SOME BASIC PROPERTIES OF DESCRIPTIVE LINER SETS

DHANANJOY HALDER

BHAIRAB GANGULY COLLEGE M.M.FEEDER ROAD, BELGHARIA, KOLKATA- 700056, INDIA.

ABSTRACT. In this paper, some basic properties of descriptive linear sets (Distance set, Difference set, Midpoint set, etc. of linear sets) have been established.

1. INTRODUCTION

In 1920, H. Steinhaus [10] introduced the concept distance set $D(A) = \{|x-y| : x \in A, y \in A\}$ of a linear set A and he established that distance set of a linear set of positive Lebesgue measure contains an interval of the form $[0, \alpha], \alpha > 0$. In the same paper he also established the analogous result by introducing the notions difference set $\Delta(A) = \{x - y : x, y \in A\}$ of linear set A and sum set $A + B = \{x + y : x \in A, y \in B\}$ of two linear sets A and B.

Definition 1.1. [8] A set A is said to have the property of Baire if it can be expressed as symmetric difference of an open set and a set of first category.

The category analogue of Steinhaus's result was established by Piccard [9] in the following way:

If both A and B are second category subsets of the real line \mathbb{R} , each having the property of Baire, then the set $A + B = \{a + b : a \in A, b \in B\}$ contains an interval. Several authors ([1], [2], [3], [4], [5], [6], [7]) have generalized the results of Steinhaus and Picard in many directions. Throughout this paper we shall denote by N, Q and R respectively the set of natural numbers, the set of rational numbers and the set of real numbers also $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$. In order to describe the basic properties of descriptive linear sets (Distance set, Difference set, Sum set, Midpoint set, etc. of linear sets), we define the following sets: **Definition 1.2.** Let A and B be any two non-empty subsets of the real line \mathbb{R} . Let $p, q \in [-1, 1] \cap \mathbb{Q}^*$. Then we define the following sets;

- $L_{p,q}(A) = \{ px + qy : x, y \in A \}.$
- $L_{n,a}^*(A) = \{ px + qy : x \neq y, x, y \in A \}.$
- $L_{p,q}(A,B) = \{px + qy : x \in A, y \in B\}.$

2. Results

Theorem 2.1. If $\{A_n\}$ is monotone decreasing sequence of closed and bounded linear sets, then $L_{p,q}(\cap A_n) = \cap L_{p,q}(A_n)$, for any $p, q \in [-1,1] \cap \mathbb{Q}^*$.

Proof. As $\cap A_n \subset A_n$ for all $n \in \mathbb{N}$ and for any $p, q \in [-1, 1] \cap \mathbb{Q}^*$,

$$L_{p,q}(\cap A_n) = \{ px + qy : x, y \in \cap A_n \} \subset \{ px + qy : x, y \in A_n \} = L_{p,q}(A_n).$$

Thus $L_{p,q}(\cap A_n) \subset \cap L_{p,q}(A_n)$, for any $p, q \in [-1,1] \cap \mathbb{Q}^*$. On the other hand, let $d \in \cap L_{p,q}(A_n)$. This implies that $d \in L_{p,q}(A_n)$ for all $n \in \mathbb{N}$. Then there exist two sequences $\{x_n\}$ and $\{y_n\}$ in A_n such that $px_n + qy_n = d$, for any $p, q \in [-1,1] \cap \mathbb{Q}^*$. As $\{A_n\}$ is monotone decreasing, so $A_n \subset A_1$, hence $\{x_n\} \subset A_1$, which is closed and bounded and has a limit point say $x \in A_1$. Hence $\{x_n\}$ has a subsequence $\{x_{n_i}\}$ such that $x_{n_i} \to x$ and the corresponding subsequence $\{y_{n_i}\}$ of y_n has a limit $y \in A_1$. As $\{x_{n_i}\} \subset A_n$ and $\{y_{n_i}\} \subset A_n$ for each n, so $x_{n_i} \in A_n$ and $y_{n_i} \in A_n$ and consequently $px + qy = d \in L_{p,q}(\cap A_n)$, for any $p, q \in [-1, 1] \cap \mathbb{Q}^*$. Thus $\cap L_{p,q}(A_n) \subset$ $L_{p,q}(\cap A_n)$, for each $p, q \in [-1, 1] \cap \mathbb{Q}^*$. Hence the result. \Box

