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vertices in a graph G. In this study, we define the atom bond connectivity (ABC) status neighborhood index,
geometric-arithmetic (GA) status neighborhood index, arithmetic-geometric (AG) status neighborhood index,
harmonic status neighborhood index, symmetric division status neighborhood index, inverse sum indeg status
neighborhood index of a graph and compute exact formulas for some standard graphs, friendship graphs.

Keywords: distance in a graph, status neighborhood, ABC, GA, AG status neighborhood indices, graphs.

Mathematics Subject Classification: 05C05, 05C12, 05C35, 05C90.
I. Introduction

Many types of topological indices such as degree based graph indices, distance based graph
indices and counting related graph indices are explored during past recent years. Among distance
based graph indices Wiener index [1] is the oldest one and studied well. In this paper, we introduce
and study ABC status neighborhood index, GA status neighborhood index, AG status neighborhood
index of a graph.

Let G be a finite, simple, connected graph. Let V(G) and E(G) be its vertex and edge sets
respectively. The degree dg(u) of a vertex u is the number of vertices adjacent to u. The distance d(u,
v) between any two vertices u and v is the length of shortest path connecting u and v. The status o(u)
of a vertex u in a graph G is the sum of distances of all other vertices from u in G. Let
N(v)=Ng(v)={v:uveE(G)}. Let & (u)= > o (u) be the status sum of neighbor vertices. For

ueN (v)
undefined term and notation, we refer [2].

The first and second status neighborhood indices of a graph are introduced by Kulli in [3],
defined as

SNl(G)= Z [o-n(u)+0'n(v)], SNZ(G): z an(u)an(v).

uveE(G) uveE(G)

Some of the research works on the status and status neighborhood indices can be found in [4,
5,6,7,8,9, 10,11, 12, 13, 14, 15].

We now introduce the ABC status neighborhood index, GA status neighborhood index, AG
status neighborhood index of a graph G as follows:

The atom bond connectivity (ABC) status neighborhood index of a graph G is defined as

ABCSN (G)= % \/

uveE(G)

The geometric-arithmetic (GA) status neighborhood index of a graph G is defined as

o, (W+o, (v)-2

o, (o, (V)

24/Gn (U)O’n (v)
GASN(G)= Yy ——

uwvek(G) In
The arithmetic-geometric (AG) status neighborhood index of a graph G is defined as

o, W) +o, (v)
AGSN (G)= ¥

uveE(G) 2\,‘7n (Wo, (v).

(W+o, (V)
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Recently many different graph indices were studied, for example, in [16, 17, 18, 19, 20, 21,
22,23, 24].
The harmonic status neighborhood index of a graph G is defined as

HSN(G)= ¥ 2
uVEE(G)crn(u)+crn(v).
Considering the harmonic status neighborhood index, we define the harmonic status

neighborhood polynomial of a graph G as
2

HSN (G,X)= z XG"(U)HT"(V).
uveE(G)

The symmetric division status neighborhood index of a graph G is defined as

SDSN (G) = ¥ (Gn(u)+an(v)\|.
ung(G)kO—n(V) o—n(u)

Considering the symmetric division status neighborhood index, we define the symmetric
division status neighborhood polynomial of a graph G as
(o‘n(u)Jro'n(v)\

X'\a"(v) a”(u))‘.

SDSN (G,X)= Z
uve E(G)

The inverse sum indeg status neighborhood index of a graph G is defined as

o,(weo, (v)

ISSN(G) = %
uveE(G) 9 n
Considering the inverse sum indeg status neighborhood index, we define the inverse sum
indeg status neighborhood polynomial of a graph G as
o, (uo (v)
|SSN (ny): Z Xo'n(V)+O-n(U).
uveE(G)
The augmented status neighborhood index of a graph G is defined as
(o-n (u) + o, (v) - 2\3
ASNI(G)= ¥ | | -
ung(G)k On (u)o_n (v) )
Considering the augmented status neighborhood index, we define the augmented status
neighborhood polynomial of a graph G as
([ o, (weo (v) Y

XLJﬂ(UHaﬂ(V)—ZJ

W+ o, (u)

ASNI (G, x)= ¥
uveE(G)
In this paper, some newly defined status neighborhood indices of some standard graphs,
friendship graphs are determined.

