II. RESULTS FOR COMPLETE GRAPHS 

 In the following theorem, we compute the atom bond connectivity status neighborhood index, 

geometric-arithmetic status neighborhood index, arithmetic-geometric status neighborhood index of a 

complete graph Kn. 

Theorem 1. Let Kn be a complete graph. Then 

(1)  
 

 

2
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2 1
n

n n n
A B C S N K

n
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(3)  
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.
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n

n n
A G S N K  
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Proof: Let Kn be a complete graph with n vertices and 
 1

2

n n 
edges. Then for any vertex u of Kn, 

(u)= (n – 1). By calculation, we have n(u)= (n – 1)
2
 for any vertex u of Kn. Thus 

(1)  
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 In the following theorem, we compute the harmonic status neighborhood index and its 

polynomial of a complete graph Kn. 

Theorem 2. Let Kn be a complete graph. Then 
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Proof: Let Kn be a complete graph with n vertices and 
 1

2

n n 
edges. Then for any vertex u of Kn, 

(u)= (n – 1). By calculation, we have n(u)= (n – 1)
2
 for any vertex u of Kn. Thus 

(1)  
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 In the following theorem, we determine the symmetric division status neighborhood index 

and its polynomial of a complete graph Kn. 

Theorem 3. Let Kn be a complete graph. Then 

(1)    1 . 
n

S D S N K n n  
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Proof: Let Kn be a complete graph with n vertices and 
 1

2

n n 
edges. Then by calculation, we have 

n(u)= (n – 1)
2
 for any vertex u of Kn. Therefore 
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 In the following theorem, we compute the inverse sum indeg status neighborhood index and 

its polynomial of a complete graph Kn. 

Theorem 4. Let Kn be a complete graph. Then 
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Proof: Let Kn be a complete graph with n vertices and 
 1

2

n n 
edges. Then by calculation, we obtain 

n(u)= (n – 1)
2
 for any vertex u of Kn. Hence 
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 In the following theorem, we compute the augmented status neighborhood index and its 

polynomial of a complete graph Kn. 

Theorem 5. Let Kn be a complete graph. Then 

(1)  
 

 

1 3

32

1
.

1 6 2
n

n
A S N I K

n n






 

(2)  
 

 

 

1 2

32

1

8 2
1

, .
2

n

n n
n

n n
A S N I K x x






  

Proof: Let Kn be a complete graph with n vertices and 
 1

2

n n 
edges. By calculation, we have n(u)= 

(n – 1)
2
 for any vertex u of Kn. Thus 
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III. RESULTS FOR COMPLETE BIPARTITE GRAPHS 

 In the following theorem, we compute the atom bond connectivity status neighborhood index, 

geometric-arithmetic status neighborhood index, arithmetic-geometric index of a complete bipartite 

graph Kp,q. 

Theorem 6. Let Kp,q be a complete bipartite graph with p+q vertices and pq edges. Then 

(1)  
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Proof: If Kp,q is a complete bipartite graph, then it has p+q vertices and pq edges. The vertex set of 

Kp,q can be partitioned into two independent sets V1 and V2 such that u V1 and v V2 for every edge 

uv in Kp,q. Thus dB(u)=q and dB(v)=p, where B=Kp,q. Then we have (u)= q + 2p – 2 and (v)= p + 2q 

– 2. By calculation, we obtain n(u)= p(q + 2p – 2) and n(v)= q(p + 2q – 2). Thus 
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 In the following theorem, we compute the harmonic status neighborhood index and its 

polynomial of a complete bipartite graph. 

Theorem 7. Let Kp,q be a complete bipartite graph. Then 
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Proof: If Kp,q is a complete bipartite graph, then n(u)= p(q + 2p – 2) and n(v)= q(p + 2q – 2) for 

every edge uv in Kp,q, see Theorem 6. Let B=Kp,q. 

(1) From definition, we have 
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 In the following theorem, we compute the symmetric division status neighborhood index and 

its polynomial of a complete bipartite graph. 