Remark 2.2. The above result does not hold when we replace intersection by union. For example:

Example 2.3. Let A = [0, 1] and B = [2, 3], then $L_{\frac{1}{3}, \frac{2}{3}}(A \cup B) = [0, 3]$. But $L_{\frac{1}{3}, \frac{2}{3}}(A) = [0, 1]$ and $L_{\frac{1}{3}, \frac{2}{3}}(B) = [2, 3]$. So, $L_{\frac{1}{3}, \frac{2}{3}}(A \cup B) \neq L_{\frac{1}{3}, \frac{2}{3}}(A) \cup L_{\frac{1}{3}, \frac{2}{3}}(B)$.

Remark 2.4. The above result does not hold without the sequence of 'closed' sets. For example:

Example 2.5. Let $A_n = \{1 \pm (\frac{1}{2})^{n+t} : t = 0, 1, 2, 3, ...\}$, for $n \in \mathbb{N}$. Then $\{A_n\}$ is monotone with $\cap A_n = \emptyset$ but $1 \in L_{\frac{1}{3}, \frac{2}{3}}(A_n)$ for all n. So, $1 \in \cap L_{\frac{1}{3}, \frac{2}{3}}(A_n)$. It follows that $L_{\frac{1}{3}, \frac{2}{3}}(\cap A_n) \neq \cap L_{\frac{1}{3}, \frac{2}{3}}(A_n)$.

Theorem 2.6. If A is an open subset of \mathbb{R} , then for any $p, q \in [-1, 1] \cap \mathbb{Q}^*$, $L_{p,q}(A)$ and $L_{p,q}^*(A)$ are open in \mathbb{R} .

Proof. Let $l \in L_{p,q}(A)$, for any $p, q \in [-1, 1] \cap \mathbb{Q}^*$. Then there exist $x, y \in A$ such that l = px + qy. If possible let $I = (l - \epsilon, l + \epsilon), \epsilon > 0$, be not contained

in $L_{p,q}(A)$, $p, q \in [-1, 1] \cap \mathbb{Q}^*$. Then there exists $r \in I$ such that $r \notin L_{p,q}(A)$, $p, q \in [-1, 1] \cap \mathbb{Q}^*$ and thus $l - \epsilon < r < l + \epsilon \Rightarrow px + qy - \epsilon < r < px + qy + \epsilon$. This implies:

Case I: When q > 0, $y - \frac{\epsilon}{q} < \frac{r - px}{q} < y + \frac{\epsilon}{q}$. This shows that $\frac{r - px}{q} \in I_y = (y - \frac{\epsilon}{q}, y + \frac{\epsilon}{q}) \subset A$ (y being an interior point of A) and hence $px + q\frac{r - px}{q} = r \in L_{p,q}(A)$ which is a contradiction.

Case II: When q < 0, $y - \frac{\epsilon}{q} > \frac{r - px}{q} > y + \frac{\epsilon}{q}$. This shows that $\frac{r - px}{q} \in I_y = (y + \frac{\epsilon}{q}, y - \frac{\epsilon}{q}) \subset A$ (y being an interior point of A) and hence $px + q\frac{r - px}{q} = r \in L_{p,q}(A)$ which is a contradiction.

Hence for both the cases $I \subset L_{p,q}(A)$, $p, q \in [-1,1] \cap \mathbb{Q}^*$. Since l is arbitrary $L_{p,q}(A)$ is an open set. If we take $x \neq y$ then $L_{p,q}^*(A)$ is also an open set. \Box

Theorem 2.7. If $A(\subset \mathbb{R})$ is closed and bounded, then $L_{p,q}(A)$ for any $p, q \in [-1, 1] \cap \mathbb{Q}^*$, is closed.

