L-fuzzy ideals of Semilattices

Ch. Santhi Sundar Raj^{*1}, B. Subrahmanyam², G. Sujatha³, and S. Nageswara Rao⁴ Affiliations

1, 2, 4 Department of Engineering Mathematics, Andhra Uniersity, Visakhapatnam-530003.3 Department of Mathematics, Dr. Lankapalli Bullayya College, Visakhapatnam-530013.

Abstract

In this paper the notion of an L-fuzzy ideal of a semilattice is introduced and proved certain important structural properties of these. 0-distributive semilattices are characterized in terms of L-fuzzy ideals and prime L-fuzzy filters. The Stones's version separation theorem on prime filters of distributive semilattices is extended to prime L-fuzzy filters. Furthermore, the notions of prime(maximal) L-fuzzy ideals of bounded semilattices are introduced and characterized.

Keywords: 0-distributive semilattice; *L*-fuzzy ideal; *L*-fuzzy filter; prime *L*-fuzzy filter; prime *L*-fuzzy ideal; frame; meet-prime element.

AMS Mathematics Subject Classification 06D72, 06F15, 08A72.

1 Introduction

Ever since Zadeh [10] introduced fuzzy set theory, several researchers fuzzified various notions/results of abstract algebra with membership function assuming truth values in the unit interval [0, 1] of real numbers. Rosenfield [1] formulated the concept of a fuzzy subgroup of a group. Kuroki [11] investigated the properities of fuzzy ideals of a semigroup. Malik and Moderson [5] worked on fuzzy subrings and ideals of rings. Liu [17] introduced fuzzy invarient subgroups and fuzzy ideals, and so on.

In [2, 3], Sundar Raj, Subrahmanyam and Swamy have introduced and studied the notions of fuzzy filters and prime(maximal) L-fuzzy filters of meet-semilattices having truth values in a complete lattice L satisfying the infinite meet distributive law. This type of lattice is called a frame. In this paper we introduce the concept of an L-fuzzy ideal of a semilattice S having truth values in a frame L and prove certain important structural properties of these. The class of distributive semilattices is an important subclass of semilattices; for details we refere to [7, 8, 9, 18]. In particular, the class of 0-distributive semilattices is a natural generalization of the class of psedo-complemented semilattices. Here, mainly we characterize 0-distributive semilattices in terms of *L*-fuzzy ideals and prime *L*-fuzzy filters. Also, a general theory of prime *L*-fuzzy filters of bounded semilattices [2, 3] is applied to extend the Stone's version separation theorem on prime filters of distributive semilattices to prime *L*-fuzzy filters. Finally, prime(maximal) *L*-fuzzy ideals of a bounded semilattice *S* are determined by obtaining a oneto-one correspondence between prime(maximal) *L*-fuzzy ideals of *S* and the pairs (P, α) , where *P* is a prime ideal of *S* and α a meet-prime(dual atom) of *L*.

Throughout this paper, L stands for a non-trivial frame $(L, \wedge, \vee, 0, 1)$; i.e., a complete lattice satisfying the infinite meet distributive law:

$$\alpha \land \big(\bigvee_{\beta \in M} \beta\big) = \bigvee_{\beta \in M} (\alpha \land \beta)$$

for all $\alpha \in L$ and $M \subseteq L$. Here the operations \vee and \wedge are, respectively, l.u.b and g.l.b in the lattice L. Also S stands for a semilattice (S, \wedge) unless otherwise stated. As usual, by an L-fuzzy subset of S, we mean a mapping of S into L. If L = [0, 1], the unit intervel of real numbers, these are the usual fuzzy subsets of S originally introduced by L. A. Zadah [10]. An element $\alpha \neq 1$ of L is said to be meet-prime if, for any $a, b \in L$, $a \wedge b \leq \alpha$ implies $a \leq \alpha$ or $b \leq \alpha$. An element $\alpha \neq 1$ in L is said to be a dual atom of L if there is no $\beta \in L$ such that $\alpha < \beta < 1$. Note that, α is dual atom if and only if α is maximal in $L - \{1\}$. It is known that any dual atom in a bounded distributive lattice is meet-prime.

2 Preliminaries

Throughout this article the word semilattice will mean meet-semilattice i.e., a non-empty set S together with an idempotent, commutative and associative binary operation \wedge on S. If we define $x \leq y$ if and only if $x \wedge y = x$ for all $x, y \in S$, then (S, \leq) becomes a partial ordered set in which for any $x, y \in S$, $x \wedge y$ is the g.l.b of $\{x, y\}$ in S. This is said to be the partial order induced by \wedge on S. If the l.u.b of any $x, y \in S$ exsits, then we say that $x \vee y$ exists in S. If $x \vee y \in S$, then S is said to be a lattice.

A subset X of S is said to be directed above if for any $x, y \in X$, there exists $z \in X$ such that $z \ge x, y$. A non-empty subset I of S is said to be an initial(final) segment of S, if for any $x \in I$, $y \in S$, $y \le x$ ($x \le y$ respectively) implies $y \in I$. An initial segment I of S is said to be an ideal of S, if I is directed above. A final segment F of S is said to be a filter of S, if $x \in F$, $y \in F$ implies $x \land y \in F$. An ideal(filter) I of S is said to be proper if $I \neq S$.

For any $X \subseteq S$, the filter generated by X of S is given by $[X] = \{y \in S : \bigwedge_{i=1}^{n} x_i \leq y \text{ for some } x_i \in X\}$. Inparticular, for any $x \in S$, $[x] = \{y \in S : y \geq x\}$ called the principal filter generated by x. A proper filter F of S is said to be prime if, whenever two filters F_1 and F_2 are such that $\phi \neq F_1 \cap F_2 \subseteq F$ then $F_1 \subseteq F$ or $F_2 \subseteq F$ (or, equivalently, if, for any $x, y \in S, x \notin F$ and $y \notin F$ imply the existence of $z \in S$ such that $x \leq z, y \leq z$ and $z \notin F$).

A proper ideal(filter) I of S is said to be maximal if the only ideal(filter) strictly containing I is S. For any non-empty subset X of a semilattice S with smallest element 0, the set $X^* = \{y \in S : x \land y = 0 \text{ for all } x \in X\}$ is called the annihilator of X. For any $x \in S$ we write (x] for the principal ideal generated by x. Note that $(x] = \{y \in S : y \leq x\}$ and $(x]^* = \{x\}^* = \{y \in S : x \land y = 0\}$. A semilattice S with 0 is called pseudo-complemented if, for each $x \in S$, there exists $x^* \in S$ such that $x \land x^* = 0$ and $x \land y = 0 \Rightarrow y \leq x^*$, for all $y \in S$; this element x^* is called the pseudo-complement of x. A semilattice S is said to be distributive if for any $a, b, c \in S$, $a \land b \leq c$ implies the existence of $x, y \in S$ such that $x \geq a$, $y \geq b$ and $x \land y = c$.

