Roll of $r_{\text {oỗ-open }}$-opets in Digital Topology

Meenarani.S.M ${ }^{\# 1}$, Poorani. $K^{* 2}$, Anbuchelvi.M ${ }^{\# 3}$
\#Research Scholar \& Department of Mathematics \& V.V.Vanniaperumal college for women, Virudhunagar, India

Abstract

This work is based on quasi-operation in a topological space. Quasi-operation has been extended to the class of $\widehat{\Omega}$-open sets. The new class of $\gamma_{\delta} \widehat{\Omega}$-open sets has been introduced by linking the set of all $\bar{\delta}$-open sets with quasi-operation on $\widehat{\Omega}$-open sets. Also two kinds of closures such as $\gamma(\hat{\delta} \widehat{\Omega})$-closure and $\gamma_{\delta \hat{\Omega}^{-}}$ closure have been studied and derived their elementary properties. Moreover, γ_{δ}-regular and γ_{δ}-open quasioperation have been investigated. Also $\gamma(\hat{\delta} \widehat{\Omega})$-regular space has been defined and a few basic results on it have been derived.

 operation, γ_{σ}-open quasi-operation and $\gamma(\delta \widehat{\Omega})$-regular space..

I. INTRODUCTION

In 1979, Kasahara[1] introduced the concept of operation compact spaces. Following him, Ogata[4] studied the notion of operation on open sets and investigated some related topological properties of the associated family of all the operation-open sets with a given topology and a given operation in 1991. In 2012, the class of $\widehat{\Omega}$-Closed sets has been introduced by Lellis Thivagar et al. [2]. Recently, operation on the class of $\widehat{\Omega}$-open sets has been introduced and studied by us[3]. In this paper, an attempt has been made to introduce the concept of quasioperation on the class of $\widehat{\Omega}$-open sets in a space X. Moreover, for a given quasi-operation γ on $\widehat{\Omega} O(X)$, the
 defined and investigated by giving suitable examples in digital topology. Some basic properties with respect to $\gamma_{\delta} \widehat{\Omega}^{\text {-closure and } \gamma(\delta \widehat{\Omega}) \text {-closure have been failed in quasi-operation. This gives birth to three notions such as }}$ γ_{δ}-regular quasi-operation, γ_{δ}-open quasi-operation and $\gamma(\delta \widehat{\Omega})$-regular space in which those properties hold.

II. PRELIMINARIES

In this section, some definitions and results that are used in this paper have been dealt. Always X or (X, τ) denotes a topological space on which no separation axioms assumed, unless otherwise stated. For any subset A of X, the closure (res.interior, kernel) of A is denoted by $\operatorname{cl}(A)(\operatorname{res} . \operatorname{int}(A), \operatorname{ker}(A))$.

Definition 2.1 ([6]) A subset A of (X, τ) is said to be δ-open set in (X, τ) if for each point $x \in A$, there exists an open set U in (X, τ) such that $x \in U$ and $\operatorname{int}(c l(U)) \subseteq A$. A subset E is said to be δ-closed in (X, τ) if $X \backslash E$ is δ-open in (X, τ).

Definition 2.2 ([5]) A subset A of a space (X, τ) is called a regular open set if $A=\operatorname{int}(\operatorname{cl}(A))$.
Definition 2.3([2], Definition 3.1) Let (X, τ) be a topological space. A is said to be $\widehat{\mathbf{\Omega}}$-closed set if $\delta \mathrm{cl}(A) \subseteq U$ when $A \subseteq U$, where U is a semi-open subset of X. The complement of $\hat{\Omega}$-closed set is an $\hat{\Omega}$-open set. The family of all $\hat{\Omega}$-closed sets in a space (X, τ) is denoted by $\tau \hat{\Omega} \cdot$ Also $\widehat{\Omega} O(X, \tau)$ or $\widehat{\Omega} O(X)$ (resp. $\hat{\Omega} C(X, \tau)$ or $\hat{\Omega} C(X))$ denotes the set of all $\hat{\Omega}$-open sets (resp. $\widehat{\Omega}$-closed sets) on the space X.
Definition 2.4([3], Definition 3.1) A function $\gamma: \hat{\Omega} O(X, \tau) \rightarrow P(X)$ is called an operation on $\hat{\Omega} \mathbf{O}(X)$, if $U \subseteq \gamma(U)$ for every set $U \epsilon \widehat{\Omega} O(X, \tau)$. For any operation $\gamma, \gamma(X)=X$, and $\gamma(\varnothing)=\emptyset$.

Proposition 2.5 ([6]) Every regular open set is a δ-open set.
Proposition 2.6 ([2], Theorem 3.2) Every δ-closed set is a $\widehat{\Omega}$-closed set in (X, τ).
Proposition 2.7 ([3], Theorem 5.3 vii.) Let A be any subset of a topological space (X, τ). Then, $\widehat{\Omega} c l(A) \subseteq \delta c l(A)$.

Notation 2.8. i) $\delta O(X, x)$ denotes the set of all δ-open sets containing x in a space (X, τ).
ii) $\widehat{\Omega} O(X, x)$ denotes the set of all $\widehat{\Omega}$-open sets containing x in a space (X, τ).
iii) $\widehat{\Omega} O(\mathbb{Z})$ or $\widehat{\Omega} O(\mathbb{Z}, k)$ denotes the set of all $\widehat{\Omega}$-open sets in (\mathbb{Z}, k), digital topological space.

III. QUASI -OPERATION AND $\gamma \delta \hat{\Omega}$-OPEN SETS

Definition 3.1. Let X be a topological space. A function $\gamma: \widehat{\Omega} O(X, \tau) \rightarrow P(X)$ is said to be a quasioperation on $\widehat{\Omega} \mathbf{O}(\boldsymbol{X})$ if there exists $a \widehat{\Omega}$-open subset U of X such that $\gamma(U) \neq \emptyset$.

Example 3.2. Let \mathbb{Z} be the set of all integers and (\mathbb{Z}, k) be a digital line(Khalimsky line) where k is a digital topology with subbase $\{2 m-1,2 m, 2 m+1 / m \in \mathbb{Z}\}$. Define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by $\gamma(U)=\delta c l(\delta \operatorname{int}(U)) \cap\{\cap \operatorname{cl}(\{x\}) / x \in U\}$ for all $U \in \widehat{\Omega} O(\mathbb{Z}, k)$. Here, $\gamma(\{2 m+1\})=\{2 m, 2 m+1,2 m+2\} \neq \emptyset$ for a $\{2 m+1\} \in \widehat{\Omega} O(\mathbb{Z}, k)$. Then γ is a quasi-operation on $\widehat{\Omega}(\mathbb{Z})$.

Proposition 3.3. Let X be a non-empty set. Every operation on $\widehat{\Omega}(X)$ is a quasi-operation on $\widehat{\Omega}(X)$ in a space X. But, the converse does not always hold.
Proof. Let $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ be any quasi-operation on $\widehat{\Omega} O(X)$. As $\gamma(X)=X \neq \emptyset, Y$ is a quasi-operation on $\bar{\Omega} O(X)$.