Il. RESULTS FOR COMPLETE GRAPHS
In the following theorem, we compute the atom bond connectivity status neighborhood index,
geometric-arithmetic status neighborhood index, arithmetic-geometric status neighborhood index of a
complete graph K.
Theorem 1. Let K, be a complete graph. Then

na/n(n - 2)

(1) ABCSN(Kn)zm.
2 GASN(Kn)=n(n2_1).

n(n-1)

(3 AGSN (K, )= »
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n(n-1)

Proof: Let K, be a complete graph with n vertices and edges. Then for any vertex u of K,

o(u)= (n —1). By calculation, we have o,(u)= (n — 1)? for any vertex u of K. Thus
1 1

w-212 [-D?+t-1"-212n(n-
) ABCSN (K, )= 3 |(crn(u)+crn v \2=|(n 1" +(n-1) 2| n(n-1)

uVeE(Kn)k Oh (U)o-n (v) ) I_ (n—l)z(n—l)z J 2

nyfn(n - 2)
) \/Z_(n—l).
Zm:{—zm—in(n—l)
wee(k) On W o (D[ (nopfy (-t | 2
n(n-1)
—

(2) GASN (K, )=

o, (W +o, (V) 7|r(n71)2+(n71)2 W‘n(nm

UVEE(KH)Z\/O'H(U)O'n(V) LZ\/(n—l)z(n—l)ZJ 2
n(n-1)
—
In the following theorem, we compute the harmonic status neighborhood index and its

polynomial of a complete graph K.
Theorem 2. Let K, be a complete graph. Then

(3) AGSN (K, )=

n

(1) HSN(Kn):z(n_l).

1
n(n—l)x(n 2

2) HSN (K, x)= .
2
n(n-1)

Proof: Let K, be a complete graph with n vertices and edges. Then for any vertex u of K,

o(u)= (n —1). By calculation, we have o,(u)= (n — 1)? for any vertex u of K. Thus

2 [ 2 Tn(n-1)
@ HSN (K, )= X -
we oo, ) (oD o] 2

n

S 2(n-1)
2 2
T e nln-1) —
2 HSN (K. x)= 3 x Jwre, NN T (o)
uveE(K,) 2
1
_ n(n—l)x(n71)2.
2

In the following theorem, we determine the symmetric division status neighborhood index
and its polynomial of a complete graph K.
Theorem 3. Let K, be a complete graph. Then

(1) SDSN (K,)=n(n-1).
2 SDSN(Kn,x):MXZ.
2
Proof: Let K, be a complete graph with n vertices and nn-1) edges. Then by calculation, we have
2

on(U)= (n — 1) for any vertex u of K,. Therefore
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(o, () o, (W) T(n-D* (-D*Tntn-1)

(1) SDSN (K, )= | + | = —+ ~|
uvaE(K")an (v) O (U)} |_(n—l) (n-1) J 2
=n(n-1).
o, (W) o, () ( ) (n-1° (n-1)°
+ -1 ]
2)  SDSN(K,,x)= ¥ x7 e JLRLT Tl o
uveE(K,) 2
n(n-1) ,
=X .
2

In the following theorem, we compute the inverse sum indeg status neighborhood index and
its polynomial of a complete graph K.
Theorem 4. Let K, be a complete graph. Then

(1) ISSN(Kn):in(nfl)g.
4

1 2
n(n-1) ~-v
X 2 .

(2) ISSN (K, x)= »

n(n-1)
2

Proof: Let K, be a complete graph with n vertices and edges. Then by calculation, we obtain

on(U)= (n — 1) for any vertex u of K. Hence
o, (Wao, (v) -’ -D® Thtn-1)

1) ISSN (K, )= Y = |

week )T WHo V) [(on® v (n-p® ] 2

1 3
=—n(n-1)".
4
2 ISSN (K, x)= Y Xan(uwn(v):wal)i(nflf
uveE (K, ) 2

n(n-1) ~(u'
—x? .