Proof. Let $l \in L_{p,q}(A)$ for any $p, q \in [-1, 1] \cap \mathbb{Q}^*$. Then there is a sequence $\{l_n\} \subset L_{p,q}(A)$ such that $l_n \to l$. Let $\{x_n\}$ and $\{y_n\}$ be two sequences in A such that $px_n + qy_n = l_n$. Since A is closed and bounded there exists a sub sequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \to x$ in A and therefore possesses such sequence $\{x_{n_i_k}\}$ for which $x_{n_{i_k}} \to x$. The corresponding subsequence $\{y_{n_i_k}\}$ for which $x_{n_{i_k}} \to x$. The corresponding subsequence $\{y_{n_{i_k}}\}$ for which $\{y_{n_{i_k}}\} \to y$. Now $px + qy = p(x - x_{n_{i_k}}) + q(y - y_{n_{i_k}}) + (px_{n_{i_k}} + qy_{n_{i_k}})$. Taking $k \to \infty$ we have $px + qy = l \in L_{p,q}(A)$ for any $p, q \in [-1, 1] \cap \mathbb{Q}^*$. i.e. $\overline{L_{p,q}(A)} \subset L_{p,q}(A)$ and consequently $L_{p,q}(A)$ for any $p, q \in [-1, 1] \cap \mathbb{Q}^*$, is closed.

Remark 2.8. $L_{p,q}^*(A)$ for any $p, q \in [-1, 1] \cap \mathbb{Q}^*$, of a closed set A may not be a closed set. For example:

Let A = [0, 1], then $L_{p,q}^*(A) = (0, 1)$.

Theorem 2.9. If $A(\subset \mathbb{R})$ is bounded and perfect, then for any $p, q \in [-1,1] \cap \mathbb{Q}^*$, $L_{p,q}(A)$ is perfect.

Proof. Let $l \in L_{p,q}(A)$ for any $p,q \in [-1,1] \cap \mathbb{Q}^*$ and $x,y \in A$ so that px + qy = l. Suppose l > 0. Let $0 < \epsilon < l$ and $I = (l - \epsilon, l + \epsilon)$. Since A is perfect, so the interval $(y - \frac{\epsilon}{q}, y + \frac{\epsilon}{q}), (q > 0)$ [or $(y + \frac{\epsilon}{q}, y - \frac{\epsilon}{q}), (q < 0)$] intersects A in atleast one point, say $y_1(y_1 \neq y)$. Let $l_1 = px + qy_1$ for any $p,q \in [-1,1] \cap \mathbb{Q}^*$. Then $l_1 \in L_{p,q}(A)$ for any $p,q \in [-1,1] \cap \mathbb{Q}^*$ and $l \neq l_1$. It is clear that, if $q > 0, y - \frac{\epsilon}{q} < y_1 < y + \frac{\epsilon}{q}$. This implies that $px + qy - \epsilon < px + qy_1 < px + qy + \epsilon$ i.e. $l - \epsilon < l_1 < l + \epsilon$. Thus $l_1 \in I$. In

the similar way we can show that $l_1 \in I$ when l < 0. If l = 0 then for any $y \in A$, y + (-1)y = l. Given $\epsilon > 0$, the interval $(y - \epsilon, y + \epsilon)$ intersects A in some point say $y_1 \neq y$. Let $l_1 = y_1 + (-1)y$. Then clearly $l_1 \in I$ and $l \neq l_1$. Hence $L_{p,q}(A) = (L_{p,q}(A))'$ and consequently $L_{p,q}(A)$ is perfect. \Box

Theorem 2.10. If $A(\subset \mathbb{R})$ is of second category, for any $p, q \in [-1, 1] \cap \mathbb{Q}^*$, both $L_{p,q}(A)$ and $L_{p,q}^*(A)$ are of second category.

Proof. If possible let $L_{p,q}^*(A)(\subset L_{p,q}(A))$, where $p, q \in [-1,1] \cap \mathbb{Q}^*$, be of first category. Then the set $\frac{L_{p,q}^*(A) - qa}{p} = \{\frac{px + qy - qa}{p} : x, y \in A, x \neq y\}$, (where $a \in A$ is fixed) is of first category. Let $x \in A$ and $x \neq a$. Then $px + qa \in L_{p,q}^*(A) - qa$, implies that $x \in \frac{L_{p,q}^*(A) - qa}{p}$. Thus $x \in A \setminus \{a\}$ implies that $x \in \frac{L_{p,q}^*(A) - qa}{p}$. i.e. $A \setminus \{a\} \subset \frac{L_{p,q}^*(A) - qa}{p}$. i.e. $A = (A \setminus \{a\}) \cap \{a\}$ is of first category which is a contradiction. So, $L_{p,q}^*(A)$ is of second category and hence the result.

