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I. INTRODUCTION 

In 1967, Rosa[3] have introduced the concept of graph labeling. Gallian[4] has  given a dynamic survey of graph labeling. 

The concept of lucky labeling was introduced by  A.Ahai et al.,[5].   Kins yenoke et.al.,[7] introduced the idea of proper lucky 

labeling. The notion  of  lucky edge labeling was introduced by Nellai Murugan[12].  E.Sampthkumar[1] introduced the 

concept of duplicate graph.  Thirusangu et al.,[2] have introduced the notion of extended  duplicate graph. 

II. PRELIMINARIES 

In this section, we give the basic definitions relevant to this paper. Let G(V,E)  be a finite, simple and undirected graph with 

p vertices and q edges.  

 

Definition: 2.1  Quadrilateral snake graph:      

A quadrilateral snake QSm is obtained from a path u1,u2,u3,……,un  by joining ui and  ui+1 to two new  vertex vi and wi 

respectively and then joining vi and wi , 1  i  n-1, where ‘m’ is the  number of edges of  the path. In general, a quadrilateral 

snake has 3m+1 vertices and  4m edges.  

 

 
 

Definition : 2.2  Duplicate graph:  
A Simple graph G with vertex set V and edge set E. The duplicate graph of G is DG = (V1, E1) where the vertex set V1 = V 

U V and V ∩ V  =   and  f : V  → V is bijective. The edge set E1 of DG is defined as the edge abE  iff  both edges ab  and  

ab are in E1. 
 

Definition : 2.3  Extended duplicate graph of quadrilateral snake: 

Let DG = (V1,E1) be a duplicate graph of the quadrilateral snake graph G(V,E).  Extended duplicate graph of quadrilateral 

snake graph is obtained by adding the edge v2 2v  to the duplicate graph and it is denoted by EDG(QSm). Clearly it has 6m+2 

vertices and 8m+1 edges, where ‘m’ is the number of edges. 

https://www.ijmttjournal.org/archive/ijmtt-v67i1p509
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Definition : 2.4  Lucky labeling: 

Let f: V(G) →N be a labeling of the vertices of a graph by positive intergers. Let  S(v) denote the sum of labels of the 

neighbours of the vertex v in G. If v is an isolated vertex of  G. We put S(v)=0. A labeling is lucky if S(u)≠S(v) whenever u 
and v are adjacent. The least  integer k for which a graph G has a lucky labeling from the set {1,2,3...k} is the lucky number  of 

G denoted by 𝜂(G). 

 

Definition : 2.5  Proper lucky labeling: 

A lucky labeling is proper lucky labeling if the labeling f is proper as  well as lucky, that is if u and v are adjacent in G then 

f(u)≠f(v) and S(u)≠S(v). The proper lucky number of G is denoted by 𝜂p(G) is the least positive integer K such that G has a 

proper lucky labeling with {1,2,3,...,k} as the set of  labels. 

 

Definition : 2.6  Lucky edge labeling: 

Let  G be a simple graph with vertex set V(G) and edge set E(G) respectively.  Vertex set V(G) are labeled arbitrary by 
positive integers and E(e) denote the edge label such  that it is the sum of labels of vertices incident with edge e. The labeling is 

said to be lucky edge labeling if the edge set E(G) is a proper colouring of G, that is, if we have E(e1) ≠ E(e2)  whenever e1 and 

e2 are adjacent edges. 

III. MAIN RESULTS 

A. Proper  Lucky- Labeling  For  Edg(Qsm) , M≥ 𝟏 

Here we  present an algorithm and  prove the existence of  proper lucky labeling for  the EDG  of  quadrilateral snake  QSm . 

Algorithm-1                                         

Procedure - [Proper lucky labeling for EDG(QSm), m  1] 

V(G) ← {v1,v2, v3,… ,v3m,v3m+1, v’1,v’2,v’3,…,v’3m ,v’3m+1} 

E(G) ← {e1, e2, e3, …,e4m,e4m+1,e’1,e’2,e’3,… ,e’4m } 

if  m≥1   

       for i = 1 to 4 

             vi  ← 1 

             v’i ←2 

      end for 

end if 

if  m≥2 

       v7 ←3 

      for i = 1 to 2 

           vi+4 ← 1 

      end for 

      for i = 0 to (m-2) 

               for j = 0 to 1 

                     v’5+3i+2j  ← 2  

                     v’6+3i     ← 3 

               end for 

      end for 

end if 

if  m > 2 

       for  i = 0  to  (m-3) 

                 for  j = 0  to  1 

                       v8+3i     ← 1   

                       v9+3i+j  ← 3 
                 end  for 

       end  for 

end if 

end procedure 
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Theorem 1 : The Proper lucky number for the extended duplicate graph of quadrilateral snake  graph                            