On the other hand, we present some necessary definitions and results concerning the notions of L-fuzzy filters and prime L-fuzzy filters of bounded semilattices and L-fuzzy ideals of lattices mostly taken from [2, 3, 14] which will be used later on.

Definition 2.1. An *L*-fuzzy subset *A* of a semilattice (S, \wedge) is said to be an *L*-fuzzy filter(simply, fuzzy filter) of *S* if

$$A(x_0) = 1$$
 for some $x_0 \in S$ and $A(x \land y) = A(x) \land A(y)$ for all $x, y \in S$.

Theorem 2.2. The following are equivalent to each other for any L-fuzzy subset A of S

- (1) A is an L-fuzzy filter of S
- (2) $A(x_0) = 1$ for some $x_0 \in S$, $A(x \wedge y) \ge A(x) \wedge A(y)$ and $x \le y \Rightarrow A(y) \ge A(x)$
- (3) A_{α} is a filter of S for all $\alpha \in L$

Lemma 2.3. Let A be a fuzzy filter of S and X a non-empty subset of S, and $x, y \in S$. We have

- (1) $x \in [X) \Rightarrow A(x) \ge \bigwedge_{i=1}^{m} A(a_i)$ for some $a_1, a_2, \dots a_m \in X$ (2) $x \in [y] \Rightarrow A(x) \ge A(y)$
- (3) If S is bounded then A(0) < 1 and A(1) = 1

Theorem 2.4. Let $\mathcal{F}F(S)$ denote the set of all fuzzy filters of a meet-semilattice (S, \wedge) with greatest element 1. Then $(\mathcal{F}F(S), \leq)$ is a complete lattice in which, for any family $\{A_i : i \in \Delta\}$ of fuzzy filters of S, the g.l.b and l.u.b are given by

$$\bigwedge_{i \in \Delta} A_i = \text{The point-wise infimum of } A'_i s,$$
$$\bigvee_{i \in \Delta} A_i = \text{The point-wise infimum of } \{A \in \mathcal{F}F(S) : A_i \leq A \text{ for all } i \in \Delta \}.$$

Theorem 2.5. Let A be an L-fuzzy subset of S. Then the fuzzy filter \overline{A} generated by A is given by

$$\bar{A}(x_0) = 1 \text{ for some } x_0 \in S,$$
$$\bar{A}(x) = \bigvee \left\{ \bigwedge_{i=1}^n A(a_i) : a_1, a_2, \dots a_n \in S, \quad \bigwedge_{i=1}^n a_i \leq x \right\} \quad \text{for any } x_0 \neq x \in S.$$

Corollary 2.6. Let $\{A_i\}_{i \in \Delta}$ be a class of fuzzy filters of S. Then the supremum $\bigvee_{i \in \Delta} A_i$ of $\{A_i\}_{i \in \Delta}$ in $\mathcal{F}(F(S))$ is given by

$$\left(\bigvee_{i\in\Delta}A_i\right)(x) = \bigvee \left\{\bigwedge_{a\in X}B(a): x\in [X), X \text{ is a non-empty finite subset of } S\right\},$$

where $B(x) = \bigvee \left\{A_i(x): i\in\Delta\right\}$ (i.e., the point-wise supremum of A'_is)

Corollary 2.7. For any fuzzy filters A and B of S, the supremum $A \lor B$ is given by

$$(A \lor B)(x) = \bigvee \left\{ \bigwedge_{a \in X} \left(A(a) \lor B(a) \right) : x \in [X), X \text{ is a non-empty finite subset of } S \right\}$$

Theorem 2.8. Let (S, \wedge) be a semilattice with greatest element 1. Then the following are equivalent to each other:

- (1) $\mathcal{F}(F(S))$ is a distributive lattice
- (2) F(S) is a distributive lattice
- (3) S is distributive.

Definition 2.9. Let I be a non-empty subset of S and for any $\alpha \in L$, define $A^I_{\alpha} : S \to L$ by

$$A_{\alpha}^{I}(x) = \begin{cases} 1 & \text{if } x \in I \\ \alpha & \text{otherwise.} \end{cases}$$

It can be easily seen that for any $\beta \in L$, the β -cut of A^I_{α} is given by

$$(A^I_\alpha)_\beta = \begin{cases} S & \text{if } \beta \leq \alpha \\ I & \text{if } \beta \nleq \alpha. \end{cases}$$

In particular, when $\alpha = 0$, $A^I_{\alpha} = \chi_I$, the characteristic map which is defined by

$$\chi_{_{I}}(x) = \begin{cases} 1 & \text{if } x \in I \\ 0 & \text{otherwise} \end{cases}$$

Also,
$$A^{I}_{\alpha} \leq A^{J}_{\beta} \iff I \subseteq J$$
 and $\alpha \leq \beta$, $A^{I \cap J}_{\alpha} = A^{I}_{\alpha} \wedge A^{J}_{\alpha}$

http://www.ijmttjournal.org

for any non-empty subsets I and J of S and $\alpha, \beta \in L$.

Theorem 2.10. Let P be a filter of S and $\alpha \in L$. Then A^P_{α} is a prime L-fuzzy filter of S iff P is a prime filter of S and α is a meet-prime element in L.

Theorem 2.11. Let A be an L-fuzzy fileter of S. Then A is prime iff the following are satisfied.

- (1) |Im(A)| = 2; that is A is two-valued
- (2) For any $x \in S$, either A(x) = 1 or A(x) is meet-prime element in L.
- (3) A_1 ; the 1-cut of A is prime filter of S.

Theorem 2.12. Let A be an L-fuzzy filter of S. Then A is a prime L-fuzzy filter of S iff there exists a prime filter P of S and a meet-prime element α in L such that $A = A_{\alpha}^{P}$.

Theorem 2.13. Let A be an L-fuzzy filter of S. Then A is maximal iff $A = A_{\alpha}^{M}$ for some maximal filter M of S and a dual atom α in L.