Example 3.4. Define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by $\gamma(U)=\operatorname{\delta int}(\delta c l(U)) \cap\{2 n / n \in \mathbb{Z}\}$ for all $U \in \Omega(\mathbb{Z}, k)$. Consider an $\widehat{\Omega}$-open subset $U=\{2 m+1\}$ of \mathbb{Z}. Here, $\gamma(U)=\{2 m, 2 m+2\} \neq \emptyset$ and $U \Phi \gamma(U)$. So, γ is a quasi-operation but not an operation on $\widehat{\Omega} O(\mathbb{Z})$.
Definition 3.5. Let $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ be a quasi-operation on $\widehat{\Omega} O(X)$. A non-empty subset U of X is called $a \boldsymbol{Y}$ ธin-open set if for every $x \in U$, there exists a δ-open set V containing x such that $\gamma(V) \subseteq U$.

 open set is a $\gamma_{\text {añ }}$-closed set in $X . \gamma_{\text {ant }} C(X)$ denotes the set of all $\gamma_{\text {añ }}$-closed subsets of X. From the definition,

Example 3.6. Define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by $\gamma(\mathbb{U})=\delta$ int $(\delta c l(U))$ for every $U \in \widehat{\Omega} O(\mathbb{Z}, k)$. Here, an $\widehat{\Omega}$ open subset $A=\{2 m+3\}$ of \mathbb{Z} is a γ_{σ} (in-open subset of (\mathbb{Z}, k).
Definition 3.7. Let γ be a quasi-operation on $\widehat{\Omega} O(X)$. For any subset A of a space $X, \gamma_{\Delta \AA}$-closure of A is
 defined as X is a $Y_{\text {bind }}$-closed set.
Definition 3.8. Let Y be a quasi-operation on $\widehat{\Omega}(X)$. For any subset A of a space $X, \gamma_{\sigma \delta}$-kernel of \boldsymbol{A} is

Proposition 3.9. Let $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ be a quasi-operation on $\widehat{\Omega} O(X)$. Then, $\left.\left.\left.i) \cdot \gamma_{\sigma \hat{R}} c l(\varnothing)=\emptyset . i i\right) \cdot \gamma_{\sigma \AA} \operatorname{cl}(X)=X \cdot i i i\right) \cdot \gamma_{\sigma \Omega} \operatorname{ker}(\varnothing)=\emptyset \cdot i v\right) \cdot \gamma_{\sigma} \Omega \operatorname{ker}(X)=X$.

Proposition 3.10. If $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ is a quasi-operation on $\widehat{\Omega}(X)$, then the following statements hold for any two subsets A and B of X.
i) $A \subseteq \gamma_{\text {ont }} \operatorname{cl}(A)$.
ii) If $A \subseteq B$, then $\gamma_{\text {大గी }} c l(A) \subseteq \gamma_{\text {大గी }} c l(B)$.
iii) $A \subseteq \gamma_{\text {oñ }} k e r(A)$.
iv) If $A \subseteq B$, then $\gamma_{a \mathrm{a}} k e r(A) \subseteq \gamma_{b \mathrm{~A}} k e r(B)$.

Proof. i) Suppose $x \notin \gamma_{\sigma \AA} c l(A)$. By the definition of $\gamma_{\text {ถถी }}$-closure, there exists a subset F containing A such that $x \notin F$ and F^{c} is a $\gamma_{\text {añ }}$-open subset containing x. Now, $x \in F^{c} \subseteq A^{c}$. Therefore, $x \notin A$. Hence (i) holds.

iii) If $x \notin \gamma_{\sigma \mathbb{R}} k e r(A)=\Pi\left\{U / A \subseteq U ; U \in \gamma_{\sigma \mathbb{R}} O(X)\right\}$, then $x \notin U$ for some $\gamma_{\sigma \mathbb{B}}$-open set U containing A. Therefore, $x \notin A$.
iv）Let $x \in \gamma_{\sigma 6} k e r(A)$ and U be any $\gamma_{\text {ant }}$－open set such that $B \subseteq U$ ．Since $A \subseteq B, A \subseteq U$ ．By the definition

Proposition 3．11．Let $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ be a quasi－operation on $\widehat{\Omega} O(X)$ ．Then，the following two statements hold for any subset A of X ．
i）$\gamma_{\text {ప凡 }} c l(A)=\left\{x \in X / U \cap A \neq \emptyset \forall U \in \gamma_{\partial \mathrm{R}} O(X, x)\right\}$ ．
ii）$\gamma_{\partial \mathrm{R}} \operatorname{ker}(A)=\left\{x \in X / F \cap A \neq \emptyset \forall F \in \gamma_{\partial \mathrm{R}} C(X, x)\right\}$ ．
Proof．i）Let $y \notin\left\{x \in X / U \in \gamma_{\square \Omega} O(X, x)\right.$ such that $\left.U \cap A \neq \emptyset\right\}$ ．Then，there exists a $Y_{\text {бถी－open }}$ set U containing y such that $U \cap A=\emptyset$ ．Put $F=U^{c}$ ．Now，$y \notin U^{c}=F$ such that $A \subseteq F$ ．Then，
$y \notin \cap\left\{F / A \subseteq F ; X \backslash F \in \gamma_{6 \AA} O(X)\right\}=\gamma_{6 \Omega} c l(A)$ ．Therefore，
$\gamma_{\text {an }} c l(A) \subseteq\left\{x \in X / U \in \gamma_{\sigma \text { an }} O(X, x)\right.$ such that $\left.U \cap A \neq \emptyset\right\}$ ．
On the other hand，assume that $y \notin \gamma_{\sigma 6} \mathrm{cl}(A)$ ．Then，$y \notin F$ for some subset F of X such that $A \subseteq F$ and
 $U \cap A=\emptyset$ ．Then，$y \notin\left\{x \in X / U \in \gamma_{\sigma \hat{R}} O(X, x)\right.$ such that $\left.U \cap A \neq \emptyset\right\}$ ．Therefore，
$\left\{x \in X / U \in \gamma_{\sigma \hbar} O(X, x)\right.$ such that $\left.U \cap A \neq \emptyset\right\} \subseteq \gamma_{\sigma \cap} c l(A)$ ．Hence

ii）Let $y \notin\left\{x \in X / F \in \gamma_{\partial \text { 勋 }} C(X, x)\right.$ such that $\left.F \cap A \neq \emptyset\right\}$ ．Then，there exists a $Y_{\text {大ถี }}$－closed set F containing y such that $F \cap A=\emptyset$ ．Here，$A \subseteq F^{c}$ ，put $F^{c}=U$ ．Now，$y \notin F^{c}=U$ such that $A \subseteq U$ ．Then，
$y \notin \cap\left\{U / A \subseteq U\right.$ such that $\left.U \in \gamma_{a \emptyset} O(X)\right\}=\gamma_{a Q} \operatorname{ker}(A)$ ．Therefore，
$\gamma_{\text {and }} \operatorname{ker}(A) \subseteq\left\{x \in X / F \in \gamma_{\partial \cap} C(X, x)\right.$ such that $\left.F \cap A \neq \emptyset\right\}$ ．
On the other hand，assume that $y \notin \gamma_{\partial \Omega} k e r(A)$ ．Then，$y \notin U$ for some $\gamma_{\text {aniopen }}$ set U of X such that $A \subseteq U$ ．