Theorem 8. Let Kp,q be a complete bipartite graph. Then 
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Proof: Let B=Kp,q be a complete bipartite graph. Then n(u)= p(q + 2p – 2) and n(v)= q(p + 2q – 2) 

for every edge uv in Kp,q, see Theorem 6.  
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 In the following theorem, we determine the inverse sum indeg status neighborhood index and 

its polynomial of Kp,q. 

 

Theorem 9. Let Kp,q be a complete bipartite graph. Then 
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Proof: Let Kp,q = B be a complete bipartite graph. Then n(u)= p(q + 2p – 2) and n(v)= q(p + 2q – 2) 

for every edge uv in Kp,q, see Theorem 6.  

(1)  
   

   
 

,

 

 






n n

p q

n nu v E B

u v
IS S N K

u v
 

 
   

   

2 2 2 2

2 2 2 2

     


    

p q p q p q p q

q p q p q p
 

 
   

   

2 2

2 2

2 6 5 4
.

2 2 2

      


   

p q p q p q p q

p q p q p q

 

(2)  

   

   

 

,
,

 

 



 

n n

n n

u v

u v

p q

u v E B

IS S N K x x  

 

   

   

2 2 2 2

2 2 2 2

   

    


p q p q p q

q p q p q p
p q x  

 

   

   

2 2

2 2

2 6 5 4

2 2 2
.

p q p q p q

p q p q p q
p q x

    

   
  

 

 In the following theorem, we complete the augmented status neighborhood index and its 

polynomial of Kp,q. 

Theorem 10. Let Kp,q be a complete bipartite graph. Then 
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Proof: Let Kp,q = B be a complete bipartite graph. Then n(u)= p(q + 2p – 2) and n(v)= q(p + 2q – 2) 

for every edge uv in Kp,q.  

(1)  
   

   
 

3

,
2

 

 


 
  

  


n n

p q

n nu v E B

u v
A S N I K

u v
 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 66 Issue 9 - Sep 2020 

 

ISSN: 2231-5373                               http://www.ijmttjournal.org                                Page 146 

 
   

   

3

2 2 2 2

2 2 2 2 2

    
  

      

p q p q p q
p q

p q p q p q
 

 
   

   

3
2 2

4 4

2 2

2 6 5 4
.

2 2 2 2

     
  

      

p q p q p q
p q

p q p q p q

 

(2)  

   

   

 

3

2

,
,

 

 

 

 
  



 

n n

n n

u v

u v

p q

u v E B

A S N I K x x  

 

   

   

3

2 2 2 2

2 2 2 2 2

     

 
      

p q p q p q

q p q p q p
p q x

   

   

3
2 2

2 2

2 6 5 4

2 2 2 2
.

       
 
      

p q p q p q p q

p q p q p q
p q x  

 

IV. RESULTS FOR WHEEL GRAPHS 

 

 A wheel graph, denoted by Wn, is the join of K1 and Cn. A graph W4 is presented in Figure 1. 

 

 
Figure 1. Wheel graph W4 

 

 A wheel graph has n+1 vertices and 2n edges. In this graph, we find two types of edges as 

follows: 

       1
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 Therefore by calculation, there are two types of status edges as follows: 
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 By calculation, we find that there are two types of status neighborhood edges as in Table 1. 
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Table 1. Status  neighborhood edge partition of Wn 

 

Theorem 11. Let Wn be a wheel graph with n + 1 vertices and 2n edges. Then 
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Proof: From definition and by using Table 1, we deduce 
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 In the following theorem, we compute the harmonic status neighborhood index and its 

polynomial of a wheel graph Wn. 

Theorem 12. The Wn be a wheel graph with n+1 vertices and 2n edges. Then 
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Proof: (1) From definition and using Table 1, we deduce 
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 In the following theorem, we determine the symmetric division status neighborhood index 

and its polynomial of a wheel graph Wn. 

Theorem 13. Let Wn be a wheel graph with n+1 vertices and 2n edges. Then 

(1)  

4 3 2

2

4 1 2 3 4 6 0 3 6
2 .

1 0 2 7 1 8

   
 

 
n

n n n n
S D S N W n

n n

 

(2)  

4 3 2

3 2

4 1 2 3 4 6 0 3 6

2 1 0 2 7 1 8, .

