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Abstract - In this study, we have launched a new two-parameter probability model called the New Lindley-Rayleigh 
distribution. The proposed model accommodates unimodal and bathtub, and a broad variety of monotone failure 
rates. Some statistical and mathematical properties of this distribution are discussed. Four widely used estimation 
methods are employed to estimate the model parameters namely maximum likelihood estimators (MLE), least-
square (LSE) and Cramer-Von-Mises (CVM) methods. By using the maximum likelihood estimate we have 
constructed the asymptotic confidence interval for the model parameters. The potentiality of the proposed 
distribution is revealed by using a real dataset, where the proposed distribution provided better fit in comparison 
with some other lifetime distributions. The importance of the proposed distribution is illustrated by using a real 
dataset, and found that it provides a better fitting in comparison with other lifetime distributions.  

Keywords - Lindley G-Family, MLE, LSE, CVE. 

I. INTRODUCTION 

The reference [1] has developed a new distribution called the Rayleigh distribution as a special case of the Weibull 
distribution. The CDF of Rayleigh distribution is 
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( ) 1 ;  0, 0xF x e x      (1.1) 

probability density function (PDF) is 
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where α is a scale parameter of the Rayleigh distribution. 
 

The Rayleigh distribution has been widely used in reliability analysis and in applications of several 
different fields which provide flexibility for modeling real data. The Rayleigh distribution has been used in different 
formats such as it is used in an application for communication engineering by [2].  The generalized Rayleigh 
distribution has introduced by [3]. The reference [4] had made a study on Rayleigh distribution and explored that it 
is applicable for clinical data. The estimation of the parameter of the Rayleigh distribution was performed by [5]. 
The reference [6] presented the Kumaraswamy generalized Rayleigh distribution for analyzing lifetime data. 
Marshall–Olkin extended generalized Rayleigh distribution was introduced by [7]. The reference [8] had introduced 
the Slashed Generalized Rayleigh Distribution which was created as the quotient of two independent random 
variables, one being a generalized Rayleigh distribution in the numerator and power of the uniform distribution in 
the denominator. 

The reference [9] had introduced the New Lindley-Rayleigh distribution with application to lifetime data. 
The reference [10] has developed the modified slashed-Rayleigh distribution. They developed it as the quotient of 
two independent random variables, one being a Rayleigh distribution in the numerator and power of the exponential 
distribution in the denominator. The reference [11] has introduced a new form of generalized Rayleigh distribution 
called the Alpha Power generalized Rayleigh (APGR) distribution by following the idea of an extension of the 
distribution families with the Alpha Power transformation. 

Researchers in the last few decades have developed various extensions and a modified form of the Lindley 
distribution which was developed by [12] in the context of Bayesian statistics, as a counterexample to fiducial 
statistics. An extensive study on the Lindley distribution was done by [13]. 
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 A random variable Y follows Lindley distribution with parameter θ and its probability density function 
(PDF) is given by 
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And its cumulative density function (CDF) is 
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In this article, we put forward the New New Lindley Rayleigh (NL-R) distribution to enhance the capability of the 
Lindley distribution using the Lindley-G family by inserting only one extra parameter. It is a member of the 
Lindley-G family introduced by [14]. Here, we have taken the Lindley distribution as a generator and the Rayleigh 
as a baseline distribution. The motivation of this study is to obtain a more flexible model by adding just one extra 
parameter to the Rayleigh distribution to achieve a better fit to the real data. We study the properties of the NL-R 
distribution and explore its applicability. 

The contents of this article are organized as follows. The new New Lindley Rayleigh distribution is 
introduced and various distributional properties are discussed in Section 2. Four widely used estimation methods are 
employed to estimate the model parameters namely maximum likelihood estimators (MLE), least-square (LSE) and 
Cramer-Von-Mises (CVM) methods, further, the maximum likelihood estimators are used to construct the 
asymptotic confidence intervals using the observed information matrix is discussed in Section 3. In Section 4 a real 
data sets have been taken to investigate the applications and suitability of the proposed distribution. In this section, 
we present the ML estimators of the parameters and approximate confidence intervals also AIC, BIC, AICC, HQIC 
are calculated to assess the validity of the NL-R model. Finally, Section 5 ends up with some general concluding 
remarks. 
 