$y \notin\left\{x \in X / F \in \gamma_{\sigma \hat{R}} C(X, x)\right.$ such that $\left.F \cap A \neq \emptyset\right\}$ ．Therefore，
$\left\{x \in X / F \in \gamma_{\sigma \hat{R}} C(X, x)\right.$ such that $\left.F \cap A \neq \emptyset\right\} \subseteq \gamma_{\sigma \hat{\Omega}} \operatorname{ker}(A)$ ．Hence
$\gamma_{a n} \operatorname{ker}(A)=\left\{x \in X / F \in \gamma_{a n} C(X, x)\right.$ such that $\left.F \cap A \neq \emptyset\right\}$ ．

IV．$\gamma(\delta \widehat{\Omega})$－CLOSURE AND $\gamma(\delta \widehat{\Omega})$－INTERIOR

Definition 4．1．Let $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ be a quasi－operation on $\widehat{\Omega} O(X)$ and A be any non－empty subset of X ． $\gamma(\delta \widehat{\Omega})$－closure of \boldsymbol{A} is denoted by $\gamma(\delta \widehat{\Omega}) c l(A)$ and defined $\operatorname{by} \gamma(\delta \hat{\Omega}) c l(A)=\{x \in X / \gamma(U) \cap A \neq \emptyset$ for every $U \in \delta O(X, x)\}$ ．Always $\gamma(\delta \widehat{\Omega}) c l(\varnothing)=\emptyset$ ．
Example 4．2．Let $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ be defined by $\gamma(U)=\operatorname{sint}(\delta c l(U))$ for all $U \in \widehat{\Omega} O(\mathbb{Z}, k)$ ．For the non－empty $\widehat{\Omega}$－open subset $\{2 m, 2 m+1\}$ of $\mathbb{Z}, \gamma(\delta \hat{\Omega}) c l(\{2 m, 2 m+1\})=\{2 m, 2 m+1,2 m+2\}$ ．

Definition 4．3．Let $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ be a quasi－operation on $\widehat{\Omega} O(X)$ and A be any non－empty subset of X ． $\boldsymbol{r}(\delta \widehat{\Omega})$－interior of A is denoted by $\gamma(\delta \widehat{\Omega}) \operatorname{int}(A)$ and defined
by $\gamma(\delta \hat{\Omega}) \operatorname{int}(A)=\{x \in X / \gamma(U) \subseteq A$ for some $U \in \delta O(X, x)\}$ ．Always $\gamma(\delta \hat{\Omega}) \operatorname{int}(X)=X$ ．
Example 4．4．Let $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ be defined by $\gamma(U)=\delta c l(\delta i n t(U))$ for all $U \in \widehat{\Omega} O(\mathbb{Z}, k)$ ．For the non－empty $\widehat{\Omega}$－open subset $\{2 m, 2 m+1,2 m+2\}$ of $\mathbb{Z}, \gamma(\delta \hat{\Omega}) \operatorname{int}(\{2 m, 2 m+1,2 m+2\})=\{2 m+1\}$ ．
Definition 4．5．Let γ be a quasi－operation on $\widehat{\Omega} O(X)$ ．A subset F of a space X is a $\boldsymbol{\gamma}(\delta \widehat{\Omega})$－closed set in X if $\gamma(\delta \hat{\Omega}) c l(F)=F$ ．

Example 4．6．Let $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ be defined by $\gamma(U)=\operatorname{sint}(\delta c l(U))$ for all $U \in \widehat{\Omega} O(\mathbb{Z}, k)$ ．For the non－empty $\widehat{\Omega}$－open subset $A=\{2 m, 2 m+1,2 m+2\}$ of $\mathbb{Z}, \gamma(\delta \hat{\Omega}) c l(A)=\{2 m, 2 m+1,2 m+2\})=A$ ． Thus $A=\{2 m, 2 m+1,2 m+2\}$ is $\gamma(\delta \hat{\Omega})$－closed in (\mathbb{Z}, k) ．

Remark 4．7．For a given quasi－operation γ on $\widehat{\Omega} O(X)$ ，the basic properties $\operatorname{cl}(X)=X$ and $\operatorname{int}(\varnothing)=\emptyset$ can not be extended to the $\gamma(\delta \hat{\Omega})$－closure and $\gamma(\delta \hat{\Omega})$－interior．

Example 4．8．i）Define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by $\gamma(U)=\delta c l(\operatorname{sint}(U)) \cap\{\cap \operatorname{cl}(\{x\}) / x \in U\}$ for every $U \in \widehat{\Omega} O(\mathbb{Z}, k)$ ．For a δ－open set $U=\{2 m+1,2 m+3,2 m+5\}$ containing the point $2 m+3$ ， $\gamma(\{2 m+1,2 m+3,2 m+5\})=\emptyset$ ．Then，$\gamma(U) \cap \mathbb{Z}=\emptyset \cap \mathbb{Z}=\emptyset$ ．By the definition of $\gamma(\delta \hat{\Omega})$－closure， $2 m+3 \notin \gamma(\delta \hat{\Omega}) c l(\mathbb{Z})$ ，where as $2 m+3 \in \mathbb{Z}$ ．Hence $\gamma(\delta \hat{\Omega}) c l(\mathbb{Z}) \neq \mathbb{Z}$ ．
ii) Define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by $\gamma(U)=\operatorname{\delta int}(\delta c l(U)) \cap\{2 n / n \in \mathbb{Z}\}$ for every $U \in \widehat{\Omega} O(\mathbb{Z}, k)$. For the point $2 m-1$, there exists a δ-open subset $U=\{2 m-1\}$ containing $2 m-1$ such that $\gamma(\{2 m-1\}) \subseteq \emptyset$. By the definition of $\gamma(\delta \hat{\Omega})$-interior, $2 m-1 \in \gamma(\delta \hat{\Omega}) \operatorname{int}(\emptyset)$. Therefore, $\gamma(\delta \hat{\Omega}) \operatorname{int}(\emptyset) \neq \emptyset$.