2

In the following theorem, we compute the augmented status neighborhood index and its
polynomial of a complete graph K.
Theorem 5. Let K, be a complete graph. Then

13
) ASNl(Kn):(”;)g_
16n° (n - 2)
(n-0"
2 ASNl(Kn,x):”(”‘1)Xsn2<n72>3.
2

n(n-1)

Proof: Let K, be a complete graph with n vertices and edges. By calculation, we have c,(u)=

(n — 1)* for any vertex u of K. Thus

(o, Wo, W ) nk-D( (-1 (-1 Y’

(D) ASNI(K)= ¥ | | = L . 2 J
wee(k Lo (W +o, (vV)-2) 2 (n-1°+(h-1" -2

R

16n° (n-2)°

ISSN: 2231-5373 http://www.ijmttjournal.org Page 142



http://www.ijmttjournal.org/

International Journal of Mathematics Trends and Technology (IJMTT) — Volume 66 Issue 9 - Sep 2020

3

(_eulwo,) Y (D' J
(uW+o (v)-2 n(n —l) ﬁ
(2 ASNI (K x)= ¥ (L , J _ (LD (- -2
.
uveE(K,) 2
_n (n-1) X8x3(n—2)3.
2

I1l. RESULTS FOR COMPLETE BIPARTITE GRAPHS
In the following theorem, we compute the atom bond connectivity status neighborhood index,
geometric-arithmetic status neighborhood index, arithmetic-geometric index of a complete bipartite
graph Ko .
Theorem 6. Let K, 4 be a complete bipartite graph with p+q vertices and pq edges. Then
1

Jpq{Z(p2+q2)—2(p+q)+2pq—2}7f

L 2(p2+q2)—6(p+q)+5pq+4 J

1

(1) ABCSN (K )

(Dq);[Z(pz+q2)—6(p+q)+5pq+4};

(p?+a®)=(p+a)+ pg

(2 GASN (K, )=

(pg)2[(p*+q*)~(p+a)+ pa

2(p2 +q2)—6(p+q)+5pq+4
Proof: If K, is a complete bipartite graph, then it has p+q vertices and pq edges. The vertex set of
Ko, can be partitioned into two independent sets V; and V, such that u € V,and v € V, for every edge
uv in K, . Thus dg(u)=q and dg(v)=p, where B=K . Then we have c(u)=q + 2p—2 and o(v)=p + 29
— 2. By calculation, we obtain o,(u)= p(q + 2p — 2) and o,(vV)=q(p + 29 — 2). Thus

1

3) AGSN (K, )=

(1) ABCSN (K, )= ¥ |(cn(u)+an(v)—2\|z
wvek (8)\ O'n(U)O'n(V) )

7pqrp(Q+2p—2)+q(p+2q—2)—21§
‘L p(a+2p-2)a(p+2q-2) J|

N

pq{2(p2+q2)—2(p+q)+2pq—2}1|

r
| :
L 2(p2+q2)76(p+q)+5pq+4 J

24/an(u)an (v)
2 GASN (K )= Y —————

y o, (W) +o (v)

uveE(B
1

2pa[p(g+2p-2)a(p+2q-2)]2
p(a+2p-2)+a(p+29-2)
1

3 il

(pa)z[2(p®+a’)-6(p+q)+5pq+4]

(p2+a®)-(p+q)+ pg

o, (W +o, (v)

UVEZE:(B)Z\’O'H(U)O'n (v)

pa{p(a+2p—-2)+q(p+2q-2)}
2[p(a+2p-2)a(p+2q-2)]2

3 AGSN (K, )=
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Jra[(p?+a?)=(p+a)+ pq]

1

[2(p2Jrqz)fﬁ(erq)+5pq+4}2

In the following theorem, we compute the harmonic status neighborhood index and its
polynomial of a complete bipartite graph.
Theorem 7. Let K, ; be a complete bipartite graph. Then