II. THE NEW LINDLEY RAYLEIGH (NL-R) DISTRIBUTION 
 
The proposed distribution is developed by using Lindley-G family defined by [14] as, 

Let X be a random variable that follows the baseline distribution  ,G x   if its cumulative density 
function (CDF) is given by, 
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  (2.1) 

and its probability density function (PDF) is, 
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where  ,G x   and  ,g x   are the CDF and PDF of baseline distribution and   is parameter space of baseline 
distribution. Inserting (1.1) and (1.2) respectively in (2.1) and (2.2) we obtained the CDF and PDF of New Lindley 
Rayleigh (NL-R) distribution as 
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  (2.4) 

where α is the scale parameter and θ is the shape parameter of the NL-R distribution. 
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Figure 1 demonstrates the graph for PDF and hazard function for NL-R distribution for different values of 

parameters. From Fig. 1 (left panel), the density function of the NL-R distribution can bear different shapes 
according to the values of the parameters. Fig. 1 (right panel) demonstrates the increasing, decreasing, decreasing-
increasing and constant graph of the hazard function. This proves that NL-R distribution is more flexible than 
Rayleigh distribution. 

 
Fig. 1. Graph of PDF (left panel) and hazard function (right panel) for different values of α and θ. 

 
Survival function: 
The survival function  R t , which is the probability of an item not failing up to time t, is defined by

   1R t F t  . The survival /reliability function of a New Lindley-Rayleigh distribution is given by 
  

    2 2

1 1 1 ln 1 ,        t 0,  , 0
1

t tR t e e


 
 


                

 (2.5) 

The hazard rate function (HRF)  

Let t be survival time of a component or item and the probability that it will not survive for an additional time t  
then, hazard rate function is, 
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where R(t) is a reliability function. 

Hence let,  X ~ L-R ,     then its hazard rate function is 

  
  

 

2 2 2

2 2

2 1
2 1 1 ln 1

1
,   0,  , 0

1 1 1 ln 1
1

x x x

x x

xe e e
h x x

e e


  


 




 




  

 

           
            

 (2.6) 
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Quantile function of NL-R distribution is,  

The value of the pth quantile can be obtained by solving the following equation, 

    1Q p F p  

And we get quantile function by inverting (2.3) as 
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For the generation of the random numbers of the NL-R distribution, we suppose simulating values of random 
variable X with the CDF (2.3). Let U denote a uniform random variable in (0,1), then the simulated values of X can 
be obtained by  
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Skewness and Kurtosis:  

The Bowley’s skewness based on quartiles is, 
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 where and 3 1  Q and Q are the upper quartile and lower quartile 

respectively. 

Coefficient of kurtosis based on octiles given by [15] is 
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III. ESTIMATION OF PARAMETERS 

A. Maximum Likelihood Estimates  

The parameters of the NL-R distribution can be obtained by maximum likelihood (MLE) as follows. Let 1, , nx x  
be a random sample of size n from a two-parameter NL-R(α, θ) with PDF (2.4). The likelihood function of the NL-R 
distribution is given by, 
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Hence log-likelihood function is obtained as, 
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  (3.1.1) 

Differentiating (3.1.1) with respect to α and θ we get, 
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By solving these two non-linear equations we get the estimated values of the parameters of the New Lindley 
Rayleigh distribution. Since is difficult to solve them manually but one can use computer programming to solve 
them numerically. 
 
Let us denote the parameter space by ( , )    and the corresponding MLE of   as ˆˆ ˆ( , )   , then the 

asymptotic normality results in,      1
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For this further diff. (3.1.1) w.r. to parameters α and θ we get,  
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In practice, it is useless that the MLE has asymptotic variance    1
I


 because we don’t know . Hence we 

approximate the asymptotic variance by substituting the estimated value of the parameters. 

The common procedure is to use the observed Fisher information matrix ˆ( )O   as an estimate of the 

information matrix  I   given by 
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Where H is the Hessian matrix. 