Definition 2.14. Let C be a class of fuzzy subsets of a set X. A subclass $\{A_i\}_{i\in\Delta}$ of C is called directed above if, for any $i, j \in \Delta$ there is $k \in \Delta$ such that $A_i \leq A_k$ and $A_j \leq A_k$. C is said to be an algebric fuzzy system if, C is closed under point-wise infimums and point-wise supremums of directed above subclasses.

Theorem 2.15. Let (S, \wedge) be a semilattice with greatest element 1. Then the class $\mathcal{F}(F(S))$ of all fuzzy filters of S is an algebraic.

Definition 2.16. An *L*-fuzzy subset *A* of a bounded lattice *D* is said to be an *L*-fuzzy ideal of *D* if A_{α} is an ideal of *D* for all $\alpha \in L$, where $A_{\alpha} = \{x \in D : \alpha \leq A(x)\}$; the α -cut of *A*.

Theorem 2.17. Let A be an L-fuzzy subset of a bounded lattice D. Then A is an L-fuzzy ideal of D if and only if any one of the following sets of conditions is satisfied:

- (1) A(0) = 1 and $A(x \lor y) = A(x) \land A(y)$ for all $x, y \in D$,
- (2) A(0) = 1 and $A(x \lor y) \ge A(x) \land A(y)$ and $A(x \land y) \ge A(x) \lor A(y)$ for all $x, y \in D$.

3 *L*-fuzzy ideals.

An ideal I of a semilattice S is a non-empty subset of S such that I is an initial segment and directed above. Let $\mathcal{I}(S)$ denote the set of all ideals of S. Then it can be easily proved that $\mathcal{I}(S)$ is a meet-semilattice under the usual set inclusion ordering. Let us recall that for any $\alpha \in L$, the α -cut of an L-fuzzy subset A of S is denoted by simply A_{α} , i.e., $A_{\alpha} = \{x \in S : \alpha \leq A(x)\}$. Now we introduce L-fuzzy ideals. **Definition 3.1.** An *L*-fuzzy subset *A* of *S* is said to be an *L*-fuzzy ideal of *S* if A_{α} is an ideal of *S* for all $\alpha \in L$.

The following results facilitates to identify any (crisp) ideal of S with an L-fuzzy ideal of S.

Theorem 3.2. Let S be a semilattice directed above and L a frame. Then A^I_{α} is an L-fuzzy ideal of S iff I is an ideal of S. In particular, χ_I is an L-fuzzy ideal of S iff I is an ideal of S.

Before characterize L-fuzzy ideals, we introduce the following.

Definition 3.3. An *L*-fuzzy subset A of S is said to be

- (i) an antitone if for any $x, y \in S, x \leq y$ implies $A(y) \leq A(x)$
- (*ii*) directed above if for any $x, y \in S$ there exists $z \in S$ such that $z \ge x, y$ and $A(x) \land A(y) \le A(z)$.

Theorem 3.4. Let A be an L-fuzzy subset of S. Then A is an L-fuzzy ideal of S iff the following conditions are satisfied:

- (1) $A(x_0) = 1$ for some $x_0 \in S$
- (2) A is an antitone
- (3) A is directed above.

Proof. Suppose A is an L-fuzzy ideal of S. Then A_{α} is an ideal of S for all $\alpha \in L$.

(1). Since A_1 is non-empty, there exists $x_0 \in A_1$ so that $A(x_0) = 1$.

(2). Let $x, y \in S$ with $x \leq y$. Put $\alpha = A(y)$. Then $y \in A_{\alpha}$ and hence $x \in A_{\alpha}$ since A_{α} is an initial segment. So that $\alpha \leq A(x)$ and hence $A(y) \leq A(x)$. Therefore A is an antitone.

(3). Let $x, y \in S$. Put $\alpha = A(x) \wedge A(y)$. Then $\alpha \leq A(x)$ and A(y) so that $x, y \in A_{\alpha}$. As A_{α} is an ideal of S, there exists $z \in A_{\alpha}$ such that $z \geq x, y$. So $\alpha \leq A(z)$ and hence $A(x) \wedge A(y) \leq A(z)$. Thus A is directed above.

Conversely suppose the given conditions are satisfied. Let $\alpha \in L$. By (1), $A(x_0) = 1 \ge \alpha$ for some $x_0 \in S$. Hence $x_0 \in A_\alpha$ so that A_α is a non-empty subset of S. By (2),

$$y \le x \text{ and } x \in A_{\alpha} \Rightarrow A(x) \le A(y) \text{ and } \alpha \le A(x)$$

 $\Rightarrow \alpha \le A(y) \Rightarrow y \in A_{\alpha}.$

Further, let $x, y \in A_{\alpha}$. Then $\alpha \leq A(x)$ and A(y) so that $\alpha \leq A(x) \wedge A(y)$. By (3), there exists $z \in S$ such that $z \geq x, y$ and $A(x) \wedge A(y) \leq A(z)$ which implies $\alpha \leq A(z)$ so $z \in A_{\alpha}$. Therefore A_{α} is an ideal of S for all $\alpha \in L$. Thus A is an L-fuzzy ideal of S. \Box

By Theorem 3.2(1), it can be observed that if S is bounded below by 0 and A is an L-fuzzy ideal of S then A(0) = 1. For any L-fuzzy subsets A and B of S, define an L-fuzzy subset $A \wedge B$ of S by

$$(A \wedge B)(x) = A(x) \wedge B(x)$$

and define $A \leq B$ if and only if $A(x) \leq B(x)$ for all $x \in S$.

It can be easily verified that \leq is a partial order on the set of all *L*-fuzzy subsets of *S* and is called the point-wise ordering. In the following we discuss certain properities of *L*-fuzzy ideals. Let us denote the set of all *L*-fuzzy ideals of *S* by $\mathcal{F}_L(\mathcal{I}(S))$.

Theorem 3.5. $\mathcal{F}_L(\mathcal{I}(S))$ is a meet-semilattice.