V. $\gamma_{\tilde{\sigma}}$-REGULAR QUASI-OPERATION AND $\gamma_{\tilde{\sigma}}$-OPEN QUASI-OPERATION

Definition 4.9. A quasi-operation $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ is said to be a γ_{δ}-regular quasi-operation if for each $x \in X$ and for every pair $U, V \in \delta O(X, x)$ there exists $W \in \delta O(X, x)$ such that $\gamma(W) \subseteq \gamma(U) \cap \gamma(V)$.
Example 4.10. Let $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ be defined by $\gamma(U)=\delta i n t(\delta c l(U)) \cap\{2 n+1 / n \in \mathbb{Z}\}$ for every $U \in \widehat{\Omega} O(\mathbb{Z}, k)$.
For an even integer $2 n$, consider $U=\{2 n-1,2 n, 2 n+1\}=V \in \delta O(\mathbb{Z}, 2 n)$. Then, there exists
$W=U \in \delta O(\mathbb{Z}, 2 n)$ such that $\gamma(W)=\gamma(U) \cap \gamma(V)=\{2 n-1,2 n+1\}$.
For an odd integer $2 n+1$, consider $U=\{2 n+1,2 n+2,2 n+3\} \in \delta O(\mathbb{Z}, 2 n+1)$, and
$V=\{2 n+1,2 n+3\} \in \delta O(\mathbb{Z}, 2 n+1)$. Then, there exists $W=\{2 n+1\} \in \delta O(\mathbb{Z}, 2 n+1)$ such that
$\gamma(W)=\{2 n+1\} \subseteq\{2 n+1,2 n+3\}=\gamma(J) \cap \gamma(V)$. Therefore, γ is a Y_{δ}-regular quasi-operation.
Definition 4.11. A quasi-operation $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ is said to be a $\boldsymbol{\gamma}_{\delta}$-open quasi-operation iffor each point $x \in X$ and $U \in \delta O(X, x)$ there exists an $\gamma_{\tilde{\delta}}$-open set W containing x such that $W \subseteq \gamma(U)$.

Example 4.12. Let $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ be defined by $\gamma(U)=\delta i n t(\delta c l(U))$ for all $U \in \widehat{\Omega} O(\mathbb{Z}, k)$.
For an even integer $2 n$, consider $U=\{2 n-1,2 n, 2 n+1\} \in \delta O(\mathbb{Z}, 2 n)$. Then, there exists $W=\{2 n-1,2 n, 2 n+1\} \in \gamma_{\Delta ถ} O(\mathbb{Z}, 2 n)$ such that $W=\gamma(U)=\{2 n-1,2 n, 2 n+1\}$.
For an odd integer $2 n+1$, consider $U=\{2 n+1\} \in \delta O(\mathbb{Z}, 2 n+1)$. Then, there exists
$W=\{2 n+1\} \in \gamma_{\sigma \hat{0}} O(\mathbb{Z}, 2 n+1)$ such that $W=\gamma(U)=\{2 n+1\}$. Therefore, γ is a $\gamma_{\delta \delta}$-open quasioperation.
Elementary properties of $\gamma(\delta \hat{\Omega})$-closure
Proposition 4.13. Let $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ be a quasi-operation on $\widehat{\Omega} O(X)$ in a space X. Then, the following statements hold for any subsets A and B of X.
i) $X \backslash y(\delta \widehat{\Omega}) \operatorname{cl}(A)=\gamma(\delta \widehat{\Omega}) \operatorname{int}(X \backslash A)$.
ii) If $A \subseteq B$, then $\gamma(\delta \widehat{\Omega}) c l(A) \subseteq \gamma(\delta \widehat{\Omega}) c l(B)$.
iii) Arbitrary union of $\gamma(\delta \widehat{\Omega})$-open sets in X is a $\gamma(\delta \widehat{\Omega})$-open set in X.

Proof. i) Let $x \in X \backslash \gamma(\delta \widehat{\Omega})$ cl (A) be arbitrary. Then, there exists $U \in \delta O(X, x)$ such that $\gamma(U) \cap A=\emptyset$. That is, $\gamma(U) \subseteq A^{c}$ for some $U \in \delta O(X, x)$. Therefore, $x \in \gamma(\delta \hat{\Omega})$ int $(X \backslash A)$.
ii) Let $x \in \gamma(\delta \widehat{\Omega}) c l(A)$ and $U \in \delta O(X, x)$ be arbitrary. Then, $\gamma(U) \cap A \neq \emptyset$. By the hypothesis, $\gamma(U) \cap B \neq \emptyset$ for every $U \in \delta O(X, x)$ and hence $x \in \gamma(\delta \widehat{\Omega}) \operatorname{cl}(B)$.Therefore, $\gamma(\delta \widehat{\Omega}) \operatorname{cl}(A) \subseteq \gamma(\delta \widehat{\Omega}) \operatorname{cl}(B)$.
 for some $\alpha \in J$. Since each U_{α} is a $\gamma_{\sigma \hat{R}}$-open subset of X, there exists $V \in \delta O(X, x)$ such that $\gamma(V) \subseteq U_{\alpha} \subseteq U$. Then, U is a $\gamma_{\text {పだ }}$-open subset of X.

Proposition 4.14. Let $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ be a quasi-operation on $\widehat{\Omega} O(X)$ in a space X. Then, $\gamma(\delta \widehat{\Omega}) c l(A) \cup_{\gamma}(\delta \widehat{\Omega}) c l(B) \subseteq \gamma(\delta \widehat{\Omega}) \operatorname{cl}(A \cup B)$ for any subsets A and B of X.
Proof. Always $A \subseteq A \cup B$ and $B \subseteq A \cup B$. By the Proposition 4.13. ii), $\gamma(\delta \widehat{\Omega}) \operatorname{cl}(A) \subseteq \gamma(\delta \widehat{\Omega}) \operatorname{cl}(A \cup B)$ and $\gamma(\delta \widehat{\Omega}) c l(B) \subseteq \gamma(\delta \widehat{\Omega}) c l(A \cup B)$ and hence $\gamma(\delta \widehat{\Omega}) c l(A) \cup \gamma(\delta \widehat{\Omega}) c l(B) \subseteq \gamma(\delta \widehat{\Omega}) c l(A \cup B)$.
Example 4.15. $\gamma(\delta \hat{\Omega}) c l(A \cup B) \subseteq \gamma(\delta \widehat{\Omega}) c l(A) \cup \gamma(\delta \widehat{\Omega}) c l(B)$ fails to hold in a quasi-operation $\quad \gamma:$ $\widehat{\Omega} O(X) \rightarrow P(X)$. For an example, consider \mathbb{Z}, the set of all integers equipped with κ, the digital topology. Define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by
$\gamma(U)= \begin{cases}\delta \mathrm{cl}(\delta \operatorname{int}(U)) \cap 2 \mathbb{Z} & \text { if } U=\{2 n+1\} \text { where } x \in \mathbb{Z} \\ \delta c l(\delta \operatorname{int}(U)) \cap 2 \mathbb{Z}+1 & \text { otherwise }\end{cases}$
for all $U \in \widehat{\Omega} O(\mathbb{Z}, k)$. If $A=\{2 m+1\}$ and $B=\{2 m\}$, then $\gamma(\delta \widehat{\Omega}) c l(A)=\emptyset=\gamma(\delta \widehat{\Omega}) c l(B)$. But
$\gamma(\delta \widehat{\Omega}) c l(A \cup B)=\gamma(\delta \widehat{\Omega}) \operatorname{cl}(\{2 m, 2 m+1\})=\{2 m+1\}$. Therefore,
$\gamma(\delta \widehat{\Omega}) c l(A \cup B) \nsubseteq \gamma(\delta \widehat{\Omega}) c l(A) \cup \gamma(\delta \widehat{\Omega}) c l(B)$.