The Newton-Raphson algorithm to maximize the likelihood produces the observed information matrix. Therefore, 
the variance-covariance matrix is given by, 
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Hence from the asymptotic normality of MLEs, approximate 100(1-α) % confidence intervals for α and θ can be 
constructed as, 
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ˆ ˆ( )z SE  where / 2z is the upper percentile of standard normal variate. 

B. Method of Least-Square Estimation (LSE) 

The reference [16] has introduced the ordinary least square estimators and weighted least square estimators to 
estimate the parameters of Beta distributions. In this study, we apply the same technique for the NL-R distribution. 
The least-square estimators of the unknown parameters α and θ of NL-R distribution can be obtained by minimizing  
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with respect to unknown parameters α and θ. 
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with respect to α and θ. To obtain the least square estimators, we have to solve the following two nonlinear 
equations equating to zero,  
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C. Method of Cramer-Von-Mises (CVM) 

 
One of the important estimation methods is Cramér-von-Mises type minimum distance estimators, [17] 

because it provides empirical evidence that the bias of the estimator is smaller than the other minimum distance 
estimators. The CVM estimators of α and θ are obtained by minimizing the function 
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To obtain the CVM estimators, we have to solve the following two nonlinear equations equating to zero,  
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IV. ILLUSTRATION WITH REAL DATA ANALYSIS 

For the data analysis, we are using a real data set that was used by, [18]. The data represents thirty successive values 
of March precipitation (inches) for Minneapolis/St Paul.  

0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 
2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05 

We have computed the maximum likelihood estimates By using the log-likelihood function (3.1.1), directly by using 
R software [19]. By using the maximum likelihood estimation method for the above data set, we have obtained ̂ = 

0.21700 and ̂ = 1.21069 and its corresponding Log-Likelihood value is -38.41925. In Table 1 we have presented 
the MLE’s with their standard errors (SE) and 95% confidence interval for α and θ. 

Table 1 
MLE, SE And 95% Confidence Interval 

Parameter MLE SE 95% ACI 
Alpha 0.2170 0.06176 (0.09595, 0.33805) 
Theta 1.2107 0.24267 (0.73506, 1.68632) 

 

Hence the Hessian variance-covariance matrix is obtained as, 

 
 ˆ

1

|

ˆˆ ˆvar( ) cov( , ) 0.00381 0.01072
ˆ ˆ 0.01072 0.05889ˆcov( , ) var( )

H
 

  

  

                  
 

The Profile log-likelihood functions of parameters α and θ are displayed in Fig. 2. It can be explored that the 
estimated parameters using the MLE method are unique.  
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Fig. 2. Profile log-likelihood function of α and θ. 

 

Fig. 3. The plot of fitted density functions of estimation methods MLE, LSE and CVME. 
 
In Table 2 we have presented the estimated parameters, log-likelihood, AIC, BIC and AICC for MLE, LSE and 
CVM methods. 
 

Table 2 
Estimated Parameters, Log-Likelihood, AIC, BIC, AICC and HQIC 

Method of 
Estimation ̂  ̂  -LL AIC BIC AICC HQIC 

MLE 0.2170 1.2107 38.4192 80.8385 83.6409 81.25229 81.7350 
LSE 0.2035 1.1146 38.5087 81.01732 83.81971 81.43111   81.9138 
CVE 0.2261 1.1943 38.4596 80.91917 83.72156 81.33296 81.8157 

 
Table 3 

The KS, AD and CVM Statistics With P-Value 
Method of 
Estimation KS(p-value) AD(p-value) CVM(p-value) 

MLE 0.0662(0.9994) 0.0206(0.9969) 0.1514(0.9986) 
LSE 0.0652( 0.9995) 0.0161(0.9994) 0.1445(0.9990) 
CVE 0.0586(0.9999) 0.01388(0.9998) 0.1339(0.9995) 

 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 66 Issue 9 - Sep 2020 

 

ISSN: 2231-5373                                   http://www.ijmttjournal.org                                 Page 205 

In Fig. 4 we have displayed the contour plot of the estimated parameters by MLE and the fitted CDF with empirical 
distribution function [20]. 