Proof. Let $A, B \in \mathcal{F}_L(\mathcal{I}(S))$. Then $A(x_0) = 1 = B(y_0)$ for some $x_0, y_0 \in S$. As A and B are antitones, it follows that $A(x_0 \wedge y_0) = 1 = B(x_0 \wedge y_0)$ so that $(A \wedge B)(x_0 \wedge y_0) = 1$. For any $x, y \in S$,

$$x \le y \Rightarrow A(y) \le A(x) \text{ and } B(y) \le B(x)$$
$$\Rightarrow A(y) \land B(y) \le A(x) \land B(x)$$
$$\Rightarrow (A \land B)(y) \le (A \land B)(x).$$

Therefore $A \wedge B$ is an antitone. Further, as A and B are directed above, there exist z_1 and $z_2 \in S$ such that

$$z_1 \ge x, y \text{ and } A(x) \land A(y) \le A(z_1)$$

and $z_2 \ge x, y \text{ and } B(x) \land B(y) \le B(z_2).$

Now $z_1 \wedge z_2$ is an *u.b* of $\{x, y\}$. As A and B are antitones, $A(z_1) \leq A(z_1 \wedge z_2)$ and $B(z_2) \leq B(z_1 \wedge z_2)$. Now,

$$\left(A(x) \land B(x)\right) \land \left(A(y) \land B(y)\right) \le A(z_1) \land B(z_2) \le A(z_1 \land z_2) \land B(z_1 \land z_2)$$

which implies $(A \wedge B)(x) \wedge (A \wedge B)(y) \leq (A \wedge B)(z_1 \wedge z_2)$. Therefore $A \wedge B$ is directed above. Hence $A \wedge B$ is an *L*-fuzzy ideal of *S*. Further, it can be easily seen that $A \wedge B$ is the *g.l.b* of $\{A, B\}$ with respect to the point-wise ordering. Thus $\mathcal{F}_L(\mathcal{I}(S))$ is a meet-semilattice. \Box

Theorem 3.6. Let S be a semilattice directed above and L a frame. Then the following statements are equivalent:

- (1) S is a lattice bounded below
- (2) $\mathcal{I}(S)$ is a complete lattice
- (3) $\mathcal{F}_L(\mathcal{I}(S))$ is a complete lattice.

Proof. $(1) \Rightarrow (2)$. It is well-known result.

 $(2) \Rightarrow (3)$. Let $\{A_i : i \in \Delta\}$ be a class of L-fuzzy ideals of S. Define $A : S \to L$ by

$$A(x) = \bigwedge_{i \in \Delta} A_i(x)$$
 = The point-wise infimum of $A'_i s$ in L

Let I be the smallest ideal of S then there exists $x_0 \in S$ such that $I = (x_0]$ and x_0 is the smallest element in S. Then $A(x_0) = 1$ since each $A_i(x_0) = 1$. Also, for any $x, y \in S$,

$$\begin{aligned} x &\leq y \Rightarrow A_i(y) \leq A_i(x) \qquad \text{(since each } A_i \text{ is an antitone)} \\ &\Rightarrow \bigwedge_{i \in \Delta} A_i(y) \leq \bigwedge_{i \in \Delta} A_i(x) \\ &\Rightarrow A(y) \leq A(x). \end{aligned}$$

Terefore A is an antitone. Again, let $x, y \in S$. Then, since each A_i is an L-fuzzy ideals of S, there exists $z_i \in S$ such that $z_i \geq x, y$ and $A_i(x) \wedge A_i(y) \leq A_i(z_i)$. By (2), we have $\bigcap_{i \in \Delta} (z_i]$ is an ideal of S belonging x, y. Hence there exists $z \in S$ such that $x \leq z, y \leq z$ and $z \in \bigcap_{i \in \Delta} (z_i]$. Now

$$A(x) \wedge A(y) = \left(\bigwedge_{i \in \Delta} A_i(x)\right) \wedge \left(\bigwedge_{i \in \Delta} A_i(y)\right)$$
$$= \bigwedge_{i \in \Delta} \left(A_i(x) \wedge A_i(y)\right)$$
$$\leq \bigwedge_{i \in \Delta} A_i(z_i)$$
$$\leq \bigwedge_{i \in \Delta} A_i(z) = A(z)$$

Therefore A is directed above and hence A is an L-fuzzy ideal of S. Also, A is the g.l.b of $\{A_i : i \in \Delta\}$ under the point-wise ordering. Therefore every subset of $\mathcal{F}_L(\mathcal{I}(S))$ has g.l.b. Thus $\mathcal{F}_L(\mathcal{I}(S))$ is a complete lattice under the point-wise ordering, in which χ_I and χ_J are respectively, the smallest and greatest element in the lattice $\mathcal{F}_L(\mathcal{I}(S))$ corresponding to the smallest element I and greatest element J(=S) in the lattice $\mathcal{I}(S)$.

 $(3) \Rightarrow (1)$. Suppose $\mathcal{F}_L(\mathcal{I}(S))$ is a complete lattice under point-wise ordering. Let $a, b \in S$. Then the characteristic functions $\chi_{(a]}$ and $\chi_{(b]}$ are *L*-fuzzy ideals of *S* and hence by(3), their $l.u.b \ \chi_{(a]} \lor \chi_{(b]}$ is an *L*-fuzzy ideal of *S*, say *A*. As *A* is directed above, there exists $x \in S$ such that $x \ge a, b$ and $A(a) \land A(b) \le A(x)$. Let $y \in S$ with $y \ge a, b$. Then $(a] \subseteq (y]$ and $(b] \subseteq (y]$ so that $\chi_{(a]} \le \chi_{(y]}$ and $\chi_{(b]} \le \chi_{(y]}$. Therefore $A = \chi_{(a]} \lor \chi_{(b]} \le \chi_{(y]}$. In particular, $A(x) \le \chi_{(y]}(x)$. Since $\chi_{(a]} \le A$ and $\chi_{(b]} \le A$, it follows that A(a) = 1 = A(b) which implies $1 = A(a) \land A(b) \le \chi_{(y]}(x)$ and hence $\chi_{(y)}(x) = 1$ so that $x \le y$. Therefore *x* is the *l.u.b* of {a, b}. Hence *S* is a lattice. Further, let *B* be the smallest *L*-fuzzy ideal of *S*. Then $B_1 = \{x \in S : B(x) = 1\}$ is the smallest ideal of *S*; for let *I* be an ideal of *S*. Then χ_I is an *L*-fuzzy ideal of *S* and hence $B \le \chi_I$. For any $x \in B_1$, $B(x) = 1 = \chi_I(x)$ so that $x \in I$. Therefore $B_1 \subseteq I$. Hence there exists an element x_0 in S such that $B_1 = (x_0]$ and x_0 is the smallest element in S. Hence S is bounded below.

The following is an application of Zorn's lemma which allow us to denote the existence of maximal L-fuzzy filters. This can be proved easily by Theorem (2.9).

Lemma 3.7. Let S be a semilattice with greatest element 1 and B a non-constant L-fuzzy filter of S. Then there exists a maximal L-fuzzy filter A of S such that $B \leq A$.

