$(a, b)-K A$ Indices of Benzenoid Systems and Phenylenes: The General Case

V.R.Kulli ${ }^{1}$, Ivan Gutman ${ }^{2}$
${ }^{l}$ Department of Mathematics, Gulbarga University, Kalaburgi (Gulbarga)-585106, India
${ }^{2}$ Faculty of Science, University of Kragujevac, P.O.Box 60, 34000 Kragujevac, Serbia

Abstract

In a recent paper by Kulli, two new vertex-degree-based (VDB) topological indices were put forward, called (a, b)-KA indices, depending on real-number parameters a and b. The majority of hitherto studied VDB indices are special cases of $(a, b)-K A$ indices, for particular values of a and b. In this paper, we give generally valid expressions for $(a, b)-K A$ indices of benzenoid systems and phenylenes, as well as of the respective coindices.

Keywords:Topological index, first (a, b)-KA index, second (a, b)-KA index, benzenoid system, phenylene.
Mathematics Subject Classification:05C05, 05C07, 05C90

I. Introduction

Nowadays there exist several dozens of vertex-degree-based (VDB) topological indices [1,2], proposed in order to serve as molecular structure descriptors. In a recent paper [3], one of the present authors introduced two more VDB indices, named first and second $(a, b)-K A$ indices, that depend on real-number parameters a and b. For a molecular graph G whose vertex and edge sets are $V(G)$ and $E(G)$, respectively, these indices are defined as [3]

$$
\begin{equation*}
K A_{a, b}^{1}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)^{a}+d_{G}(v)^{a}\right]^{b} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
K A_{a, b}^{2}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)^{a} \cdot d_{G}(v)^{a}\right]^{b} \tag{2}
\end{equation*}
$$

where $d_{G}(u)$ is the degree (= number of first neighbors) of the vertex $u \square V(G)$, and where the summation goes over all pairs u, v of adjacent vertices of G. The respective coindices are defined as [3].

$$
\begin{align*}
& \overline{K A}_{a, b}^{1}(G)=\sum_{u \vee \notin E(G)}\left[d_{G}(u)^{a}+d_{G}(v)^{a}\right]^{b} \tag{3}\\
& \overline{K A}_{a, b}^{2}(G)=\sum_{u \vee \notin E(G)}\left[d_{G}(u)^{a} \cdot d_{G}(v)^{a}\right]^{b} \tag{4}
\end{align*}
$$

where the summation goes over all pairs of non-adjacent vertices, assuming that $u \neq v$.
The significance of the $K A$-indices lies on the fact that their special cases, for pertinently chosen values of the parameters a and b , coincide with the vast majority of previously considered VDB descriptors. For instance, for $a=b=1$, $K A_{a, b}^{1}$ coincides with the half-century old "first Zagreb index"[4], whereas for $a=1, b=-1 / 2, K A_{a, b}^{2}$ reduces to the classical "Randić index"[5]. For $a=2, b=1 / 2, K A_{a, b}^{1}$ is equal to the recently conceived "Sombor index" [6]. For more details see in [3].

In [3], the two $K A$-indices and their coindices were calculated for several families of benzenoid hydrocarbons. However, the general case was not solved. In what follows we fill this gap, and offer formulas for $K A_{a, b}^{1}, K A_{a, b}^{2}$ and their coindices, valid for all benzenoid systems. In order to do this, we need to recall some basic facts of the topological theory of benzenoid molecules [7].

II. Elements of the theory of benzenoid systems

Let B be the molecular graph of a benzenoid hydrocarbon. In what follows we refer to it as a "benzenoid system" $"[7]$.The main topological properties of benzenoid systems are determined by three parameters, namely:
$n=n(B)$, the number of vertices (i.e., number of carbon atoms in the underlying benzenoid molecule),
$h=h(B)$, the number of hexagons (i.e., the number of six-membered rings of the underlying benzenoid molecule),
$r=r(B)$,the number of inlets.
The number of inlets is equal to the number of strings of 3-degree vertices on the boundary of B. Namely, when going along the boundary of the benzenoid system B, one encounters vertices of degree 2 and of degree 3 . The feature determined
by the sequence 232 is said to be a "fissure". The features pertaining to the sequences 2332, 23332, and 233332, are referred to as "bay", "cove", and "fjord", respectively. For an illustrative example see Figure 1.

Figure1. A benzenoid system and the features on its boundary. It has 4 fissures, one bay, one cove, and one fjord. Thus its number of inlets is $r=4+1+1+1=7$.