From the results of H. I. Miller^[7] we get the following two results.

Theorem 2.11. If A and B are linear sets of positive measure, then $L_{p,q}(A, B)$ for any $p, q \in [-1, 1] \cap \mathbb{Q}^*$, contains an interval.

Theorem 2.12. If A and B are linear sets of second category and each possesses the property of Baire, then $L_{p,q}(A)$ for any $p,q \in [-1,1] \cap \mathbb{Q}^*$, contains an interval.

Theorem 2.13. Let A and B be two liner sets of positive Lebesgue measure and F be a countable dense subset of \mathbb{R} . Then for each $d \in F$, $E = \{x \in A : \exists y \in B, px + qy = d; p, q \in [-1, 1] \cap \mathbb{Q}^*\}$ has positive measure.

Proof. Clearly E is Lebesgue measurable. If possible let us assume Lebesgue measure $\mu(E) = 0$ and let $H = A \setminus E$, then $\mu(H) = \mu(A) > 0$. Then $L_{p,q}(H,B)$, where $p,q \in [-1,1] \cap \mathbb{Q}^*$, contains an interval. Hence $F \cap L_{p,q}(H,B) \neq \emptyset$, where $p,q \in [-1,1] \cap \mathbb{Q}^*$. Then for $x \in H \subset A$ and $y \in B$, there exists $c \in F$ such that c = px + qy. This shows that $x \in E$, a contradiction. Thus E is of positive measure.

Theorem 2.14. Let A and B be two liner sets of second category each having the property of Baire and F be a countable dense subset of \mathbb{R} . Then for any $d \in F$, $G = \{x \in A : \exists y \in B, px + qy = d; p, q \in [-1, 1] \cap \mathbb{Q}^*\}$, is of second category.

ISSN: 2231-5373

Proof. If possible let $G = \{x \in A : \exists y \in B, px + qy = d; p, q \in [-1, 1] \cap \mathbb{Q}^*\}$ for any $d \in F$, be first category. Clearly $A \setminus \bigcup_{d \in F} G = H$ (say) is a residual set. Hence $F \cap L_{p,q}(H, B) \neq \emptyset$. Then for some $c \in F$, there exist $x \in H \subset A$ and $y \in B$ such that $c = px + qy; p, q \in [-1, 1] \cap \mathbb{Q}^*$ and consequently this $x \in G$ which is a contradiction. Hence G is a second category set. \Box

References

- J.Ceder and D.K.Ganguly, On projection of big planar sets, Real Anal. Exch.,9 (1983 -84), 206 -214.
- [2] Miljenko Crnjac, Boris Guljas and Harry I.Miller, On some questions of Ger, Grubb and Kraljević, Acta Math. Hung., 57(3-4) (1991), 253– 257.
- P.Erdos and J.C.Oxtoby, Partitions of the plane into sets having positive measure in every non-null measurable product set, Trans. Amer. Math. Soc., 79, (1955), 99–102.
- [4] Z.Kominek, Some generalizations of the theorem of S. Piccard, Prace Nauk. Univ. Slqski Katowice, Prace Mat., 4 (1973), 31–33.
- [5] M.E.Kuczma and M.Kuczma, An elementary proof and an extension of a theorem of Steinhaus, Glasnik Mat. Ser. III, 6(26),(1971) 11–18.
- [6] H.I.Miller, Generalization of a classical theorem of measure theory, Radovi Akademije Nauka i Umjetnosti BiH, XLV (1973), 45–48.
- H.I.Miller, Relationships between various gauges of the size of sets of real numbers, Glasnik Mat. Ser. III, 9(29),(1974), 59–64.
- [8] J.C.Oxtoby, *Measure and Category*, Second Edition, Springer Verlag, NY, Heidelberg Berlin, (1980).
- [9] S.Piccard, Sur les ensembles de distances des points d'un espace Euclidean, Neuchatel, (1933).
- [10] H.Steinhaus, Sur les distance des points des ensembles de measure positive, Fund - Math, I, (1920), 93–104.

Bhairab Ganguly College, M.M.Feeder Road, Belgharia, Kolkata- 700056, India