Let us furnish a characterization of 0-distributive semilattices interms of both crisp and fuzzy maximal filters. According to Verlet [9], a semilattice with smallest element 0 is called 0-distributive, if for any $a, b, c \in S$ such that $a \wedge b = 0 = a \wedge c$ implies $a \wedge d = 0$ for some $d \geq b, c$ (or, equivalently, for any $x \in S$, the annihilator $\{x\}^*$ is an ideal of S). A proper filter F is maximal if and only if, for any $x \in S - F$, $\{x\}^* \cap F \neq \phi$.

Theorem 3.8. Let S be a bounded semilattice and L a frame. Then the following statements are equivalent :

- (1) S is 0-distributive
- (2) Every maximal filter of S is prime
- (3) Every maximal L-fuzzy filter of S is prime.

Proof. (1) \Rightarrow (2). Let M be a maximal filter of S which is not prime. Then, there exist two filters F and G of S such that $F \cap G \subseteq M$, but $F \nsubseteq M$ and $G \nsubseteq M$. So there exist $x \in F - M$ and $y \in G - M$. As M is maximal, there exist f and g in M such that $x \wedge f = 0 = y \wedge g$. Now $x \wedge f \wedge g = 0 = y \wedge f \wedge g$. By hypothesis, we can find z in S such that $z \ge x, y$ and $z \wedge (f \wedge g) = 0$. Since z, f, g all belong to M it implies $0 \in M$, a contradiction. Hence M is prime.

 $(2) \Rightarrow (3)$. Let A be a maximal L-fuzzy filter of S. Then $A = A_{\alpha}^{M}$ for some maximal filter M of S and α a dual atom in L (by Theorem 2.8). By hypothesis, M is a prime filter of S. Since L is a distributive lattice, α is meet-prime. So A_{α}^{M} is a prime L-fuzzy filter of S (by Theorem 2.7). Thus A is prime.

 $(3) \Rightarrow (1)$. Let $a \wedge b = 0 = a \wedge c$ for any $a, b, c \in S$. Then it can be easily seen that the set $F = \{x \in S : x \geq b, c\}$ is a filter of S. Also, the set $G = \{x \in S : x \geq a \wedge f, f \in F\}$ is a filter of S containg F. Suppose G is proper filter of S. Then the characteristic function χ_G is a non-constant L-fuzzy filter of S. By above lemma, there exists a maximal L-fuzzy filter say A of S such that $\chi_G \leq A$. By hypothesis A is prime so that $A = A^P_\alpha$ for some prime filter P of S and a meet-prime $\alpha \in L$ (by Theorem 2.7). Therefore $\chi_G \leq A^P_\alpha$ which implies $G \subseteq P$. Since $[b) \cap [c] \subseteq G \subseteq P$ and P is prime, $[b] \subseteq P$ or $[c] \subseteq P$ which implies $0 \in P$, a contradiction. Hence G = S, in particular $0 \in G$, there exists $f \in F$ such that $a \wedge f = o$. Hence b and c have an upper bound f such that $a \wedge f = 0$. Thus S is 0-distributive.

Pawar and Thakare [18] have characterized 0-distributive semilattices by assuming that the set of all ideals of a semilattice form a lattice, but it is not true. In general, in a semilattice S the set $\mathcal{I}(S)$ of all ideals of S may not form a lattice; for consider the following example.

Example 3.9. Let $S = \{a, b, 0\} \cup C$, where C = (0, 1] the interval of real numbers x such that $0 < x \le 1$. On S, we define the partial ordering as follows:

$$0 < a < x, 0 < b < x$$
 for all $x \in C$

and together with usual ordering of real numbers on C.

Then S is a bounded distributive semilattice which is not a lattice. Let $I = \{0, a\}$ and $J = \{0, b\}$. Then I and J are ideals of S. For any $x \in C$, let $K = \{0, a, b\} \cup (0, x]$. Then K is an ideal of S and also an upperbound of I and J. Since the chain C has no smallest element, it follows that $I \vee J$ does not exist in $\mathcal{I}(S)$ so that $\mathcal{I}(S)$ is not a lattice.

Infact, we have that for any semilattice S, $\mathcal{I}(S)$ is a lattice if and only if S is a lattice itself. Now we obtain a set of equivalent conditions for a semilattice S with 0 to be 0-distributive.

Theorem 3.10. Let L be a frame and S be a bounded semilattice such that $\mathcal{I}(S)$ is a lattice. Then the following statements are equivalent:

- (1) S is 0-distributive
- (2) $\{x\}^*$ is an ideal for all $x \in S$
- (3) X^* is an ideal for all $X \subseteq S$
- (4) $\mathcal{I}(S)$ is pseudo-complemented
- (5) $\mathcal{I}(S)$ is 0-distributive
- (6) Every maximal filter of S is prime
- (7) Every maximal L-fuzzy filter of S is prime.

(8) $\mathcal{F}_L(\mathcal{I}(S))$ is 0-distributive.

Proof. $(1) \Rightarrow (2)$. It is clear obviously.

(2) \Rightarrow (3). It follows from the facts that $X^* = \bigcap_{x \in X} \{x\}^*$, for all $X \subseteq S$, and $\mathcal{I}(S)$ is a complete lattice.

 $(3) \Rightarrow (4)$. Let *I* be an ideal of *S*. Then I^* is an ideal of *S* (by(3)). By the definition, I^* will be the pseudo-complement of *I* in the lattice $\mathcal{I}(S)$. Hence $\mathcal{I}(S)$ is pseudo-complemented.

(4) \Rightarrow (5). As every pseudo-complemented lattice is 0-distributive, we get $\mathcal{I}(S)$ is 0-distributive.

 $(5) \Rightarrow (6)$. Let M be a maximal filter of S and $x \notin M$, $y \notin M$. As M is maximal, we get $x \wedge f = 0 = y \wedge g$ for some $f, g \in M$. Now $x \wedge (f \wedge g) = 0 = y \wedge (f \wedge g)$ and hence $(f \wedge g] \cap (x] = (0] = (f \wedge g] \cap (y]$. By 0-distributivity of $\mathcal{I}(S)$, there exists an ideal I containing both (x] and (y] such that $(f \wedge g] \cap I = (0]$. As I is directed above and $x, y \in I$, there exists $z \in I$ such that $z \geq x, y$. Now $(f \wedge g] \cap (z] = (0]$ so that $(f \wedge g) \wedge z = 0$. As $(f \wedge g) \wedge z \notin M$ and $f \wedge g \in M$ we have $z \notin M$. Hence M is prime.

