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INTRODUCTION 

 

 Linear systems are almost the only large class of ordinary differential equations for which there exists a definite 

theory. The theory of linear differential equations is also useful as a first approximation to the study of nonlinear problems. 

We introduced Euler’s method to solve the initial value problems for systems of ordinary differential equations 

numerically. We give some definitions and basic properties of norms of matrices and discuss perturbations on ordinary 

differential equation systems. We devote to the study of Runge-Kutta method, Rosenbrock method; alternating direction 

implicit method and approximate matrix factorization method are presented. 

 

I. ALTERNATING DIRECTION IMPLICIT (ADI) METHODS 

 

 ADI methods were developed by Douglas, Gunn, Peaceman and Rachford. An important application field at that 
time was formed by two- and three-dimensional parabolic problems. 

 
A. The Peaceman-Rachford method 

 The general formulation of an initial value problem for a system of ordinary differential equations is 

                                                    0

(t) ( (t), t), t 0,

(0) ,

w F w

w w

  


 

with given 
m m:F ¡ ¡ ¡    and 

m

0 .w ¡  We consider numerical approximations nw to the exact solution values 

n(t )w  at the points nt n Δt, n 0,1,2,...,  with t 0   being the step size. For simplicity this step size t is taken to be 

constant. Convergence properties of the numerical methods will only be considered on bounded time intervals [0, T]. 

The ADI method of Peaceman and Rachford is one of the very first splitting methods to be proposed in the literature. For 

the nonlinear ordinary differential equations system 

                                                         (t) = ( (t),t)w F w
                                                                                          (1) 

with the two-term splitting 

                                                    1 2( (t),t) ( (t),t) ( (t),t)F w F w F w 
                                                                   (2) 

thePeaceman-Rachford method reads 

                              

1 n 1 n n 2 1 1
n n n

2 2 2

n 1 1 1 n 1 n 1 2 1 1
n n n

2 2 2

1 1
t ( ,t ) t ( , t ),

2 2

1 1
t ( , t ) t ( , t ).

2 2

w w F w F w

w w F w F w

  

  
  


     



    
                                        

(3) 

 This method could be viewed as being obtained by Strang-type operator splitting with alternate use of explicit and 

implicit Euler in a symmetrical fashion to get second-order. However, it is more natural to consider it as a method of its 

own. Because of this alternate implicit use of 1F and 2 ,F in the framework of dimension splitting, the method is called 

alternating direction implicit. 

Although we will not restrict ourselves to dimension splitting, the name ADI will still be employed for methods like (3) in 

which each stage is consistent. We can note that the method returns stationary solutions exactly: 

for autonomous problems we have 

                                             
n 1 n 1

n
2

, ( ) implies .w w F w 0 w w w


   

                                            

(4) 
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B. Stability of the Peaceman-Rachford method 

 If 1F and 2F are linear, j j( (t),t) (t), j 1,2,F w A w  then the Peaceman-Rachford method gives n+1 nw Rw with 

                          

1 1

1 2 2 1

1 1 1 1
( t ) ( t )( t ) ( t ).

2 2 2 2
R I A I A I A I A

         
                                        

(5) 

If 1 2and A A commute, it is identical to the locally one-dimensional (LOD) method: 

                                          

0 n

1 0 1 0 n 1 1 1
n+

2

2 1 2 1 1 2 2 n+1
n+

2

n 1 2

,

1 1
t ( , t ) t ( , t ),

2 2

1 1
t ( , t ) t ( , t ),

2 2

.

v w

v v F v F v

v v F v F v

w v

 

    


    



                                               

(6) 

In more general linear case we can write  

                                       

µn
1

n 1 1 0

1 1
( t ) ( t ) ,

2 2
w I A R I A w

    
                                                           

(7) 

where 

                              

µ 1 1

2 2 1 1

1 1 1 1
( t )( t ) ( t )( t ) .

2 2 2 2
R I A I A I A I A

           

Hence it is possible to rewrite (3) in the form (6), and a similar transformation is also possible for nonlinear problems. 