Proposition 4.16. Let $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ be a quasi-operation on $\widehat{\Omega} O(X)$ in a space X. If Y is a $\gamma_{\tilde{\delta}}$-regular quasi-operation, then $\gamma(\delta \widehat{\Omega}) c l(A) \cup \gamma(\delta \widehat{\Omega}) c l(B)=\gamma(\delta \widehat{\Omega}) c l(A \cup B)$ for any subsets A and B of \bar{X}.
Proof. Assume that $x \notin \gamma(\delta \widehat{\Omega}) c l(A) \cup \gamma(\delta \widehat{\Omega}) c l(B)$. That is, $x \notin \gamma(\delta \widehat{\Omega}) c l(A)$ and $x \notin \gamma(\delta \widehat{\Omega}) c l(B)$. By the definition of $\gamma(\delta \widehat{\Omega})$-closure, there exists $U, V \in \delta O(X, x)$ such that $\gamma(U) \cap A=\emptyset$ and $\gamma(V) \cap B=\emptyset$. Since γ is a γ_{δ}-regular quasi-operation, there exists $W \in \delta O(X, x)$ such that $\gamma(W) \subseteq \gamma(U) \cap \gamma(V)$.
$\gamma(W) \cap(A \cup B)=(\gamma(U) \cap \gamma(V)) \cap(A \cup B)=(\gamma(U) \cap \gamma(V) \cap A) \cup(\gamma(U) \cap \gamma(V) \cap B) \subseteq(\gamma(U) \cap A) \cup$ $(\gamma(U) \cap B)=\emptyset$
So, $x \notin \gamma(\delta \hat{\Omega}) c l(A \cup B)$. Therefore, $\gamma(\delta \widehat{\Omega}) c l(A \cup B) \subseteq \gamma(\delta \widehat{\Omega}) c l(A) \cup \gamma(\delta \widehat{\Omega}) c l(B)$. Hence $r(\delta \hat{\Omega}) c l(A) \cup r(\delta \hat{\Omega}) c l(B)=\gamma(\delta \hat{\Omega}) c l(A \cup B)$.

Example 4.17. $(\gamma(\delta \widehat{\Omega}) \mathrm{cl}(A))^{c}$ is not always $\gamma_{\text {大ถी-open }}$ in a quasi-operation $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$. Define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by $\gamma(U)=\delta \mathrm{cl}($ (int $(U))$ for all $U \in \widehat{\Omega} O(\mathbb{Z}, k)$. Consider $A=\{2 m-1,2 m, 2 m+1\} \subseteq \mathbb{Z}$. Then, $\gamma(\delta \widehat{\Omega}) c l(A)=\{2 m-2,2 m-1,2 m, 2 m+1,2 m+2\}$ and hence $(\gamma(\delta \hat{\Omega}) c l(A))^{c}=\mathbb{Z} \backslash\{2 m-2,2 m-1,2 m, 2 m+1,2 m+2\}$. For the
point $2 m+3 \in \mathbb{Z} \backslash\{2 m-2,2 m-1,2 m, 2 m+1,2 m+2\}$, every δ-open set $U=\{2 m+3\}$ containing
$2 m+3$ is such that
$\gamma(U)=\{2 m+2,2 m+3,2 m+4\} \Phi \mathbb{Z} \backslash\{2 m-2,2 m-1,2 m, 2 m+1,2 m+2\}$. Therefore,
$\mathbb{Z} \backslash\{2 m-2,2 m-1,2 m, 2 m+1,2 m+2\}$ is not a $\gamma_{\text {diflopen }}$ set of \mathbb{Z}.
Proposition 4.18. Let $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ be a quasi-operation on $\widehat{\Omega} O(X)$ in a space X. If γ is a Y_{δ}-open quasi-operation, then the following two statements hold for any subset A of X.
i) $(\gamma(\delta \widehat{\Omega}) c l(A))^{c}$ is a $\gamma_{\sigma గ-o p e n ~ s e t . ~}^{\text {an }}$
ii) $\gamma(\delta \hat{\Omega}) \operatorname{int}(A)$ is a $\gamma_{\text {ลी }}$-open set.

Proof. i) Let $x \in(\gamma(\delta \widehat{\Omega}) c l(A))^{c}$ be arbitrary. Then, $x \notin \gamma(\delta \widehat{\Omega}) c l(A)$. By the definition of $\gamma(\delta \widehat{\Omega})$-closure, there exists $U_{x} \in \delta O(X, x)$ such that $\gamma\left(U_{x}\right) \cap A=\emptyset$. Since γ is γ_{δ}-open quasi-operation, there exists a $\gamma_{\sigma \text { 処 }}$ open set V_{x} containing x such that $V_{x} \subseteq \gamma\left(U_{x}\right)$. Then, $V_{x} \cap A=\emptyset$. It is proved that, for each
$x \in(\gamma(\delta \hat{\Omega}) c l(A))^{c}$, there exists a $\gamma_{\text {afi-open }}$ set V_{x} containing x such that $V_{x} \cap A=\emptyset$. Since V_{x} is a $\gamma_{\text {afi- }}$

 $(\gamma(\delta \widehat{\Omega}) c l(A))^{c} \subseteq W$.
On the other hand, let $y \in W=U\left\{V_{x} / x \in(\gamma(\delta \widehat{\Omega}) \operatorname{cl}(A))^{c}\right\}$ be arbitrary. Then, $y \in V_{x}$ for some $x \in(\gamma(\delta \widehat{\Omega}) c l(A))^{c}$. It is enough to prove $V_{x} \cap \gamma(\delta \widehat{\Omega}) c l(A)=\emptyset$. If $z \in V_{x} \cap \gamma(\delta \widehat{\Omega}) c l(A)$, then $z \in V_{x}$ and
 $\gamma\left(U_{1}\right) \subseteq V_{x}$. Since $z \in \gamma(\delta \widehat{\Omega}) c l(A), \gamma\left(U_{1}\right) \cap A \neq \emptyset$. Then, $V_{x} \cap A \neq \emptyset$, a contradiction to $V_{x} \cap A=\emptyset$ for each $x \in(\gamma(\delta \widehat{\Omega}) c l(A))^{c}$. So assumption is wrong and hence $V_{x} \cap \gamma(\delta \widehat{\Omega}) c l(A)=\emptyset$. Now,
$V_{x} \subseteq(y(\delta \widehat{\Omega}) c l(A))^{c}$. As $y \in V_{x}, y \in(\gamma(\delta \widehat{\Omega}) c l(A))^{c}$. That is, $W \subseteq(y(\delta \widehat{\Omega}) c l(A))^{c}$. Therefore,
$W=(\gamma(\delta \widehat{\Omega}) c l(A))^{c}$ is a $\gamma_{\text {бती }}$-open subset of X.
ii) Apply (i) for the set $X \backslash A=A^{c} . X \backslash y(\delta \widehat{\Omega}) \operatorname{cl}\left(A^{c}\right)=\gamma(\delta \widehat{\Omega}) \operatorname{int}(A)$. By i, L.H.S of the above equation is

Proposition 4.19. Let $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ be a quasi-operation on $\widehat{\Omega} O(X)$. Then, $\gamma(\delta \widehat{\Omega}) \operatorname{cl}(A) \subseteq \gamma_{\sigma \hat{\Omega}} c l(A)$ for any subset A of X.
Proof. Let $x \notin \gamma_{\text {aी }} c l(A)$ be arbitrary. Then, $x \notin F$ for some subset F of X such that $A \subseteq F ; X \backslash F \in \gamma_{\text {dी }} O(X)$. Put $U=X \backslash F$. Now, U is a $\gamma_{\text {бी }} \subseteq$-open set containing x such that $U \subseteq A^{c}$. By the
 there exists $U \in \delta O(X, x)$ such that $\gamma(U) \cap A=\emptyset$. By the definition of $\gamma(\delta \widehat{\Omega})$-closure, $x \notin \gamma(\delta \widehat{\Omega}) c l(A)$. Therefore, $\gamma(\delta \widehat{\Omega}) \operatorname{cl}(A) \subseteq \gamma_{\sigma \hat{\Omega}} \operatorname{cl}(A)$.