 $(6) \Rightarrow (7)$. It is already proved in Theorem 3.5.

(7) \Rightarrow (8). Let $A, B, C \in \mathcal{F}_L(\mathcal{I}(S))$ such that $A \wedge B = \chi_{(0]} = A \wedge C$. As $\mathcal{F}_L(\mathcal{I}(S))$ is a lattice, $B \vee C$ exists in $\mathcal{F}_L(\mathcal{I}(S))$. Now we shall prove that $A \wedge (B \vee C) = \chi_{(0]}$. If $A \wedge (B \vee C) \neq \chi_{(0)}$ then $\chi_{(0)} < A \wedge (B \vee C)$. Let F denote the L-fuzzy filter generated by $A \wedge (B \vee C)$. Then F is non-constant; for, if F(x) = 1 for all $x \in S$, then $\chi_{(0)}(0) < (A \wedge (B \vee C))(0) \leq F(0) < 1$ which implies 1 < 1, a contradiction. Hence by Lemma (3.1), there exists a maximal L-fuzzy filter, say M of S such that $F \leq M$. By hypothesis, M is prime and hence $M = A^P_{\alpha}$ for some prime filter P of S and meet-prime element α of L (by Theorem 2.7). So that $A \wedge (B \vee C) \leq F \leq A^P_{\alpha}$. If $A \wedge B$ and $A \wedge C \not\leq A^P_{\alpha}$ then we can find $x, y \in S$ such that $(A \wedge B)(x) \not\leq A^P_{\alpha}(x)$ and $(A \wedge C)(y) \not\leq A^P_{\alpha}(y)$ which implies $(A \wedge B)(x) \not\leq \alpha$ and $(A \wedge C)(y) \not\leq \alpha$ and both $x, y \notin P$. Hence $x \vee y \notin P$ since P is prime. As α is meet-prime, we get $A \wedge B)(x) \wedge (A \wedge C)(y) \not\leq \alpha$. Now,

$$(A \land (B \lor C))(x \lor y) = A(x \lor y) \land (B \lor C)(x \lor y)$$

= $A(x) \land A(y) \land (B \lor C)(x) \land (B \lor C)(y)$
 $\geq A(x) \land A(y) \land B(x) \land C(y)$
= $(A(x) \land B(x)) \land (A(y) \land C(y))$
= $(A \land B)(x) \land (A \land C)(y).$

Therefore $(A \land (B \lor C)(x \lor y) \nleq \alpha = A^P_{\alpha}(x \lor y)$. So that $A \land (B \lor C) \nleq A^P_{\alpha}$ which is a contradiction. Therefore $A \land B$ or $A \land C \leq A^P_{\alpha}$ and hence $\chi_{(0]} \leq A^P_{\alpha}$ so that $0 \in P$ which leeds to contradiction and hence $A \land (B \lor C) = \chi_{(0)}$. Thus $\mathcal{F}_L(\mathcal{I}(S))$ is 0-distributive.

 $\begin{array}{l} (8) \Rightarrow (1). \text{ Let } a \wedge b = 0 = a \wedge c. \text{ Then } \chi_{(a \wedge b]} = \chi_{(0)} = \chi_{(a \wedge c]} \text{ which implies } \chi_{(a]} \wedge \chi_{(b]} = \chi_{(0)} = \\ \chi_{(a]} \wedge \chi_{(c]}. \text{ By hypothesis, there exsits an } L\text{-fuzzy ideal say } A \text{ of } S \text{ such that } \chi_{(b]} \leq A, \ \chi_{(c]} \leq A \\ \text{ and } \chi_{(a]} \wedge A = \chi_{(0)}. \text{ Now } A(b) = 1 = A(c). \text{ Therefore } b, c \in A_1; \text{ the 1-cut of } A. \text{ Since } A_1 \text{ is an } \end{array}$

ideal of S, there exists $d \in A_1$ such that $d \ge b, c$. As A is an antitone, A(d) = 1 and it follows that $A(a \land d) = 1$. Now

$$\chi_{(\alpha)}(a \wedge d) = \chi_{(a)}(a \wedge d) \wedge A(a \wedge d) = 1 \wedge 1 = 1.$$

Then $a \wedge d = 0$. Thus S is 0-distributive.

Finally in this section, we extend an important M. H. Stone's version separation therom on prime filters of distributive semilattice to prime L-fuzzy filters. First let us recall the Stone's version separation theorem [9]: For any filter F and any ideal I of a distribution semilattice S such that $F \cap I = \phi$, there exist a prime filter P of S such that $F \subseteq P$ and $P \cap I = \phi$.

In the following, S is assumed to be a bounded distributive semilattice and $\bar{\alpha}$ denote the constant L-fuzzy subset attaining the value α in L.

Theorem 3.11. Let α be a meet-prime element in L, A be an L-fuzzy filter of S and B be an L-fuzzy ideal of S such that $A \wedge B \leq \overline{\alpha}$. Then, there exists a prime L-fuzzy filter A^P_{α} such that

$$A \leq A^P_{\alpha}$$
 and $A^P_{\alpha} \wedge B \leq \bar{\alpha}$.

Proof. We are given that $A(x) \wedge B(x) \leq \alpha$ for all $x \in S$. Put $F = \{x \in S : A(x) \nleq \alpha\}$ and $I = \{x \in S : B(x) \nleq \alpha\}$, since $A(1) = B(0) = 1 \nleq \alpha$, $1 \in F$ and $0 \in I$ and hence F, I are non-empty. For any $x, y \in S$.

$$\begin{array}{l} x,y\in F\Rightarrow A(x) \nleq \alpha \text{ and } A(y) \nleq \alpha \\ \Rightarrow A(x \wedge y) = A(x) \wedge A(y) \nleq \alpha \\ \Rightarrow x \wedge y \in F \\ \text{Also, } y \ge x \in F \Rightarrow A(y) \ge A(x) \text{and } A(x) \nleq \alpha \\ \Rightarrow A(y) \nleq \alpha \\ \Rightarrow y \in F. \text{ Therefore F is a filter of S. Further} \\ \text{Again, } y \le x \in I \Rightarrow B(x) \le B(y) \text{ and } B(x) \nleq \alpha \\ \Rightarrow B(y) \nleq \alpha \\ \Rightarrow y \in I. \\ \text{Also, } x, y \in I \Rightarrow B(x) \nleq \text{ and } B(y) \nleq \alpha \\ \Rightarrow B(x) \wedge B(y) \nleq \alpha. \end{array}$$

Since B is directed above, there exists $z \in S$ such that

$$z \ge x, y$$
 and $B(x) \land B(y) \le B(z)$.