                      EDG(QSm) = {
2, 𝑖𝑓  𝑚 = 1
3, 𝑖𝑓  𝑚 ≥ 2

  

Proof:  Let QSm be the quadrilateral snake graph and  EDG(QSm) be the extended duplicate  graph of quadrilateral snake 

Define the set of vertices and edges are   

             V(G) = {v1,v2, v3,… ,v3m,v3m+1, v’1,v’2,v’3,…,v’3m ,v’3m+1} 

             E(G) =  {e1, e2, e3, …,e4m , e4m+1,e’1,e’2,e’3,… ,e’4m } 

Let  us define the  mapping  f:  V(G)  →  N  such  that the labeling is a  proper  lucky  labeling  if   

f(u) ≠ f(v)  &  S(u) ≠ S(v), whenever u and v are adjacent in G and S(v) denote the sum  of  labels of  the neighbours of  the 

vertex v in G. 

Case 1 : If m≥1,  by using algorithm 1,  assign the label ‘1’ to  vi and ‘2’ to  v’i  for 1≤ 𝑖 ≤ 4.  

Case 2:  If m≥2,  labeling the vertices v1, v2, v3, v4  and  v’1, v’2, v’3, v’4   as  in case 1 and the vertex v5 and v6  receive the label 

‘1’ and v7 receive the label ‘3’.   

For  i = 0  to  (m-2)  and  0≤ 𝑗 ≤1, the vertices v’5+3i+2j receive the label ‘2’ ;  the vertices v’6+3i receive the label ‘3’. For i = 0  

to  (m-3) & 0≤ 𝑗 ≤ 1 , the vertices v8+3i receive the label ‘1’; the         vertices v9+3i+j receive the label ‘3’ . 

From the above cases, we observe that f(u) ≠ f(v). 

Thus, 6m+2 vertices  are labeled  by {1,2,3}.   

Claim:  To prove that EDG(QSm) is the proper lucky labeling .    

                           i.e.,  to prove S(u) ≠ S(v). 

The sum neighbourhood of the vertices are as follows: 

if m≥1, 

                     S(v1) =  4 = S(v3) ,    S(v2) → 6, S(v4) → 8, 

                     S(v’1) = 2  = S(v’3),   S(v’2) → 3, S(v’4) → 6  and 

if m≥2, 

                     S(v’5) → 2, S(v’6) → 3,   S(v’7) →6  and 

                     for  i = 0  to (m-2),   S(v5+3i) →5,  S(v6+3i)→4, S(v7+3i) →9 

                     for  i = 0  to  (m-3), S(v’8+3i) → 6 , S(v’9+3i)  → 4, S(v’10+3i) → 10. 

Clearly, we get that S(u) ≠ S(v).  

Therefore, the extended duplicate graph of quadrilateral snake graph is proper lucky  labeling and the proper lucky number is                

                     𝜂(G) = EDG(QSm) = {
2, 𝑖𝑓  𝑚 = 1
3, 𝑖𝑓  𝑚 ≥ 2

  

 
Example 1 : Proper lucky labeling diagram in EDG(QSm)  is shown in figure(1) & figure(2) 

    

 
Fig 1: EDG(QS4) 
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Fig  2: EDG(QS5) 

 

B. Lucky Edge Labeling For  Edg(Qsm) 
Algorithm-2                                   

Procedure – [Lucky labeling for EDG(QSm), m  1] 

V(G) ← {v1,v2, v3,… ,v3m,v3m+1, v’1,v’2,v’3,…,v’3m ,v’3m+1} 

E(G) ← {e1, e2, e3, …,e4m,e4m+1,e’1,e’2,e’3,… ,e’4m } 

if  m≥1 

      v1 ← 1, v2 ← 2 , v3 ←3,  v4 ← 1, v’1←1, v’2 ← 2 , v’3 ←3, v’4 ← 1 

if  m≥2 

          for  i = 0  to ⌊
(𝑚−2)

3
⌋    

                 for  j = 0  to  1  

                        v5+9i+j → 2 ;  v’5+9i+j → 2 ;  v7+9i → 4 ;  v’7+9i →4. 

                 end for       

          end for 

          for  i  = 0  to ⌊
(𝑚−3)

3
⌋  do  

         v8+9i  → 3;  v’8+9i → 3 ;  v9+9i → 1;  v’9+9i →1;  v10+9i → 5; v’10+9i →5. 

          end for 

          for  i = 0  to ⌊
(𝑚−4)

3
⌋   do 

                      v11+9i → 2;  v’11+9i →2;  v12+9i → 1;  v’12+9i →1;  v13+9i →4;  v’13+9i → 4. 

          end for 

end if 

end procedure 
 

Theorem 2 : The extended duplicate graph of quadrilateral snake graph is lucky edge labeling and its number 𝜂(G) is 9. 