Q) HSN (K, )= PA ,
(Ksa) (p2+q®)~(p+a)+ pg

(2) HSN (K, ,.x)= pax P T )-(pra)ea

Proof: If K, is a complete bipartite graph, then c,(u)= p(q + 2p — 2) and c,(v)= q(p + 2q — 2) for
every edge uv in K, 4, see Theorem 6. Let B=K .
@ From definition, we have

2
HSN (K = _—
( p'Q) uVEZE:(B)O-H(U)+O-I‘I(V)
2 1
= Pq
Lp(q+2p—2)+q(p+2q—2)J

pq

(p2+a”)-(p+q)+ pa
(2 From definition, we have

2

Ju)+o (v)
HSN (K, oox)= > x""7°
uveE(B)
2

— pax p(q+2p-2)+q(p+2q-2)

1

_ pqx(p7+qz)*(P+q)+ Pa

In the following theorem, we compute the symmetric division status neighborhood index and
its polynomial of a complete bipartite graph.
Theorem 8. Let K, ; be a complete bipartite graph. Then

2 2
pz(q+2p—2) +q2(p+2q—2)

@ SDSN (K =
( p’q) (p+29-2)(a+2p-2)
p’(q+2p-2)"+q*(p+2q-2)°
(2) SDSN(KM,X):pqx pa(p+2g-2)(a+2p-2)

Proof: Let B=K, 4 be a complete bipartite graph. Then o,(u)= p(q + 2p — 2) and c,(v)= q(p + 29 — 2)
for every edge uv in K 4, see Theorem 6.

(1) SDSN (K, )= 3 |(crn(w an(v)\|

+
ust(B)kan(V) Jn(U))

[p(g+2p-2) q(p+2q-2)]
Pa | + |

la(p+29-2) p(g+2p-2)|

2 2
pz(q+2p—2)+q2(p+2q—2)
(p+29-2)(q+2p-2)
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o, (u) o (v)

N
o, (v) o (u)
(2 SDSN (K, ., x)= Y x7 " 7F

uveE(B)

‘fp(q+2 p—2)+q(p+2q—2)1
_ quLq(p+2q72) p(a+2p-2) ]

2 2
p’(a+2p-2) +q°(p+29-2)
pa(p+2g-2)(q+2p-2)

= pagx

In the following theorem, we determine the inverse sum indeg status neighborhood index and
its polynomial of K, .
Theorem 9. Let K, ; be a complete bipartite graph. Then

(1) ISSN(KM)zpq[Z(p A )*6(p+q)+5pq+4]

2(p?+q®)-2(p+q)+2pqg

2(p*+q°)-6(p+q)+5pg+4
2(p*+q°)-2(p+a)+2pq

(2 ISSN (K

Proof: Let K, , = B be a complete bipartite graph. Then c,(u)=p(q + 2p — 2) and o,(v)=q(p + 29 — 2)
for every edge uv in K, see Theorem 6.

o, Wo, (v)
Q) ISSN (K, ) = —n

p.q'X) = POX

wer(e) n (W +o (v)

pa[p(a+2p-2)a(p+2q-2)]
qa(p+2q-2)+p(g+2p-2)

pal2(p’+a°)-6(p+q)+5pq+4]

Z(pz +q2)—2(p+Q)+2pq
o, Wa,v)
2 ISSN (K, . x)= ¥ O Wa, ()
uveE(B)

p(a+2p-2)a(p+2q-2)

_ pqxq(p+2q—2)+p(q+2 p-2)

2(p*+q°)-6(p+q)+5pq+4
2(p"+q°)-2(p+q)+2pq

= pagx

In the following theorem, we complete the augmented status neighborhood index and its
polynomial of K, .
Theorem 10. Let K, 4 be a complete bipartite graph. Then

[2

p’+q°)- 6(p+Q)+5PQ+4JJ

(1) ASNI (K, )=p"q" L

(p°
2(p?+q ) 2(p+q)+2pq-2

(pq[z p’+q”)-6(p+q)+5pq+4] \3
(2) ASNI (K, 4, x)= pqxt 2(p*+a’)-2(p+a)+2pq-2 J .