If $B(z) \leq \alpha$ then $B(x) \wedge B(y) \leq \alpha$, a contradiction. Therefore $B(z) \nleq \alpha$ and hence $z \in I$. So *I* is an ideal of *S*. Since α is meet-prime and $A(x) \wedge B(x) \leq \alpha$, it follows that $A(x) \leq \alpha$ or $B(x) \leq \alpha$ so that $x \notin F$ or $x \notin I$. Therefore $F \cap I = \phi$. Hence, there exists a prime

filter P of S such that $F \subseteq P$ and $P \cap I = \phi$. Now A^P_{α} is a prime L-fuzzy filter of Sand $A \leq A^P_{\alpha}$ (since, $x \notin P \Rightarrow x \notin F \Rightarrow A(x) \leq \alpha = A^P_{\alpha}(x)$) and $A^P_{\alpha} \wedge B \leq \bar{\alpha}$ (since, $x \in P \Rightarrow x \notin I$ and hence $B(x) \leq \alpha$).

4 Prime and Maximal *L*-fuzzy ideals

Swamy and Raju [13, 15] have generalised the notions of fuzzy prime(maximal) ideals of a ring [12, 16] by introducing the notions of prime(maximal) fuzzy S-subsets of a non-empty set X corresponding to an algebraic closure set system S on X. Here we extend these notions to L-fuzzy ideals of a bounded semilattice S, even though $\mathcal{I}(S)$ is not a closure set system on S. Let us recall that a proper ideal P of a semilattice S is said to be prime if for any ideals I and J of S, $\phi \neq I \cap J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$ (or, equivalently, if for any $x, y \in S$, $x \wedge y \in P$ implies $x \in P$ or $y \in P$).

Analogously, a non-constant L-fuzzy ideal A of S is said to be prime if, for any L-fuzzy ideals B and C of S,

$$B \wedge C \leq A$$
 implies $B \leq A$ or $C \leq A$.

The following is a characterization of prime L-fuzzy ideals.

Theorem 4.1. Let P be a prime ideal of a bounded semilattices S and α a meet-prime element in L. Then, A^P_{α} is a prime L-fuzzy ideal of S. Conversely any prime L-fuzzy ideal of S is of the form A^P_{α} for some prime ideal P of S and a meet-prime element α of L.

Proof. Since P is prime, we have A^P_{α} is non-constant L-fuzzy ideal of S. Let A and B be any L-fuzzy ideals of S such that $A \nleq A^P_{\alpha}$ and $B \nleq A^P_{\alpha}$. Then, there exist $x, y \in S$ such that $A(x) \nleq A^P_{\alpha}(x)$ and $B(y) \nleq A^P_{\alpha}(y)$ which implies that $A^P_{\alpha}(x) = \alpha = A^P_{\alpha}(y)$ so that $x \notin P$ and $y \notin P$. Hence $x \land y \notin P$ as P is prime. Also, since α is meet-prime and $A(x) \nleq \alpha$ and $B(y) \nleq \alpha$, it follows that $A(x) \land B(y) \nleq \alpha$. As A and B are isotones, we get

$$(A \land B)(x \land y) = A(x \land y) \land B(x \land y) \ge A(x) \land B(y)$$

Therefore $\alpha \not\geq (A \wedge B)(x \wedge y)$. Hence $(A \wedge B)(x \wedge y) \not\leq A^P_{\alpha}(x \wedge y)$ so that $A \wedge B \not\leq A^P_{\alpha}$. Thus A^P_{α} is prime.

Conversely, let A be a prime L-fuzzy ideal of S. First we prove that A is two-valued. Now A assumes at least two values; for otherwise A is constant. As A(0) = 1, 1 is necessarily a value of A. Let $y, z \in S$ such that $A(y) = \alpha < 1$ and $A(z) = \beta < 1$. Now, define L-fuzzy subsets B and C of S by

$$B(x) = \begin{cases} 1 & \text{if } x \le y \\ 0 & \text{if } x \ne y \end{cases} \text{ and } C(x) = \begin{cases} 1 & \text{if } x = 0 \\ \alpha & \text{if } x \ne 0 \end{cases}$$

ISSN: 2231-5373

Then $B = \chi_{(y)}$ and $C = A_{\alpha}^{(0)}$ and hence B, C are L-fuzzy ideal of S. Now $(B \wedge C)(x) \leq A(x)$ for all $x \in S$; for

$$\begin{aligned} x &= 0 \Rightarrow B(x) \land C(x) = 1 = A(x) \\ 0 &\neq x \le y \Rightarrow B(x) \land C(x) = 1 \land \alpha = \alpha = A(y) \le A(x) \\ \text{and} \quad x \nleq y \Rightarrow B(x) \land C(x) = 0 \land \alpha = 0 \le A(x). \end{aligned}$$

Therefore $B \wedge C \leq A$. As A is prime, $B \leq A$ or $C \leq A$. Since B(y) = 1 and $A(y) = \alpha$, we get $B(y) \notin A(y)$ so that $B \notin A$ and hence $C \leq A$; in particular, $C(z) \leq A(z) = \beta$. Since $A(z) \neq A(0), z \neq 0$ and hence $C(z) = \alpha$. Therefore $\alpha \leq \beta$. By symmetry $\beta \leq \alpha$. Hence $\alpha = \beta$. Thus A assumes exactly one value, say α other than 1. Let $P = \{x \in S : A(x) = 1\}$. As A is two-valued and $P = A_1$; the 1-cut of A, it follows that P is a proper ideal of S. Hence for any $x \in S$,

$$A(x) = \begin{cases} 1 & \text{if } x \in P \\ \alpha & \text{otherwise.} \end{cases}$$

So that $A = A_{\alpha}^{P}$. Finally, we prove that α is meet-prime and P is prime. Let $a, b \in L$ such that $a \wedge b \leq \alpha$. Then A_{a}^{P} and A_{b}^{P} are L-fuzzy ideals of S and $A_{a}^{P} \wedge A_{b}^{P} \leq A$. As A is prime, $A_{a}^{P} \leq A$ or $A_{b}^{P} \leq A$. Therefore, for any $x \notin P$, either $A_{a}^{P}(x) \leq A(x)$ or $A_{b}^{P}(x) \leq A(x)$ so that $a \leq \alpha$ or $b \leq \alpha$ and hence α is a meet-prime element in L. Let I and J be two ideals of S such that $I \cap J \subseteq P$. Then $\chi_{I} \wedge \chi_{J} = \chi_{I \cap J} \leq \chi_{P} \leq A$. As A is prime, $\chi_{I} \leq A$ or $\chi_{J} \leq A$ which implies $I \subseteq P$ or $J \subseteq P$. Thus P is a prime ideal of S. Hence the theorem.