The condition number of m×mCA is defined as 

                                                    
1cond ( ) .A A A


 
If we have 

                                cond µn

1 1 2

1
( t ) K , K , n 0,

2
I A R      

then 
n

1 2K K KR   for all n 0 . In general, boundedness of 
1

1
t

2
I A  will only be valid under very strict conditions 

on the time step, such as 
2t O(h ).  Practically, such restrictions are not obeyed, but the Peaceman-Rachford method 

appears to be unconditionally stable for problems with smooth coefficients. 
 

C. The Douglas method 
 Suppose we have a splitting 

                                  0 1 s( (t),t) ( (t),t) ( (t),t) ( (t),t),F w F w F w F w   
                                                        (8) 

where it is assumed that 0F is non stiff so that this term can be treated explicitly. All the others may be stiff and they are 

treated implicitly in a sequential fashion below: 

                                     

0 n n n

j j 1 j j n+1 j n

n 1 s

t ( , t )

θ t{ ( , t ) ( , t )}, j 1,2,...,s,

.

n

v w F w

v v F v F w

w v





  


     


                                           

(9) 

The method is of order one if θ = 1 and of order two if 0

1
θ , .

2
F 0   

 As the first explicit Euler stage is followed by implicit stages which serve to stabilize this first explicit stage, 

methods of the type in (9) are also known as stabilizing correction methods. A nice property of (9) is that all internal 

vectors jv are consistent approximations to n+1(t ).w Furthermore; this method returns stationary solutions exactly, similar 

to (4) which can be seen by considering the consecutive j , j 1, 2,...,s.v 
 

 

D. Stability of the Douglas method
  The Douglas method lends itself less easily to stability analysis than the LOD methods and the same observations 

for applying the Peaceman-Rachford method. Here we can consider the simplest situation from the analysis point of view: 

linear problem with commuting, normal matrices jA . 

We now consider 

                                                  0 1 s(t) λ (t) λ (t) ... λ (t),w w w w    
                                                              

(10) 
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where the term 0λ (t)w is included to take the explicit term 0F into account. Applying the Douglas method to (10) shows a 

recursion wn+1= R wn with  

                                         

1
s s

0 1 s j j

j 0j 1

(z ,z ,...,z ) 1 (1 θz ) z





 
    

 
= = R R

                                                  

(11) 

as stability function. 

For the stability analysis we will consider the wedge, for α 0,  

                                        
 αW ζ ζ 0 or arg( ζ) α    C∣  

Inthe complex plane and examine stability for j αz W , j 1  . 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The graph of a wedge αW  

 

 

E. Definition 

 The stability region of the method is the set in the complex plane. A method that has the property that S contains 
the left half-plane is called A-stable. 

A   method   with   stability   function R   is said to be strongly A-stable   if it is 

A-stable with
z
lim (z) 1


R , and it is said to be L-stable if we   have   
z
lim (z) 0


R in addition. 

 

F. Theorem 

 Let R be defined by (11). Suppose 0z 0  and s 2, 1 r s 1.    For any 
1

θ
2

  we have 

                              
j α

1 π
α 1 for all z W , j 1,2,...,s ,

s 1 2
      

R  

                              

1 s r α

s r 1 s

1 for all z ,...,z W  and1 π
α .

s r 2 Re(z ) 0,...,Re(z ) 0



 

   
   

   

R
 

Proof 
 See [2].                                                                                                                                        
 

II. APPROXIMATE MATRIX FACTORIZATION (AMF) METHODS 

 

 In  this  section  we will  discuss  a number  of  splitting  methods  derived from the Rosenbrock  methods  with  

inexact  Jacobian  matrices.  Splitting is realized here by choosing special approximations to the Jacobian matrix. The basic 

idea is to simplify and economize the linear system with involving matrix γ t .I A  This is achieved by approximating 

entries in the Jacobian matrix and in particular by factorizing the matrix γ t .I A   The common name for this technique is 

AMF method. 

iy 

α

 α

 
0 

x 

αW

 
ζ
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We primarily focus on autonomous systems 

                                 0 1 s(t) ( (t)) ( (t)) ( (t)) ... ( (t)),w F w F w F w F w       

where, 0F is the non stiff term. Time-dependent terms will be treated by a transformation to an augmented autonomous 

form. 