Proof: LetK,,=B be a complete bipartite graph. Then o,(u)= p(q + 2p — 2) and o,(v)= q(p + 29 - 2)
for every edge uv in K, .

(o, (Wo, (v

1 ASNI (K =
( ) ( qu) UVEZE(B)LU“(U)+O-H(V)_2J
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PQI( p(a+2p-2)q(p+2q-2) \|3
\p(a+2p-2)+q(p+29-2)-2)

3
ot f2(p"+a")-6(p+a)+5pg+4]
Lz(p2+q2)—2(p+q)+2pq—2J
( o, (uo (v) \

| \
(o, (W+o (v)-2)
2 ASNI (K, ox)= 3 x 7077

uveE(B)
( plgr2p-2)q(p+2q-2) Y { pa[2(p®+a’)-6(p+a)+5pa+a])
a(p+2q-2)+p(q+2p-2)-2 L 2(p*+q*)-2(p+a)+2pg-2 J
- pax' !

= pgx
IV. RESULTS FOR WHEEL GRAPHS

A wheel graph, denoted by W,, is the join of K; and C,,. A graph W, is presented in Figure 1.

Figure 1. Wheel graph W,

A wheel graph has n+1 vertices and 2n edges. In this graph, we find two types of edges as
follows:

E, = {ueEW,)ld, (W=d, (v)=3) |Ea| = n.
E,={uve E(W,)Id, (uW=34d, (v)=n} |E2| = n.
Therefore by calculation, there are two types of status edges as follows:
E,={uve E(W,)|o(u)=0(v)=2n-3}, |E4| =n.
E,={uveE(W,)|o(u)=no(v)=2n-3}, |E2| =n.

By calculation, we find that there are two types of status neighborhood edges as in Table 1.

o, (W), o, (V)\uve E(W,) (5n -6, 5n —-6) (5n -6, n(2n - 3))

Number of edges n n

Table 1. Status neighborhood edge partition of W,

Theorem 11. Let W, be a wheel graph with n + 1 vertices and 2n edges. Then

1 1
n(ion-14)2 [  2n?’4+2n-8 )2
(1) ABCSN (W )= Z i - . ” J
5n -6 10n” —=27n" +18n
n\/10n3—27n2+18n
2 GASN (W, )=n+ .
2
n~+n-3
n(n2+n—3)
(3) AGSN (W)=

=N+ .
«/10n3 ~27n” +18n
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Proof: From definition and by using Table 1, we deduce

(1) ABCSN (W )= z (O'H(U)Jro'n(v)fz\lz
wee W, )\ o, (U)o‘n (v) )

1

1 it}
((5n—6)+(5n-6)—2)2 ((5n—-6)+(2n% —3n)—2)2
+n
(5n -6)(5n-6) J L (sn-6)(2n% - 3n)

=n

1 L
n(ion-14)2 [  2n®°+2n-8 )2
= 4+ n .
5n -6 10n3—27n2+18nJ
2,/Gn(u)an(v)
2 GASN (W, )= —~ .
weew,) 0, (W +o (v)
24/(5n - 6)(5n - 6) 2\/(5n—6)(2n2—3n)
=n +n
5n—6+5n—6 5n-6+2n° - 3n
n\/10n3—27n2+18n
=n+ > .
n"+n-3
o, (W +o (v)
(3) AGSN (W )=

uve%(:wn) Za'O'n (U )O'n (V)

n(5n-6+5n-6) n(5n-6+2n?-3n)
= +
24/(5n—6)(5n - 6) 2\/(5n—6)(2n2—3n)

n(n2+n—3)