A non-constant L-fuzzy ideal A of S is said to be maximal L-fuzzy ideal of S if A is a maximal element in the set of all non-constant L-fuzzy ideals of S under the point-wise ordering. Before characterize maximal L-fuzzy ideals, we need the following which can be proved easily.

Lemma 4.2. Let A be an L-fuzzy subset of a bounded semilattice S and $\alpha \in L$. Let $A \lor \alpha$ denote an L-fuzzy subset of S defined by

$$(A \lor \alpha)(x) = A(x) \lor \alpha$$
 for all $x \in S$.

Then $A \lor \alpha$ is an L-fuzzy ideal of S iff A is an L-fuzzy ideal of S, for all $\alpha \in L$.

Theorem 4.3. Let A be an L-fuzzy subset of a bounded semilattice S. Then A is a maximal L-fuzzy ideal of S iff $A = A^M_{\alpha}$ for some maximal ideal M of S and a dual atom α of L.

Proof. Let M be a maximal ideal of S and α a dual atom in L such that $A = A_{\alpha}^{M}$. Then A is non-constant L-fuzzy ideal of S. Let B be a non-constant L-fuzzy ideal of S such that $A \leq B$. Then $M \subseteq \{x \in S : B(x) = 1\} \subsetneq S$. By the maximality of M, we get $M = \{x \in S : B(x) = 1\}$ and for any $x \notin M$, $\alpha = A(x) \leq B(x) \neq 1$. As α is a dual atom in L, A(x) = B(x) so that A = B. Thus A is a maximal L-fuzzy ideal of S.

Conversely suppose A is a maximal L-fuzzy ideal of S. Then $M = \{x \in S : A(x) = 1\}$ is a proper ideal of S. Now A(0) = 1, we shall prove that A is two-valued. Let $x, y \in S$ such that A(x) < 1 and A(y) < 1. Put $A(x) = \alpha$ and $A(y) = \beta$. Now $A \lor \alpha$ and $A \lor \beta$ are L-fuzzy ideals of S and also, $(A \lor \alpha)(x) = A(x) \lor \alpha = \alpha \lor \alpha = \alpha < 1$ as well as $(A \lor \beta)(y) = \beta < 1$. Hence $A \leq A \lor \alpha < 1$ and $A \leq A \lor \beta < 1$. By the maximality of $A, A = A \lor \alpha = A \lor \beta$. In particular, $A(y) = A(y) \lor \alpha$ and $A(x) = A(x) \lor \beta$ which implies $\beta \geq \alpha$ and $\alpha \geq \beta$ so that $\alpha = \beta$. Therefore A assumes exactly one value, say $\alpha \neq 1$. Now α is a dual atom; for, suppose $\alpha < \beta \in L$ then an L-fuzzy subset B of S defined by

$$B(x) = \begin{cases} 1 & \text{if } x \in M \\ \beta & \text{otherwise} \end{cases}$$

Then $B = A_P^M$, so that B is an L-fuzzy ideal of S. Clearly A < B. As A is maximal, B is constant which implies $\beta = 1$. Finally, let N be a proper ideal of S such that $M \subseteq N$. Then $A = A_{\alpha}^M \leq A_{\alpha}^N \neq 1$. Hence $A_{\alpha}^M = A_{\alpha}^N$ by the maximality of A. So that M = N and hence M is a maximal ideal of S. Thus $A = A_{\alpha}^M$, where M is a maximal ideal of S and α is a dual atom of L. Hence the theorem.

Acknowledgements:

The authors would like to thank Prof. U. M. Swamy for his valuable suggestions which help a lot for improving this paper.

References

- [1] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
- [2] Ch.S. Sundar Raj, B. Subrahmanyam and U. M. Swamy, Fuzzy Filters of Meet-Semilattices, Int.J.Math. And Appl. 7(3)(2019) 67-76.
- [3] Ch.S. Sundar Raj, B. Subrahmanyam and U. M. Swamy, Prime L-fuzzy filters of a Semilattice, Annals of Fuzzy Mathematics and Informatics, Accepted 17 April 2020.
- [4] Ch.S. Sundar Raj, T.A. Natnael and U.M. Swamy, Fuzzy Prime Ideals of ADLs, International Journal of Computing Science and Applied Mathematics 4 (2018) 32-36.
- [5] D.S. Malik and Mordeson, Extensions of fuzzy subrings and fuzzy ideals, Fuzzy Sets Systems 45 (1992) 245-251.
- [6] G. Gratzer, General Lattice Theory, Academic press, Newyork, 1978.
- [7] G. Gratzer and E.T. Schmidt, On congrunce of lattices, Acta Math. Acad. Sci. Hungari 13 (1962) 179-185.
- [8] J.C. Varlet, A generalization of the notion of pseudocomplementedness, Bull. Soc. Roy. Liege 36 (1968) 149-158.
- [9] J.C. Varlet, Distributive Semilattices and Boolean lattices, Bull. Soc. Roy. Liege 41 (1972) 5-10.
- [10] L.A.Zadesh, Fuzzy sets, Inform. and Control 8 (1965) 338-353.
- [11] N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets Systems 5 (1981) 203-215.

- [12] T. K. Mukherjee and M.K. Sen, On fuzzy ideals of a ring (I), Fuzzy Sets and Systems 21 (1987) 99-104.
- [13] U.M. Swamy and D.V. Raju, Algebraic fuzzy systems, Fuzzy Sets and Systems 41 (1991) 187-194.
- [14] U.M. Swamy and D.V. Raju, Fuzzy ideals and congruences of lattices, Fuzzy Sets and Systems 95 (1998) 249-253.
- [15] U.M. Swamy and D.V. Raju, Irreducibility in algebraic fuzzy systems, Fuzzy Sets and Systems 41 (1991) 233-241.
- [16] U.M. Swamy and K.L.N. Swamy, Fuzzy Prime Ideals of Rings, J. Math. Anal. Appl. 134 (1988) 94-103.
- [17] W.J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy sets and Systems 8 (1982) 133-139.
- [18] Y.S. Pawar and N.K. Thakare, *0-Distributive Semilattices*, Canad. Math. Bull. 21(4) 1978.