Example 4.20. For a quasi-operation $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ and for a subset A of X,
$\gamma_{\sigma గ ్} \operatorname{cl}(A) \subseteq \gamma(\delta \widehat{\Omega}) \operatorname{cl}(A)$ does not always hold. For an example, define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by $\gamma(U)=\operatorname{\delta int}(\delta c l(U)) \cap\{2 n / n \in \mathbb{Z}\}$ for all $U \in \widehat{\Omega} O(\mathbb{Z}, k)$. Consider $A=\{2 m+1,2 m+3\} \subseteq \mathbb{Z}$. then,
$\gamma_{\sigma ถ} c l(A)=\{2 m, 2 m+1,2 m+2,2 m+3,2 m+4\}$, but $\gamma(\delta \widehat{\Omega}) c l(A)=\emptyset$. Therefore,
$\gamma_{\sigma \hat{n}} c l(A) \nsubseteq \gamma(\delta \widehat{\Omega}) c l(A)$.
Proposition 4.21. Let $: \widehat{\Omega} O(X) \rightarrow P(X)$ be a quasi-operation on $\widehat{\Omega} O(X)$. If γ is a $\gamma_{\hat{\delta}}$-open quasi-operation, then $\gamma_{\partial \hat{R}} c l(A)=\gamma(\delta \hat{\Omega}) c l(A)$ for any subset A of X.
Proof. If $x \notin \gamma(\delta \widehat{\Omega}) c l(A)$, then there exists $U \in \delta O(X, x)$ such that $\gamma(U) \cap A=\emptyset$ or $\gamma(U) \subseteq A^{c}$. By the definition of γ_{σ}-open quasi-operation, there exists a $\gamma_{\sigma ถ}$-open set V containing x such that $V \subseteq \gamma(U) \subseteq A^{c}$ and hence $V \cap A=\emptyset$. By the Proposition 3.11. (i), $x \notin \gamma_{\sigma \hat{\Omega}} c l(A)$. Therefore, $\gamma_{\sigma \hat{\Omega}} \operatorname{cl}(A) \subseteq \gamma(\delta \widehat{\Omega}) \operatorname{cl}(A)$. Hence $\gamma_{\text {बగी }} c l(A)=\gamma(\delta \widehat{\Omega}) c l(A)$.

Example 4.22. i) Here is an example for $A \mp \gamma(\delta \widehat{\Omega}) c l(A)$ for a quasi-operation : $\widehat{\Omega} O(X) \rightarrow P(X)$ and for a subset A of X. Define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by
$\gamma(U)=\operatorname{\delta int}(\delta c l(U)) \cap\{2 n+1 / n \in \mathbb{Z}\}$ for all $U \in \widehat{\Omega} O(\mathbb{Z}, k)$. Consider $A=\{2 m\} \subseteq \mathbb{Z}$ then, $r(\delta \widehat{\Omega}) c l(A)=\emptyset$. Therefore, $A \Phi \gamma(\delta \widehat{\Omega}) c l(A)$.
iii) Here is an example for $\gamma(\delta \widehat{\Omega}) \mathrm{cl}(\mathrm{A})$ is not always a $\gamma(\delta \widehat{\Omega})$-closed set for a quasi-operation :
$\bar{\Omega} O(X) \rightarrow P(X)$ and for a subset A of X. Define $\gamma: \bar{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by
$\gamma(U)=\delta \operatorname{int}(\delta c l(U))$ for every $U \in \widehat{\Omega} O(\mathbb{Z}, k)$. Consider $A=\{2 m+1,2 m+2,2 m+3\} \subseteq \mathbb{Z}$ then,
$\gamma(\delta \hat{\Omega}) c l(A)=\{2 m, 2 m+1,2 m+2,2 m+3,2 m+4\}$. Therefore, $\gamma(\delta \hat{\Omega}) c l(A) \neq A$. Hence $\gamma(\delta \hat{\Omega}) c l(A)$ is not a $\gamma(\delta \widehat{\Omega})$-closed set.
iv) Here is an example for $\gamma(U)=\emptyset$ for a non-empty δ-open subset U containing x where γ :
$\widehat{\Omega} O(X) \rightarrow P(X)$ is a quasi-operation. Define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by
$\gamma(U)=\operatorname{\delta int}(\delta c l(U)) \cap\{2 n / n \in \mathbb{Z}\}$ for all $U \in \widehat{\Omega} O(\mathbb{Z}, k)$. For a δ-open set $U=\{2 m-1\} \subseteq \mathbb{Z}$.
$\gamma(U)=\emptyset$.
v) The statement $\gamma(\delta \widehat{\Omega}) c l(X)=X$ is not always hold for a quasi-operation : $\widehat{\Omega} O(X) \rightarrow P(X)$. Define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by $\gamma(U)=\delta c l(\delta \operatorname{int}(U)) \cap\{\cap c l(\{x\}) / x \in U\}$ for every $U \in \widehat{\Omega} O(\mathbb{Z}, k)$. For a point $2 m+3 \in \mathbb{Z}$, there exists $a \delta$-open set $U=\{2 m+1,2 m+3,2 m+5\}$ containing the point $2 m+3$ such that $\gamma(U)=\emptyset$. Then, the point $2 m+3 \notin \gamma(\delta \hat{\Omega}) \operatorname{cl}(\mathbb{Z})$. Therefore, $\gamma(\delta \hat{\Omega}) c l(\mathbb{Z}) \neq \mathbb{Z}$.
Proposition 4.23. Let $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ be a quasi-operation on $\widehat{\Omega} O(X)$. If γ is a $\gamma_{\bar{\delta}}$-open quasi-operation, then the following statements hold for any subset A of \bar{X}.
i) $A \subseteq \gamma(\delta \widehat{\Omega}) c l(A)$.
ii) $\gamma(\delta \widehat{\Omega}) \operatorname{cl}(\gamma(\delta \widehat{\Omega}) c l(A))=\gamma(\delta \widehat{\Omega}) \operatorname{cl}(A)$.
iii) $\gamma(\delta \widehat{\Omega}) c l(A)$ is a $\gamma(\delta \widehat{\Omega})$-closed set.
iv) $\gamma(U) \neq \emptyset$ for every non-empty subset $U \in \delta O(X)$.
v) $\gamma(\delta \hat{\Omega}) c l(X)=X$.