=n

+ .
\/10n3 —27n% +18n

In the following theorem, we compute the harmonic status neighborhood index and its
polynomial of a wheel graph W,
Theorem 12. The W, be a wheel graph with n+1 vertices and 2n edges. Then

n n
(1) HSN (W )= + .
(Wa) 5n-6 n’+n-3
1 1
2 HSN (W, ,x)=nx5"-6 4 pxnn-3,
Proof: (1) From definition and using Table 1, we deduce
2
HSN (W )= _
) uve;Wn)an(u)+an(v)
2 2
=n +n .
5n-6+5n-6 5n -6+ 2n" —3n
n n

:5r1764r n4n-3
(2) Using definition and Table 1, we derive

HSN (Wn,X)= Z o, (W+o, (v)
uveE (W, )

2 2

— nx°n-6+5n-6 _ nXSn—6+2n2—3n

1 1

2
— nx°n-6 L pyxn +n-3
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In the following theorem, we determine the symmetric division status neighborhood index
and its polynomial of a wheel graph W,,.
Theorem 13. Let W, be a wheel graph with n+1 vertices and 2n edges. Then

4n* —12n° +34n% —60n+ 36

(1) SDSN (W, )=2n+ .
10n" —27n+18
4n*-12n°+34n°-60n+36

(2) SDSN (Wn,x):nx2+nx 10n°-27n°+18n '
Proof: (1) From definition and using Table 1, we obtain

SOSN (W)= 3 (cr"(u)+on(v)\
weew L o, (V) o (u) )

5n-6 5n-6 ( sn-6 2n®—3n)

:n[ + J+nk + J
5n-6 5n-6 2n®-3n 5n-6

4n* —12n® + 34n? —60n + 36

=2n+ p
10n" - 27n+18

(2) From definition and using Table 1, we have

o, () o, (v)

SDSN (WH,X)= Z o, (v) o (u)

uveE (W, )

5n-6 5n-6 5n-6 2n°-3n

+ P +
nXSn—G 5n-6 + nXZn -3n 5n-6

4n‘-12n°+34n°-60n+36
10n°-27n%+18n

2
=nXx + nx

In the following theorem, we determine the inverse sum indeg status neighborhood index and
its polynomial of a wheel graph W,.
Theorem 14. Let W, be a wheel graph with n+1 vertices and 2n edges. Then

1 n(1on® - 27n?% +18n)
(1)  1ssN(W,)==n(5n-6)+ .
2 2n2 +2n -6
1 10n°-27n°+18n
—(5n-6) —_—
(2) ISSN (W, x) = nx? +nx  2niean-s

Proof: (1) From definition and using Table 1, we deduce
(o (Wo (v) )
ISSN (W, )= Y | ——"—|
UVEE(WH)\O'n(U)+Gn(V))

(5n - 6)(5n - 6) (5n-6)(2n% - 3n)
n + N

5n -6 +5n-6 5n -6+ 2n° — 3n
1 n(1on® - 27n? +18n)
=—n(5n-6)+ 5 .
2 2n" +2n -6

(2) From definition and using Table 1, we have

o, (Wao (v)
ISSN (Wn,X)= z o, (W+o, (v)

uveE (W, )

(5n-6)(5n-6) (5n-6)(2n°-3n)

2
= nx 5n-6+5n-6 + nx 2n"+2n-6

10n°-27n%+18n

1
—(5n-6) 5
2n"+2n-6

=nx? + nx

In the following theorem, we compute augmented status neighborhood index and its
polynomial of a wheel graph W,,.
Theorem 15. Let W, be a wheel graph with n+1 vertices and 2n edges. Then
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3 3
[(5n—6)" ] [10n° - 27n? +18n !
nj—m— +Nn .