   

  

n n n n

n n n
n

S D S N W x n x n x  

Proof: (1) From definition and using Table 1, we obtain 

  
 

 

 

 
 

 

 

 
  

 


n

n n

n

u v E W n n

u v
S D S N W

v u
 

  
2

2

5 6 5 6 5 6 2 3

5 6 5 6 5 62 3

     
     

     

n n n n n
n n

n n nn n

 

  
4 3 2

2

4 1 2 3 4 6 0 3 6
2 .

1 0 2 7 1 8

   
 

 

n n n n
n

n n

 

(2) From definition and using Table 1, we have 

  

 

 

 

 

 

,

 

 




 

n n

n n

n

u v

v u

n

u v E W

S D S N W x x  

 

2

2

5 6 5 6 5 6 2 3

5 6 5 6 2 3 5 6

   
 

    

n n n n n

n n n n nn x n x  

  

4 3 2

3 2

4 1 2 3 4 6 0 3 6

2 1 0 2 7 1 8 .

   

  

n n n n

n n nn x n x  

 
 In the following theorem, we determine the inverse sum indeg status neighborhood index and 

its polynomial of a wheel graph Wn. 

Theorem 14. Let Wn be a wheel graph with n+1 vertices and 2n edges. Then 

(1)    
 3 2

2

1 1 0 2 7 1 8
5 6 .

2 2 2 6
n

n n n n
IS S N W n n

n n

 
  

 

 

(2)  
 

3 2

2

1 0 2 7 1 81
5 6

2 2 62, .

 


  

n n n
n

n n
n

IS S N W x n x n x  

Proof: (1) From definition and using Table 1, we deduce 

  
   

   
 

 

 

 
  

 


n

n n

n

u v E W n n

u v
IS S N W

u v
 

  
     2

2

5 6 (5 6 ) 5 6 2 3

5 6 5 6 5 6 2 3

n n n n n
n n

n n n n n

   
 

     

 

   
 3 2

2

1 1 0 2 7 1 8
5 6 .

2 2 2 6

n n n n
n n

n n

 
  

 

 

(2) From definition and using Table 1, we have 

  

   

   

 

,

 

 



 

n n

n n

n

u v

u v

n

u v E W

IS S N W x x  

 

       2

2

5 6 5 6 5 6 2 3

5 6 5 6 2 2 6

   

     

n n n n n

n n n nn x n x  

  
 

3 2

2

1 0 2 7 1 81
5 6

2 2 62 .

 


  

n n n
n

n nn x n x  
 
 In the following theorem, we compute augmented status neighborhood index and its 

polynomial of a wheel graph Wn. 

Theorem 15. Let Wn be a wheel graph with n+1 vertices and 2n edges. Then 
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(1)  
 

3 32 3 2

2

5 6 1 0 2 7 1 8
.

1 0 1 4 2 2 8

     
    

    
n

n n n n
A S N I W n n

n n n

 

(2)  

 
3 32 3 2

2

5 6 1 0 2 7 1 8

1 0 1 4 2 2 8, .

n n n n

n n n
n

S S N I W x n x n x

     
   

        

Proof: (1) Using definition and Table 1, we obtain 

  
   

   
 

3

2

 

 

 
  

  


n

n n

n

u v E W n n

u v
A S N I W
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3 32 3 2

2
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.

1 0 1 4 2 2 8

     
    

    

n n n n
n n

n n n

 

(2) From definition and using Table 1, we have 
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2

,

 

 

 
 

  



 

n n

n n

n

u v

u v

n

u v E W

A S N I W x x  

 

       
33

2

2

5 6 5 6 5 6 2 3
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n n n n n

n n n n nn x n x  

  

 
3 32 3 2

2

5 6 1 0 2 7 1 8

1 0 1 4 2 2 8 .

n n n n

n n nn x n x

     
   

        

 

 
V. FRIENDSHIP GRAPHS 

 

 A friendship graph Fn is the graph obtained by taking n  2 copies of C3 with vertex in 

common. A graph F4 shown in Figure 2. 