  
Fig. 4. Contour plot (left panel) and the fitted CDF with empirical distribution function (right panel) 

 
One way to assess how well a particular theoretical model describes a data distribution is to plot the data quantiles 
against theoretical quantiles. In Fig. 5 we have plotted the P-P and Q-Q plot and verified that the new proposed 
model fits the data very well.  
 

 
Fig. 5. The graph of the P-P plot (left panel) and Q-Q plot (right panel) of the NL-R distribution 

 
For the illustration purpose we have fitted the following probability distributions models 
 
A. Generalized Rayleigh distribution 
The probability density function of Generalized Rayleigh (GR) distribution [21] is  

     
12 22 (x; , ) = 2 x e 1 e 0 0x x

GRf ; ( , ) , x


      


  
   

 
 

Here α and λ are the shape and scale parameters respectively.  
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B. Exponential power (EP) distribution 

The probability density function Exponential power (EP) distribution [22] is 

   1( ) exp 1 ; ( , ) 0, 0x x
EPf x x e e x

        
    

 
. 

where α and λ are the shape and scale parameters, respectively. 

C. Gompertz distribution (GZ) 

The probability density function of Gompertz distribution [23] with parameters α and θ is 

   1 0 0x x
GZf x e exp e ;x , , .   


         
 

 

D. Exponential Extension (EE) distribution 

The density of exponential extension (EE) distribution [24] with parameters α and λ is 

    1( ) 1 exp 1 1 ; 0, 0, 0.EEf x x x x              

For the test of goodness of fit and adequacy of the proposed model, Akaike information criterion (AIC), Bayesian 
information criterion (BIC), Corrected Akaike information criterion (CAIC) and Hannan-Quinn information 
criterion (HQIC) are calculated and presented in Table 3.  

Table 3 
Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

Model -LL AIC BIC CAIC HQIC 

LR 38.4193 80.8385 83.6409 81.2830 81.7350 
GR 38.8284 81.6568 84.4592 82.1012 82.5533 
EP 40.4769 84.9537 87.7561 85.3675 85.8502 
GZ 41.0762 86.1523 88.9547 86.5968 87.0488 
EE 41.4221 86.8442 89.6466 87.2580 87.7407 

 
We have displayed the histogram and the fitted probability density functions and the empirical cumulative 
distribution function with estimated distribution function in Figure 5. For the given data set we have found that the 
proposed distribution provides a better fit and more reliable results than selected ones. 
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Fig. 6. The Histogram and the PDF of fitted distributions (left panel) and Empirical CDF with estimated CDF (right 

panel). 
 
We have reported the test statistics and their corresponding p-value of the NL-R distribution and competing models 
in Table 4. The result shows that the NL-R distribution has the minimum value of the test statistic and higher p-
value hence we conclude that the NL-R distribution gets quite better fit and more consistent and reliable results from 
others taken for comparison. 
 

Table 4 
The Goodness-of-Fit Statistics and Their Corresponding p-Value 

Model KS(p-value) A2(p-value) W(p-value) 

LR 0.0662(0.9994) 0.0206(0.9969) 0.1514(0.9986) 
GR 0.0770(0.9942) 0.0341(0.9631) 0.2267(0.9813) 
EP 0.1164(0.8108) 0.0738(0.7321) 0.5165(0.7286) 
GZ 0.1149(0.8230) 0.0836(0.6749) 0.6440(0.6060) 
EE 0.1584(0.4390) 0.1571(0.3702) 1.0251(0.3437) 

 
 

V. CONCLUSION 
 

We have proposed the new Lindley Rayleigh (NL-R) distribution generated by a new class of Lindley generated 
distributions. We have derived important properties of the NL-R distribution like hazard rate function, quantile 
function, and expression for random number generation.  We have illustrated the application of NL-R distribution to 
real data sets used by researchers earlier. We have employed four well-known estimation methods viz. maximum 
likelihood estimation (MLE), ordinary least square method (LSE), and Cramér-Von-Mises (CVM). By observing the 
results of these all methods of estimation we conclude that the new Lindley Rayleigh (NL-R) distribution performs 
better. The importance of the proposed distribution is illustrated by using a real dataset, and found that it provides a 
better fitting in comparison with other lifetime distributions.  
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