All vertices of a benzenoid system B are either of degree 2 or of degree 3 . Their numbers are

$$
\begin{aligned}
& n_{2}=n_{2}(B)=2 h-2 \\
& n_{3}=n_{3}(B)=n-2 h+2 .
\end{aligned}
$$

The edges of B connect either two vertices of degree 2 , or two vertices of degree 3 , or a vertex of degree 2 with a vertex of degree 3 . Their numbers are m_{22}, m_{33}, and m_{23}, respectively. It has been shown $[7,8]$ that

```
m}22=\mp@subsup{m}{22}{}(B)=n-2h-r+
m}\mp@subsup{\textrm{m}}{33}{}=\mp@subsup{\textrm{m}}{33}{}(B)=3h-r-
m}23=\mp@subsup{m}{23}{}(B)=2r
```

If we denote by $\bar{m}_{i j}$ the number of pairs of non-adjacent vertices of B having degrees i and j, then

$$
\begin{aligned}
& \bar{m}_{22}=\bar{m}_{22}(B)=\binom{n_{2}}{2}-m_{22} \\
& \bar{m}_{33}=\bar{m}_{33}(B)=\binom{n_{3}}{2}-m_{33} \\
& \bar{m}_{23}=\bar{m}_{23}(B)=n_{2} n_{3}-m_{23} .
\end{aligned}
$$

We see that all structural details of B, needed in the subsequent section, are determined by the three fundamental parameters n, h, and r.

III. General expressions for (a, b)-KA indices of benzenoid systems

Bearing in mind the considerations in the previous section, Eqs. (1), (2), (3), and (4) can be rewritten as
$K A_{a, b}^{1}(B)=\left[2^{a}+2^{a}\right]^{b} m_{22}(B)+\left[3^{a}+3^{a}\right]^{b} m_{33}(B)+\left[2^{a}+3^{a}\right]^{b} m_{23}(B)$
$K A_{a, b}^{2}(B)=\left[2^{a} \times 2^{a}\right]^{b} m_{22}(B)+\left[3^{a} \times 3^{a}\right]^{b} m_{33}(B)+\left[2^{a} \times 3^{a}\right]^{b} m_{23}(B)$
$\overline{K A}_{a, b}^{1}(B)=\left[2^{a}+2^{a}\right]^{b} \bar{m}_{22}(B)+\left[3^{a}+3^{a}\right]^{b} \bar{m}_{33}(B)+\left[2^{a}+3^{a}\right]^{b} \bar{m}_{23}(B)$
$\overline{K A}_{a, b}^{2}(B)=\left[2^{a} \times 2^{a}\right]^{b} \bar{m}_{22}(B)+\left[3^{a} \times 3^{a}\right]^{b} \bar{m}_{33}(B)+\left[2^{a} \times 3^{a}\right]^{b} \bar{m}_{23}(B)$
from which it follows

$$
\begin{align*}
K A_{a, b}^{1}(B) & =2^{(a+1) b}(n-2 h-r+2)+2^{b} 3^{a b}(3 h-r-3)+2\left(2^{a}+3^{a}\right)^{b} r \tag{5}\\
K A_{a, b}^{2}(B) & =2^{2 a b}(n-2 h-r+2)+3^{2 a b}(3 h-r-3)+2 \cdot 6^{2 a b} r \tag{6}\\
\overline{K A}_{a, b}^{1}(B) & =2^{(a+1) b}[(h-1)(2 h-3)-(n-2 h-r+2)] \\
& +2^{b} 3^{a b}\left[\frac{1}{2}(n-2 h+2)(n-2 h+1)-(3 h-r-3)\right]+2\left(2^{a}+3^{a}\right)^{b}[(h-1)(n-2 h+2)-r] \tag{7}\\
\overline{K A}_{a, b}^{2}(B) & =2^{2 a b}[(h-1)(2 h-3)-(n-2 h-r+2)]+3^{2 a b}\left[\frac{1}{2}(n-2 h+2)(n-2 h+1)-(3 h-r-3)\right] \\
& +2 \cdot 6^{a b}[(h-1)(n-2 h+2)-r] . \tag{8}
\end{align*}
$$

These formulas enable the calculation of KA-indices and coindices of any benzenoid system, for which the easily established parameters n, h, r are known.

IV. Elements of the theory of phenylenes

Phenylenes are a kind of chemical compounds whose carbon atoms form 6 and 4 members cycles in it. Every 4membered cycle (or square) is next to two disjoint 6-membered cycles (or hexagons) and no two hexagons are found to be next to each other. By calculation, we obtain that a phenylene P has $6 h$ vertices and $8 h-2$ edges, where h is the member of hexagons in $\mathrm{P}[8]$. The graph of P with 8 hexagons is shown in Figure 2.

PH
Figure 2. Graph of a phenylene P.
As for the example of phenylenes, a fissuse, bay, cove, fjord, and logoon are considered in the same manner as the benzenoid systems [8].