 

A. One-stage methods of order one and two  
 We first consider the one-stage Rosenbrock method:                                      

1

n+1 n n= + t ( ),w w B F w


                                                    
(12) 

Where = γ tB I A   and A is an approximation to n n( ) ( ).
F

F w = w
w





 Now, let us assume 

                                          

j

j n n j( ) ( ) +O( t), j=1,2,...,s,
F

F w w A
w


   

                                            
(13) 

And replace B in (12) by the approximate factorization 

                                1 2 s=( γ t )( γ t )...( γ t ).B I A I A I A     
                                                            

(14) 

So, the resulting method reads 

                             
1 1

n+1 n s 1 n= + t ( γ t ) ...( γ t ) ( ).w w I A I A F w
     

                                                  
(15) 

 We will note that the non stiff Jacobian 0

n( )
F

w
w




 is not present here. So, the 0F term is treated explicitly and the 

other terms linearly implicit one after another. Because F is not split, stationary solutions w%satisfying ( )F 0w   are 

maintained. Also we note that in a concrete case a change in sequence of the factors jγ tI A   gives a different algorithm, 

unless the matrices  jA  commute. 

With this approximate matrix factorization, the order is one for any γ in general. We will get order two if 
1

γ =
2

and 0 = .F 0
 

When the problem is linear; this one-stage Rosenbrock AMF method is identical to the Douglas method. 

To apply the method to a non autonomous problem (t) = ( (t),t),w F w  first we rewrite this in the augmented autonomous 

form 

                                                            
(t) = ( (t))u G u

                                                                          
(16) 

with 

                                                 

(t) ( (t),t)
(t) = , ( (t)) = ,

t 1

w F w
u G u

   
   
   

 

to which the method can be applied. Then t is formally considered as an unknown, but it is easily seen that the 

approximations nt found with this method still equal n∆t. Reformulating in terms of nw , the methods will  involve 

approximations to the time derivatives ( ,t).
t

F
w



  
Take that 

                                                     

m×m

j n n+( ,t ) ,
j

F
A w

w



 


R  

                                                      

j m

j n n+γ( ,t )
t

F
b w


 


R  

and 

                           

1 1

1 (m+1)×(m+1)j j j

j T

( γΔt ) γΔt ( γΔt )
, j 1,2,...,s,

1

I A b I A
B

0

 


  

   
 

R  

the factorized Rosenbrock method (12) reads 

                               

n+1 n n n1 1 1

s 2 1

n+1 n

t ( , t )
... .

t t t

w w F w
B B B

  
     

      
                                                             

(17) 

So, we will have n+1 nt t t,   as it should be, and the computation of n+1w  can be written in the more transparent 

recursive form with increments jd ,v  
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0 n n

1 2

j j j 1 j

n+1 n s

d t ( ,t ),

 d ( γ t ) (d γ ( t) ), j=1,2,...,s,

d .

v F w

v I A v b

w w v





  



     

                                          

(18) 

j n jSetting    d ,v w v  We can once more see the close relation with the Douglas method for linear problems.
 

 

B. Two-stage methods of order two and three 
 Now, we can consider the two-stage method 

                                    

1 n 1

2 n 1 1 2 1 2

n+1 n 1 1 2 2

t ( ) γ t ,

t ( α ) α t γ t ,

b b ,

c F w Ac

c F w c Ac Ac

w w c c

    



       

                                                     

(19)
 

where 

2 1 2 1 2

2 2

1 γ
 b 0, b 1 b , α , α .

2b b
       

Before we introduce the approximate factorization we remove the matrix vector multiplication 1Ac  in the second stage. 

We substitute 
2

1 1 2 2 1

α
,

γ
c c c c c   to that part. When we impose the relations for order two, it gives the method 

                                           

1 n

2 n 1 1

2 2

n+1 n 2 1 2 2

Δt ( ),

1 1
Δt ( ) ,

2b b

(2 b ) b ,

Bc F w

Bc F w c c

w w c  c





   


                                                                 

(20) 

where γ tB I A    and 2γ, b  are free parameters. With (14) this method remains of order two, even with 0F 0 . 

Moreover, we will take 
1

γ
4

  and use (14). The choice of γ is important for stability. 