Proof. i) By the Proposition 3.10.(i), $A \subseteq \gamma_{\sigma ถ} c l(A)$ and by the Proposition 4.21, $\gamma_{\sigma \hat{\Omega}} c l(A)=\gamma(\delta \widehat{\Omega}) c l(A)$. Therefore, $A \subseteq \gamma(\delta \widehat{\Omega}) c l(A)$.
ii) By the Proposition 4.18.(i), $(\gamma(\delta \widehat{\Omega}) \operatorname{cl}(A))^{c}$ is a $\gamma_{\partial \hat{\Omega}}$-open subset of X. Then, $\gamma(\delta \widehat{\Omega}) c l(A)$ is a $\gamma(\delta \widehat{\Omega})$ closed subset of X. By the definition of $\gamma(\delta \widehat{\Omega})$-closed set, $\gamma(\delta \widehat{\Omega}) \operatorname{cl}(\gamma(\delta \widehat{\Omega}) \operatorname{cl}(A))=\gamma(\delta \widehat{\Omega}) c l(A)$.
iii) Let $B=\gamma(\delta \hat{\Omega}) c l(A)$. By (ii), $\gamma(\delta \hat{\Omega}) c l(B)=B$. By the definition of $\gamma(\delta \widehat{\Omega})$-closed set, B is a $\gamma(\delta \hat{\Omega})$ closed set in X.
$i v)$ Let U be any non-empty δ-open subset of X. Choose $x \in U$. Since γ is a $\gamma_{\tilde{\delta}}$-open quasi-operation, there
 v) Always $\gamma(\delta \widehat{\Omega}) c l(X) \subseteq X$. Let $x \in X$ and $U \in \delta O(X, x)$ be arbitrary. By (iv), $\gamma(U) \neq \emptyset$. Then, $X \cap \gamma(U)$ $=\gamma(U) \neq \emptyset$. Therefore, $x \in \gamma(\delta \widehat{\Omega}) c l(X)$. Hence $\gamma(\delta \widehat{\Omega}) c l(X)=X$.

Example 4.24. i) Here is an example for $\delta \mathrm{cl}(\mathrm{A})$ is not always subset of $\gamma(\delta \widehat{\Omega}) \mathrm{cl}(A)$ for a quasi-operation $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ and for a subset A of X. Define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by
$\gamma(U)=\operatorname{sint}(\delta \operatorname{cl}(U)) \cap\{2 n / n \in \mathbb{Z}\}$ for every $U \in \widehat{\Omega} O(\mathbb{Z}, k)$. Consider $A=\{2 m-1,2 m, 2 m+1\} \subseteq \mathbb{Z}$ then $\delta \mathrm{cl}(A)=\{2 m-2,2 m-1,2 m, 2 m+1,2 m+2\}$ and $\gamma(\delta \widehat{\Omega}) \mathrm{cl}(A)=\{2 m\}$. Therefore, $\delta c l(A) \nsubseteq \gamma(\delta \widehat{\Omega}) c l(A)$.
ii) Here is an example for $\gamma(\delta \widehat{\Omega}) \operatorname{int}(A)$ is not always subset of $\delta i n t(A)$ for a quasi-operation :
$\widehat{\Omega} O(X) \rightarrow P(X)$ and for a subset A of X. Define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by
$\gamma(U)=\delta c l($ (int $(U))$ for every $U \in \widehat{\Omega} 0(\mathbb{Z}, k)$. Consider $A=\{2 m-2\} \subseteq \mathbb{Z}$ then,
$\gamma(\delta \widehat{\Omega}) \operatorname{int}(A)=X \backslash y(\delta \widehat{\Omega}) c l(A)=X \backslash\{2 \mathrm{~m}-4,2 \mathrm{~m}-3,2 \mathrm{~m}-2,2 \mathrm{~m}-1,2 \mathrm{~m}\}$, but $\delta \operatorname{int}(A)=\{2 m-2\}$.
Therefore, $\gamma(\delta \widehat{\Omega}) \operatorname{int}(A) \Phi \delta \operatorname{int}(A)$.
iii) Here is an example for $\gamma(\delta \widehat{\Omega})$ int (\varnothing) is not always an empty set for a quasi-operation : $\widehat{\Omega}(X) \rightarrow P(X)$
and for a subset A of X. Define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by
$\gamma(U)=\delta \operatorname{int}(\delta c l(U)) \cap\{2 n / n \in \mathbb{Z}\}$ for every $U \in \widehat{\Omega} O(\mathbb{Z}, k)$. Consider $A=\{2 m-3,2 m-1\} \subseteq \mathbb{Z}$ then,
$\gamma(\delta \hat{\Omega})$ int $(A)=X \backslash \gamma(\delta \hat{\Omega}) c l(A)=X$. Therefore, $\gamma(\delta \hat{\Omega})$ int $(\emptyset) \neq \emptyset$.
Proposition 4.25. Let $Y: \hat{\Omega} O(X) \rightarrow P(X)$ be an operation on $\widehat{\Omega} O(X)$. Then, the following statements hold for any subset A of X.
i) $A \subseteq \delta c l(A) \subseteq \gamma(\delta \widehat{\Omega}) c l(A)$.
ii) $\gamma(\delta \widehat{\Omega}) \operatorname{int}(A) \subseteq \delta \operatorname{int}(A) \subseteq A$.
iii) $\gamma(\delta \widehat{\Omega})$ int $(\emptyset)=\emptyset$.
iv) Every $\gamma_{\sigma \text { In }}$-open set is the union of some δ-open subset.

Proof. i) Always $A \subseteq \delta c l(A)$. Let $x \in \delta c l(A)$ and $U \in \delta O(X, x)$ be arbitrary. Then, $U \cap A \neq \emptyset$. Since Y is a operation on $\hat{\Omega} O(X), \gamma(U) \cap A \neq \emptyset$. Then, $\mathrm{x} \in \gamma(\delta \widehat{\Omega}) c l(A)$. Therefore, $\delta c l(A) \subseteq \gamma(\delta \widehat{\Omega}) c l(A)$. Hence $A \subseteq \delta c l(A) \subseteq \gamma(\delta \widehat{\Omega}) c l(A)$.
ii) Always $\delta \operatorname{int}(A) \subseteq A$. By $(i), \delta c l(X \backslash A) \subseteq \gamma(\delta \widehat{\Omega}) c l(X \backslash A)$. Then, $X \backslash \operatorname{\delta int}(A) \subseteq X \backslash \gamma(\delta \widehat{\Omega}) \operatorname{int}(A)$.