(1) ASNI (W)=

10n -14 2n® +2n-8
[sn-e’ T f10n'-27n'aen
(2 SSNI (W, ,x)=nx-ton1ed nxl 2n*+2n-8

Proof: (1) Using definition and Table 1, we obtain

ASNI(W, )= 5 ‘( o, (Wao, (v) \|
UVEE(WH)KGH(U)+GH(V)—2)

3 3
( (5n—6)(5n-6) ) |( (5n—6)(2n2—3n)\|
n +Nn
5n—6+5n-6-2 (5n-6+2n°-3n-2)
3
[(5n-6)"1 [10n® - 27n? +18n1
=nL—J +n > .
10n -14 2n" +2n -8
(2) From definition and using Table 1, we have

(oW, () w‘z
(u) (v)-2
MEAILS J

ASNI(W ., x)= Y

uveE (W, )

((5n-6)(5n-6) ) ( (5n-6)(2n?-3n) )

2
- nx 5n—6+5n—6—2J + nx 5n-6+2n"-2n-2

3 3
[(5n-6)"1 f10n°-27n%+18n 1

L 2
10n-14 + nx[ 2n"+2n-8

= nXx

V. FRIENDSHIP GRAPHS

A friendship graph F, is the graph obtained by taking n > 2 copies of C; with vertex in
common. A graph F, shown in Figure 2.

Figure 2. Friendship graph F,

A graph F, has 2n+1 vertices and 3n edges. In this graph F,, we find two types of edges as
follows:

E,={uve E(F,)lde (u)=d (v)=2}, [Ei =n.
E, ={uve E(F,)ld. (W=2,d. (v)=2n}, |E2| = 2n.
Thus by calculation, in F, there are two types of status edges as follows:
E,={uveE(F) oW =0c(v)=4n-2}, |E1| = n.
E,={uveE(F,)lo(u)=2n0(v)=4n-2}, |E2| = 2n.

Therefore by calculation, we obtain that there are two types of status neighborhood edges as
given in Table 2.
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o, (W),o, (W\uveE (F,) (6n -2, 6n-2) (6n— 2, 2n(4n — 2))

Number of edges n 2n

Table 2. Status neighborhood edge partition of F,

Theorem 16. Let F, be a friendship graph with 2n+1 vertices and 3n edges. Then

1

n12n - 6 [ 4n?s+n-2 12

(1) ABCSN (F,)= +n
" 6n -2 6n® - 5n% +n
3 2
4nN12n” -10n" + 2n
(2) GASN (F )=n+ \/ - :
4n" +n-1
n(4n® +n-1)
(3 AGSN (F,)=n+

\/12n3 Cton’ 420
Proof: From definition and by using Table 2, we obtain

1

5 [o (W+o, (V=212
NP T R

(1) ABCSN (F,)=

1 L

f6n-2+6n-2-272 (6n-2+8n>—4n-2)2
=n +2n| |
[ G6n-206n-2) | " (n-2)(an?—an) )

1

n12n - 6 [ 4n?+n-2 12

- +tn 3 2
6n -2 6n° —-5n" +n

2yJo, (Wo (V)
(2) GASN(FH): z M

o, (W +o, (v)

uveE(F))

24/(6n - 2)(6n - 2) 2\/(6n—2)(8n2—4n)
=n +2n
6n—2+6n-2 6n—2+8n° —4n

4m/12n3 —10n? + 2n

=n+ 2
An” +n-1

o, (W+o, (v)

(B)  AGsN(F)= Y Tt
wek(F,) 24/, (Wo (V)

n(6n-2+6n-2) 2n(6n—-2+8n%—4n)
+
2/(6n - 2)(6n - 2) 2\/(6n—2)(8n2—4n)

n(4n2 +n—1)

n+

\/12n3 —~10n% + 2n

In the following theorem, we compute the harmonic status neighborhood index and its
polynomial of a friendship graph F,.
Theorem 17. The F, be a friendship graph with 2n+1 vertices and 3n edges. Then

2
(1) HSN (F,)= LI, L
6n-2 4n’+n-1
1 1
2 HSN (F,,x)=nx8""2 £ 2px4n +n-1,

Proof: (1) From definition and using Table 2, we deduce
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2
HSN (F, )= _
wee(r) 0, (W) + o (V)
2 2
=n +2n 2
6n-2+6n-2 6n—-2+8n" —4n
n 2n
+

S 6n-2 4n’+n-1
(2) From definition and by using Table 2, we derive
2
HSN (FH,X): z Xo"(u)+on(v)
uveE(F,)

2 2

2
— nXGn—2+6n—2 + 2nx6n—2+8n —4n

1 1

2
— nXGn—Z + 2nx4n +n—1.