Proof: Let QSm be the quadrilateral snake graph and  EDG(QSm)  be the extended  duplicate graph of quadrilateral snake. 

Define the set of vertices and edges are   

                        V(G) = {v1,v2, v3,… ,v3m,v3m+1, v’1,v’2,v’3,…,v’3m ,v’3m+1} 

                        E(G) ={e1, e2, e3, …,e4m , e4m+1,e’1,e’2,e’3,…, e’4m } 

Define a mapping f: V(G) → N such that the labeling is a lucky edge labeling if E(e1) ≠ E(e2),    

whenever e1 & e2 are adjacent edges. 

By using the algorithm 2,  we have 

 

Case 1:  If  m≥1,   
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                 v1 → 1, v’1→1, v2 → 2 , v’2 →2, v3 →3 , v’3→3, v4 → 1,v’4→1 

Case 2:  If  m>1,   

                To Label the vertices for v1,v2,v3,v4 and v’1,v’2,v’3,v’4  as in case(1) and 

                For  i = 0  to ⌊
(𝑚−2)

3
⌋    &  j = 0  to  1,  

                f(v5+9i+j) → 2 ←f(v’5+9i+j);  f(v7+9i) → 4 ← f(v’7+9i) . 

   For  i  = 0  to ⌊
(𝑚−3)

3
⌋  , 

                f(v8+9i)  → 3 ← f(v’8+9i);  f(v9+9i) → 1 ← f(v’9+9i);  f(v10+9i) → 5 ← f(v’10+9i) . 

   For  i = 0  to  ⌊
(𝑚−4)

3
⌋ ,     

   f(v11+9i) → 2 ←f(v’11+9i);  f(v12+9i) → 1 ← f(v’12+9i);  f(v13+9i) →4 ←f(v’13+9i) . 
Thus, 6m+2 vertices are labeled. 

Claim:  To prove that EDG(QSm) is a lucky edge labeling. i.e., to prove E(ei) ≠ E(ej) for every ei & ej are adjacent edges.   

If  m≥1,   

      E(e1) → 3 ← E(e’1) ;  E(e2) → 2 ← E(e’2)  

      E(e3) → 5 ← E(e’3);   E(e4) → 4 ← E(e’4)  and also  E(e4m+1) → 4. 

If  m≥2,   

       E(e5) → 3 ← E(e’5) ; E(e6) → 5 ← E(e’6);  

       E(e7) → 4 ← E(e’7); E(e8) → 6 ← E(e’8). 

If  m≥ 3,  

       for  i  = 0  to  ⌊
(𝑚−3)

3
⌋ , 

       E(e9+12i) → 7 ← E(e’9+12i) ; E(e10+12i) → 9 ← E(e’10+12i);  

       E(e11+12i) → 5 ← E(e’11+12i); E(e12+12i) →6 ← E(e’12+12i). 

If  m≥ 4,   

       for  i  = 0  to  ⌊
(𝑚−4)

3
⌋, 

       E(e13+12i) → 7 ← E(e’13+12i) ; E(e14+12i) → 9 ← E(e’14+12i);  

       E(e15+12i) → 3 ← E(e’15+12i); E(e16+12i) →5 ← E(e’16+12i). 

If  m≥5,  

         for  i  = 0  to ⌊
(𝑚−5)

3
⌋ , 

         E(e17+12i) → 6 ← E(e’17+12i) ; E(e18+12i) → 8 ← E(e’18+12i);  

         E(e19+12i) → 4 ← E(e’19+12i); E(e20+12i) →6 ← E(e’20+12i). 

Clearly, we observe that E(e1) ≠ E(e2). 

Therefore, the extended duplicate graph of quadrilateral snake graph is a lucky edge labeling and its number 𝜂(G) = 9. 

 

Example 2: Lucky labeling diagram in EDG(QSm)  is shown in figure(3) & figure(4).   

 

 
Fig.3: EDG(QS4) 
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Fig 4: EDG(QS5) 

  VI. CONCLUSIONS 

In this research paper, we have presented  algorithms  and  proved  the extended duplicate graph of quadrilateral snake graph 

QSm , m  1  admits  proper lucky labeling and lucky edge labeling. 
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