Therefore, $\gamma(\delta \widehat{\Omega}) \operatorname{int}(A) \subseteq \delta \operatorname{int}(A)$. Hence $\gamma(\delta \widehat{\Omega}) \operatorname{int}(A) \subseteq \delta \operatorname{int}(A) \subseteq A$.
iii) Apply ii) for an empty set \emptyset. Then $\gamma(\delta \bar{\Omega})$ int $(\emptyset) \subseteq \emptyset$. Therefore, $\gamma(\delta \bar{\Omega})$ int $(\emptyset)=\emptyset$.
iv) Let A be any $\gamma_{\text {ani-open set in } X}$ and
$\mathcal{B}=\left\{U_{y} /\right.$ for each $y \in A$, there exists $U_{y} \in \delta O(X, y)$ such that $\left.\gamma\left(U_{y}\right) \subseteq A\right\}$. Since $A \in \mathcal{B}, \mathcal{B} \neq \emptyset$. Clearly $\mathcal{B} \subseteq \delta O(X)$. Let $U=\mathrm{U}_{y \in A}\left\{U_{y} / U_{y} \in \mathcal{B}\right\}$. It is enough to prove $A \subseteq U$. Let $x \in A$ be arbitrary. Since A is a $\gamma_{\text {ถถ゙ }}$-open set, there exists $U_{x} \in \delta O^{\circ}(X, x)$ such that $\gamma\left(U_{x}\right) \subseteq A$ which gives $U_{x} \in \mathcal{B}$. Then, $U_{x} \subseteq U$. That is, $x \in U$.
On the other hand, Let $x \in U$ be arbitrary. Then, $x \in U_{y}$ for some $U_{y} \in \mathcal{B}$. Clearly, $\{x, y\} \subseteq U_{y}$ and $U_{y} \in \delta O(X)$ such that $\gamma\left(U_{y}\right) \subseteq A$. Now, $x \in U_{y} \subseteq \gamma\left(U_{y}\right) \subseteq A$. Then, $U \subseteq A$. Therefore, $A=U$.

VI. $\gamma(\delta \widehat{\Omega})$-REGULAR SPACE

Definition 5.1. A space (X, τ) with a quasi-operation γ on $\widehat{\Omega} O(X)$ is said to be $\boldsymbol{\gamma}(\delta \bar{\Omega})$-regular space, if for each $x \in X$ and for each subset $U \in \widehat{\Omega} O(X, x)$ there exists a subset $W \in \delta O(X, x)$ such that $\gamma(W) \subseteq U$.

Example 5.2. For a quasi-operation $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ and for a subset A of X, $\widehat{\Omega} c l(A)$ is not always a subset of $\gamma(\delta \widehat{\Omega}) c l(A)$. For an example, define $\gamma: \widehat{\Omega} O(\mathbb{Z}, k) \rightarrow P(\mathbb{Z})$ by $r(U)=\delta \operatorname{int}(\delta c l(U)) \cap\{2 n+1 / n \in \mathbb{Z}\}$ for every $U \in \widehat{\Omega} O(\mathbb{Z}, k)$. Consider $A=\{2 m\} \subseteq \mathbb{Z}$ then, $\widehat{\Omega} c l(A)=\{2 m\}$, but $\gamma(\delta \widehat{\Omega}) c l(A)=\emptyset$. Therefore, $\widehat{\Omega} c l(A) \Phi \gamma(\delta \widehat{\Omega}) c l(A)$. Hence $\delta c l(A) \Phi \widehat{\Omega} l(A) \Phi \gamma(\delta \widehat{\Omega}) c l(A)$.

Proposition 5.3. Let $\gamma: \widehat{\Omega} O(X) \rightarrow P(X)$ be a quasi-operation on $\widehat{\Omega} O(X)$. Then, the following statements hold for any subset A of X.
i) If X is a $\gamma(\delta \widehat{\Omega})$-regular space then, $\gamma(\delta \widehat{\Omega}) c l(A) \subseteq \widehat{\Omega} c l(A) \subseteq \delta c l(A)$ for any set A of X.
ii) The set X is a $\gamma(\delta \widehat{\Omega})$-regular space iff $\widehat{\Omega} O(X) \subseteq \gamma_{\Delta \hat{\Omega}} O(X)$.

Proof. i) If $x \notin \widehat{\Omega} c l(A)$, then there exists $U \in \widehat{\Omega} O(X, x)$ such that $U \cap A=\emptyset$. By the definition of $\gamma(\delta \widehat{\Omega})$ regular space, there exists $W \in \delta O(X, x)$ such that $\gamma(W) \subseteq U$ and hence $\gamma(W) \cap A \subseteq U \cap A=\emptyset$. That is, $\gamma(W) \cap A=\emptyset$. Then, $x \notin \gamma(\delta \hat{\Omega}) c l(A)$. Therefore, $\gamma(\delta \widehat{\Omega}) c l(A) \subseteq \widehat{\Omega} c l(A)$. By the Proposition 2.7, $\widehat{\Omega} c l(A) \subseteq \delta c l(A)$. Hence $\gamma(\delta \widehat{\Omega}) c l(A) \subseteq \widehat{\Omega} c l(A) \subseteq \delta c l(A)$.
ii) Assume that X is a $\gamma(\delta \widehat{\Omega})$-regular space. Let $U \in \widehat{\Omega} O(X)$ and $x \in U$ be arbitrary. By hypothesis, there exists $W \in \delta O(X, x)$ such that $\gamma(W) \subseteq U_{\text {and }}$ hence $U \in \gamma_{\sigma \hat{\Omega}} O(X)$. Therefore, $\bar{\Omega} O(X) \subseteq \gamma_{\sigma \hat{గ}} O(X)$.
Conversely, assume that every $\widehat{\Omega}$-open set is a $\gamma_{\boldsymbol{\sigma} \boldsymbol{\Omega}}$-open set. Let $x \in X$ and U be an $\widehat{\Omega}$-open set containing x.

Proposition 5.4. Let X be a $\gamma(\delta \widehat{\Omega})$-regular space with operation γ on $\widehat{\Omega} O(X)$. Then, $\gamma(\delta \widehat{\Omega}) c l(A)=\widehat{\Omega} c l(A)=\delta c l(A)$ for any subset A of X.
Proof. By the Proposition 5.3.(i), $\gamma(\delta \widehat{\Omega}) c l(A) \subseteq \widehat{\Omega} c l(A) \subseteq \delta c l(A)$. By the Proposition 4.25.(i),
$\delta c l(A) \subseteq \gamma(\delta \widehat{\Omega}) c l(A)$. Now, $\gamma(\delta \widehat{\Omega}) c l(A) \subseteq \widehat{\Omega} c l(A) \subseteq \delta c l(A) \subseteq \gamma(\delta \widehat{\Omega}) c l(A)$. Therefore,
$r(\delta \widehat{\Omega}) c l(A)=\widehat{\Omega} c l(A)=\delta c l(A)$.

REFERENCES

[1] S.Kasahara, Operation compact spaces, Math. Japonica, 24 1, pp. 97-105, 1979.
[2] M.Lellis Thivagar, and M.Anbuchelvi, Note on Ω-closed sets in topological spaces, Mathematical Theory and Modeling, pp.50-58, 2012.
[3] S.M.Meenarani, K.Poorani, and M.Anbuchelvi, Operation on $\widehat{\Omega}$-closed sets, Malaya Journal of Matematik, Vol. S. No. 1, pp.7-11, 2019.
[4] H.Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36 1, pp. 175-184, 1991.
[5] M.H. Stone Applications of the theory of boolean rings to general topology, Trans. A. M. S., 41, pp.375-481, 1937.
[6] Velicko, N.V., H-closed topological spaces, Amer. Math. Soc. Transl. 2, 78, pp.103-118, 1968.