In the following theorem, we compute the symmetric division status neighborhood index and
its polynomial of a friendship graph F,.
Theorem 18. Let F, be a friendship graph with 2n+1 vertices and 3n edges. Then

16n4 716n3 +13n2 -6n+1

(1)  spbsn(F)=2n+ .
6n° —5n+1
16n°-16n°+13n°-6n+1

2 SDSN (F,, )_nx +onx  12n'-10nts2n

Proof: (1) From definition and using Table 2, we obtaln

(o, (u) o (v))

SDSN (F )=
Fm 2 e e w)

6n-2 6n-2 ( 6n-2 8n?—4n)
+ +2nL . +
8n° —4n 6n -2

6n-2 6n-2
16n4—16n3+13n2—6n+1

=2n+ P
6n" —5n+1

(2) From definition and using Table 2, we have

o, (u) o (v)

SDSN(FH,X): Z Xo-”(v) o, (u)

uveE(F,)

6n-2 6n-2 6n—-2 8n°—4n
+ +

2
— nx6n—2 6n-2 + 2nx8n -4n 6n-2

16n*-16n°+13n°—6n+1
12n°-10n%+2n

=nx? + 2nx
In the following theorem, we compute the inverse sum indeg status neighborhood index and
its polynomial of a friendship graph F.
Theorem 19. Let F, be a friendship graph with 2n+1 vertices and 3n edges. Then

gn?(6n® —5n+1)

(1) ISSN (F,)=n(3n-1)+ ”
4n” +n -1
an(6n’-5n+1)
(2 ISSN (F,,x)=nx"""42nx 4n'en-t
Proof: (1) Using deflnltlon and Table 2, we obtaln

SN (F,)= 3 o, (Wo (v)
uveE(F,)

o, (W+ao (v)

(6n-2)(6n-2) (6n-2)(8n® - 4n)
n +2n

6n—2+6n—2 6n—2+8n°—4n
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8n2(6n2 —5n +1)
n(én-2)+ .

4n2+n—1

(2) From definition and using Table 2, we deduce
o, (Wo (v)
ISSN (F,, x)= Y x"~"t

uveE(F,)

N |

(6n-2)(6n-2) (6n-2)(8n”~4n)
— nx 6N-2+6n-2 | oy 6n-2+8n"-4n

4n(6n®-5n+1)

n- 4n®+n-1

=nx>"ty 2nx .
In the following theorem, we compute augmented status neighborhood index and its
polynomial of a friendship graph F..
Theorem 20. Let F, be a friendship graph with 2n+1 vertices and 3n edges. Then

8 3
[(6n-2)" | [4n(6n? —5n+1) ]
@ ASNI(FH):n{—J +on| 2 |
12n -6 L 4n“+n-1 |
ton-2' [an(n*-sns0) T
(2) ASNl(Fn,X):nX 12n-6 +2nx 4n®+n-2 .

Proof: (1) From definition and using Table 2, we derive

([ o (Wo, (v) Y
ASNI(F,)= 3 |

wee(F,)\ T, (u) + o, (v) - 2}‘

3
( (6n-2)(6n-2) ( (6n-2)(8n? -4n) )
+2n| |

6n—2+6n-2-2 \6n-2+8n°-4n-2)

=n
[ 27 : ’
(6n—2) , [4n(6n? —5n+1) 1
_— n

(el R e
12n -6 L 4n“+n-2 |
(2) Using definition and Table 2, we deduce

3

([ o,(ua,(v) \‘

ASN|(FH,X): z X\an(u)+on(v)—2)

uveE(F,)

[(6n—2)(6n—2)]g ((6n-2)(8n?—4n))

2
6n-2+6n-2-2 + 2nx 6n-2+8n"-4n-2

= nx
3
[(en-2)"1 [an(en®-snsD) T

L 12n-6 4n®+n-2

= nx + 2nXx
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