Method in (20) provided with approximate matrix factorization returns stationary solutions because splitting of F itself is 

not used. The AMF methods can also be applied to non-autonomous problems (t)= ( (t),t)w F w  in the same way as for the 

one-stage method. For both stages this leads to a recursion of the type (18). 

An AMF counterpart of the third order method                                                                                                                                                                                                                                                                                                             

       

1 n 1

2 n 1 1 2

n+1 n 1 2

t ( ) γ Δt ,

2 4
t ( ) γ t γ t ,

3 3
1 3

,
4 4

 c F w Ac

    c F w c Ac Ac

w w c c


  


       

  
                                                       

(21) 

could be obtained with 2

3 1 1
b , γ 3.

4 2 6
    But, for order three it is  necessary to require 0F 0 , since it was  supposed  

that n( )
F

A w
w





 in the order condition for (21). With the factorization in (14) this will be satisfied only if 0F 0 . 

 

C. Stability of two-stage methods  

 The method in (20), which is non-factorized, is A-stable for any 
1

γ .
4


 
With approximate matrix factorization the 

stability properties change. As for the Douglas method, we consider the scalar test model 

0 1 sw (t) λ w(t)+λ w(t)+...+λ w(t).   Applying (20) to this test model gives the stability function 

                                       

2

0 1 s 2 2

2z z z 2z
(z ,z ,..., z ) 1 ,

ω ω 2ω


   R

                                                        
(22) 

where 

                                                 

s s

j j
j 1

j = 0

z z , ω (1 γ z ),


     
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and γ is still free. The parameter 2b  has cancelled in this expression. If s 0  we get                   

  
2

0 0 0

1
(z ) 1 z z .

2
  R  

If we put ω 1 γξ   in (22) we have the stability function 

                                      

2 2

2

1
1 (1 2γ)ξ ( 2γ + γ )ξ

2(ξ)
(1 γξ)

   




R  

of the unfactorized methods. 

As we consider the wedge αW  and examine stability under the condition for the Douglas method, 

                     j αz W , j 1,2,...,s 
 
with either 0z 0 or 2

0 0

1
1 z z 1

2
   . 

If s =1, which means if we have one explicitly and one implicitly treated term, then A-stability for the implicit term is 

preserved with 
1

γ =
2

. This is surprising in the view of the fact that without factorization the stability function is A-stable 

and it does not vanish at infinity. This result can be shown as follows 

For s =1 we can write 0 1(z ,z )R R  as 

                          

2 2 2

0 0 0 1 1

2

1

1 1
(1 z z ) (1 2γ)(1 z )z ( 2γ γ )z

2 2 .
(1 γz )

       




R

                                           

(23) 

For 
1

γ ,
2

  it becomes 

                                            

2 2

0 0 1

2

1

1 1
(1 z z ) z

2 4 .
1

(1 z )
2

  





R  

For 2

0 o

1
1 z z 1,

2
   we can write 

                                         

2

1

2

1

1
1 z

4

1
1 z

2







R  

                                                

2 2

1 1

2 2

1 1 1

1
1 (x y )

4
1

1 x (x y )
4

 



  

 

                                                        1  

Whenever  1 1x Re(z ) 0.   

 

D. Remark   

 Let 0z 0  and s 2. Angle barriers for stability were already encountered in the inequality 

                            
j α

1 π
α 1 for all z W , j 1,2,...,s ,

s 1 2
      

R
                                                   

(24) 

for the Douglas method and consequently also for the one-stage method in (15) with approximate matrix factorization. This 

barrier is for AMF methods always true. 

To show that, let 1 2 sz z z ... z     and consider the function 1 2 s(z ,z ,..., z )R R  given by 

                                                     

1 2 s

1 1 2 2 s s

φ(z ,z ,..., z )
1 z,

ψ (z ) ψ (z )...ψ (z )
 R

                                                               

(25) 

where  φ  is  a  polynomial  and  then jψ are  polynomials   without   zero  in  the  left half-plane. This is the general form 

of a stability function for a one-step method with approximate matrix factorization of implicit terms. 