All vertices of a phenylene P are either of degree 2 or of a degree 3 . Their numbers are

$$
\begin{aligned}
& p_{2}=p_{2}(\mathrm{P})=2 h+4 \\
& p_{3}=p_{3}(\mathrm{P})=4 h-4 .
\end{aligned}
$$

The edge set $E(P)$ can be divided into three partitions [8]:

$$
\begin{aligned}
& e_{22}=e_{22}(P)=2 h-r+4=n-4 h-r+4 \\
& e_{33}=e_{33}(P)=6 h-r-6 \\
& e_{23}=e_{23}(P)=2 r .
\end{aligned}
$$

If we denote by $\bar{e}_{i j}$ the number of pairs of non-adjacent vertices of P having degree i and j, then

$$
\begin{aligned}
\bar{e}_{22}(P) & =\binom{p_{2}}{2}-e_{22} \\
& =(h+2)(2 h+3)-(n-4 h-r+r) \\
\bar{e}_{33}(P) & =\binom{p_{3}}{2}-e_{33} \\
& =(2 h-2)(4 n-5)-(6 h-r-6) \\
\bar{e}_{23}(P) & =p_{2} p_{3}-e_{23} \\
& =(2 h+4)(4 h-4)-2 r .
\end{aligned}
$$

We see that all structural details of P, needed in the subsequent section, are computed by the three fundamental parameters n, h, and r.

V. General expressions for $(a, b)-K A$ indices of phenylenes

Bearing in mind the considerations in the previous section, Eqs. (1), (2), (3) and (4) can be rewritten as
$K A_{a, b}^{1}(P)=\left[2^{a}+2^{a}\right]^{b} e_{22}(P)+\left[3^{a}+3^{a}\right]^{b} e_{33}(P)+\left[2^{a}+3^{a}\right]^{b} e_{23}(P)$
$K A_{a, b}^{2}(P)=\left[2^{a} \times 2^{a}\right]^{b} e_{22}(P)+\left[3^{a} \times 3^{a}\right]^{b} e_{33}(P)+\left[2^{a} \times 3^{a}\right]^{b} e_{23}(P)$
$\overline{K A}_{a, b}^{1}(P)=\left[2^{a}+2^{a}\right]^{b} \bar{e}_{22}(P)+\left[3^{a}+3^{a}\right]^{b} \bar{e}_{33}(P)+\left[2^{a}+3^{a}\right]^{b} \bar{e}_{23}(P)$
$\overline{K A}_{a, b}^{2}(P)=\left[2^{a} \times 2^{a}\right]^{b} \bar{e}_{22}(P)+\left[3^{a} \times 3^{a}\right]^{b} \bar{e}_{33}(P)+\left[2^{a} \times 3^{a}\right]^{b} \bar{e}_{23}(P)$
from which it follows.

$$
\begin{aligned}
& K A_{a, b}^{1}(P)=2^{(a+1) b}(n-2 h-r+4)+2^{b} 3^{a b}(6 h-r-6)+2\left(2^{a}+3^{a}\right)^{b} r \\
& K A_{a, b}^{2}(P)=2^{2 a b}(n-4 h-r+4)+3^{2 a b}(6 h-r+6)+2 \times 6^{2 a b} r \\
& \overline{K A}_{a, b}^{1}(P)=2^{(a+1) b}[(h+2)(2 h-3)-(n-4 h-r+4)]+2^{b} 3^{a b}[(2 h+2)(4 h-5)-(6 h-r-6)] \\
& \quad+2\left(2^{a}+3^{a}\right)^{b}[(2 h+4)(4 h-4)-2 r] \\
& \overline{K A}_{a, b}^{2}(P)=2^{2 a b}[(h+2)(2 h+3)-(n-4 h-r+4)]+3^{2 a b}[(2 h+2)(4 h-5)-(6 h-r-6)]
\end{aligned}
$$

$$
+2 \times 6^{a b}[(2 h-4)(4 h-4)-2 r] .
$$

These formulas enable the calculation of KA-indices and coindices of any phenylene for which the easily obtained parameters n, h, r are known.

VI. Conclusion

In this study, the (a, b) - $K A$ indices and coindices of benzenoid systems and phenylenes are determined.

VII. References

[1] R.Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, (2009).
[2] V.R.Kulli, Graph indices, in: M. Pal, S. Samanta and A. Pal (eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society, Global, Hershey, 66-91, (2020).
[3] V.R.Kulli, The (a, b)-KA indices of polycyclic aromatic hydrocarbons and benzenoid systems, International Journal of Mathematical Trends and Technology 65, 115-120, (2019).
[4] I.Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 ,535-538, (1972).
[5] M.Randić, On characterization of molecular branching, J. Am. Chem. Soc. 9, 6609-6615,(1975).
[6] I.Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86, 11-16, (2021).
[7] I.Gutman and S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer, Berlin, 1989.
[8] J.Rada, O. Araujo and I. Gutman, Randić index of benzenoid systems and phenylenes, Croat. Chem. Acta 74 (2001), 225-235.