 
Figure 2. Friendship graph F4 

 

 A graph Fn has 2n+1 vertices and 3n edges. In this graph Fn, we find two types of edges as 

follows: 

       1
| 2 ,   

n n
n F F

E u v E F d u d v    |E1| = n. 

       2
| 2 , 2 ,   

n n
n F F

E u v E F d u d v n   |E2| = 2n. 

 Thus by calculation, in Fn there are two types of status edges as follows: 

       1
| 4 2 ,     

n
E uv E F u v n   |E1| = n. 

       2
| 2 , 4 2 ,     

n
E uv E F u n v n   |E2| = 2n. 

 Therefore by calculation, we obtain that there are two types of status neighborhood edges as 

given in Table 2. 
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     , \  
n n n

u v u v E F  (6n – 2, 6n – 2) (6n – 2, 2n(4n – 2)) 

Number of edges n 2n 

Table 2. Status neighborhood edge partition of Fn 

 

Theorem 16. Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then 

(1)  

1

2 2

3 2

1 2 6 4 2
.

6 2 6 5
n

n n n n
A B C S N F n

n n n n

   
   

   

 

(2)  

3 2

2

4 1 2 1 0 2
.

4 1

 
 

 
n

n n n n
G A S N F n

n n
 

(3)  
 2

3 2

4 1
.

1 2 1 0 2

n

n n n
A G S N F n

n n n

 
 

 

 

Proof: From definition and by using Table 2, we obtain 
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1

22

n
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n
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2 22
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3 2

2
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n

n n

 
 

 
 

(3)  
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n
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n

u v E F n n

u v
A G S N F

u v

 

 


   

 
 

   

 

   

2

2

6 2 6 2 2 6 2 8 4

2 6 2 6 2 2 6 2 8 4

n n n n n n n

n n n n n

     
 

   

 

 
 2

3 2

4 1
.

1 2 1 0 2

n n n
n

n n n

 
 

 

 

 

 In the following theorem, we compute the harmonic status neighborhood index and its 

polynomial of a friendship graph Fn. 

Theorem 17. The Fn be a friendship graph with 2n+1 vertices and 3n edges. Then 

(1)  
2

2
.

6 2 4 1
n

n n
H S N F

n n n

 
  

 

(2)  
2

1 1

6 2 4 1, 2 .n n n
n

H S N F x n x n x     

Proof: (1) From definition and using Table 2, we deduce 
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n n
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2

2
.

6 2 4 1
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(2) From definition and by using Table 2, we derive 
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n

u v

n
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2

2 2

6 2 6 2 6 2 8 42n n n n nn x n x        

  
2

1 1

6 2 4 12 .n n nn x n x     

 

 In the following theorem, we compute the symmetric division status neighborhood index and 

its polynomial of a friendship graph Fn. 

Theorem 18. Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then 

(1)  

4 3 2

2

1 6 1 6 1 3 6 1
2 .

6 5 1
n

n n n n
S D S N F n

n n
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4 3 2

3 2

1 6 1 6 1 3 6 1
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n

S D S N F x n x n x

   

    

Proof: (1) From definition and using Table 2, we obtain 
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u v
S D S N F

v u

 

 

 
  

 
  

  
2

2

6 2 6 2 6 2 8 4
2

6 2 6 2 6 28 4

n n n n n
n n

n n nn n

     
     

     

 

  
4 3 2

2

1 6 1 6 1 3 6 1
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(2) From definition and using Table 2, we have 
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 In the following theorem, we compute the inverse sum indeg status neighborhood index and 

its polynomial of a friendship graph Fn. 

Theorem 19. Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then 

(1)    
 2 2

2

8 6 5 1
3 1 .

4 1
n

n n n
IS S N F n n

n n

 
  

 

 

(2)  

 2
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Proof: (1) Using definition and Table 2, we obtain 
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(2) From definition and using Table 2, we deduce 
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 In the following theorem, we compute augmented status neighborhood index and its 

polynomial of a friendship graph Fn. 

Theorem 20. Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then 
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Proof: (1) From definition and using Table 2, we derive 
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(2) Using definition and Table 2, we deduce 
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