Now we consider iβ

jz τe , j 1,2,...,s,    with 0 β α   and assume that 



Lin Lin Hteik / IJMTT, 67(1), 36-43, 2021 

 

42 

                           

iβ iβ iβ
iβ r r 1

iβ iβ iβ

1 2 s

φ( τe , τe ,..., τe )
C(τe ) O(τ ), as τ ,

ψ ( τe ) ψ ( τe )...ψ ( τe )

    
  

  
 

where r is an integer and C is a non zero constant. Then, as τ ,  

                                               
1 r i(1 r)β r1 sC τ e O(τ )    R . 

Hence stability for all β α  requires C 0  and 
π

r 1 α .
2

   

Stability for fixed kRe(z ) 0  and jRe(z ) , j k,   implies that the degree of φ in jz  is less than the degree of jψ . 

Consequently r s, j k,  and so we get the condition 

                                                          

1 π
α

s 1 2



,  

which is the same upper bound as in the first statement of Theorem 1.6. 

 

 

E. A three-stage method of order two 

 Second order explicit Runge-Kutta methods are found as: 

                                     

0 n

j j 1 j 1 n

n 1 n s s n+1

,

1 j 1
t ( , t t),  j=1,2,...,s,

s s

1 s 1
t ( , t ) .

s 1 s 1 s
+

v w

  v v F v

w w v F v

 





 
     


 

     
                                                

(26) 

Taking the three-stage member of this class Gerisch and Verwer have constructed a three-stage Rosenbrock method which 
has order two for arbitrary Jacobian approximations A, similar to the method in (20). 

In standard form, when we use the notation from (25)-(26), where A is the Jacobian matrix n( ),
F

w
w




this Rosenbrock 

method shows 

                                      

1 n

j 1 j 1

j n j,

1 1

n 1 n 1 2 3

( γ t ) t ( ),

1
( γ t ) t ( ) t γ , j 2,3,

2

1
( ),

3

I A c F w

I A c F w c A c

w w c c c

 

 



   

       

   

   

 
where 

                                       

3,2

3 2 2

3,1 3,2 3,2

3,2

2,1 3,1 3,2

1
γ 3γ,

2

1 1
γ 6γ 12γ 6(1 γ )γ + 2γ ,

1 2γ 2

γ (3γ + γ γ ),

 

  
     

  

  

 

with 

                                

2 6 1 2
γ 1 cosθ+ sinθ, θ arc tan( )

2 2 3 4
   . 

The value of γ is approximately 0.43586652. The parameters are chosen in such a way that the method is L-stable and of 

order three for homogeneous linear problems with constant coefficients. Now we change jc  to jc by  

     1 1 2 2 2,1 1 3 3 3,1 1 3,2 2

1 1 1
, γ , γ γ .

γ γ γ
c c c c c c c c c     

 

After that, one can 

apply the method with the approximate matrix factorization in the same manner, replacing the matrix γ tB = I A   by its 

factorized counterpart defined by 1 2 s( γ t )( γ t )...( γ t ).I A I A I A       
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III. CONCLUSIONS 

 

We have found that the Peaceman-Rachford method is unconditionally stable for some particular problems. The 

approximate matrix factorization method is of order one in general. Three-stage Rosenbrock method has order two for 

arbitrary Jacobian approximation. 
 

ACKNOWLEDGEMENT 

 First, I would like to express my gratitude to my supervisor, Dr Saw Win Maung, part-time lecturer, Department 

of Mathematics, University of Mandalay, who has given me invaluable advice and patient guidance that helped my 

research work to accomplish. In addition, I would like to express my thanks to all my teachers throughout student life. 

  I acknowledge with gratitude of assistance and help of many friends, colleagues. I am indebted to all my friends 

for helping me in various ways while writing this paper. Finally, I would like to thank my parents, U Aung Nyunt and Daw 

Thein Nyunt, my husband, Ko Zaw Naing Htun for I have received invaluable help from them. 

 

REFERENCES 

 

[1] J. Frank, W.H. Hundsdorfer and J.G. Verwer, Stability of Implicit-Explicit Linear Multistep Methods, Research Report NM-R9623, ISSN 

0169-0388, (1996), Amsterdam, Netherlands. 

[2] W. Hundsdorfer, and J.G Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, (2003), Springer-Verlag, 

Berlin. 

[3] J.W. Thomas, Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations, (1999), Springer-Verlag Inc., New York. 


