A Study on Characteristic of Rings

Laxman Saha

Assistant professor, Department of Mathematics, Balurghat College, Balurghat 733101, India

Abstract -- The characteristic of a ring R, denoted by $\Psi(R)$, is the smallest positive integer n such that nr = 0 for all $r \in R$. If no such integer exists, we say that R has characteristic 0. In this article, the characteristic of a ring (R, +, .) is presented in terms of the order of the elements in the commutative group (R, +). Also it has been shown that the prime generators of O(R) and $\Psi(R)$ are same. This article also gives a relationship among $\Psi(R)$, $\Psi(I)$ and $\Psi(R/I)$ for any ring R and any ideal I of R.

Keywords -- Group, Ring, Characteristic.

I. INTRODUCTION

For a given ring (R, +, .) and $n \in \mathbb{N}$, an important task is to find some subrings which are isomorphic to a factor ring $\mathbb{Z}/n\mathbb{Z}$. The characteristic of a ring determines the number *n* for which the ring contains a subring isomorphic to $\mathbb{Z}=n\mathbb{Z}$. If there exist a positive integer *n* such that nr = 0 for each element *r* of a ring *R*, the smallest such positive integer is called the *characteristic* of *R*. If no such integer exists, we say that *R* has characteristic 0. The characteristic of a ring (R, +, .) is presented in terms of the order of the elements in the commutative group (R, +). Also it has been shown that the prime generators of O(R) and characteristic of *R* are same. This article also gives a relationship among $\Psi(R)$, $\Psi(I)$ and $\Psi(R/I)$ for any ring *R* and any ideal *I* of *R*.

II. PRELIMINARIES

In this section we give some preliminary results, definitions and lemmas on group theory and ring theory.

Theorem 2.1. (Lagrange Theorem)[1]. Let G be a finite group and H be a subgroup of G. Then O(H) divides O(G). **Corollary 2.1.** If G be a finite group and $a \in G$, then O(a)|O(G). Moreover, $a^{O(G)} = e_G$ for all $\in G$, where e_G denotes the identity elements of G.

Theorem 2.2. (*Cauchy's Theorem*) [1]. If G is a finite group and p is a prime dividing O(G), then G has an element of order p.

Definition 2.1. The *additive order* of an element*a*, denoted by $O^+(a)$, in the ring (R, +, .), we mean the order of the element *a* in the group (R, +). An element $a \in R$ is said to be *maximal additive order element* if $O^+(a) \ge O^+(b)$ for all $b \in R$.

The following two lemmas follow from the definition of the characteristic of a ring R.

Lemma 2.1. A ring have finite characteristic if and only if the additive order of maximal elements are finite.

Lemma 2.2. Let R be a ring with unity 1. If $\Psi(R) \neq 0$, then $O^+(a)|O^+(1)$ for all $a \in R$.

Corollary 2.2. *The identity element of a ring ring with unity* 1 *is a maximal additive order element.*

From here to onwards, we denote the least common multiple of $n_1, n_2, n_3, \dots, n_r$ by $lcm \{n_1, n_2, n_3, \dots, n_r\}$.

III. RESULTS ON CHARACTERISTIC OF A RING

In this section first we present some results on characteristic of a ring R in terms of the order of the elements in the commutative group (R, +). Then we show that the prime generators of O(R) and characteristic of R are same.

Lemma 3.1. Let G be commutative group and a and b be two elements of G of order m and n, respectively. Then there exists an element c in G such that the order of c is the least common multiple of m and n.

Theorem 3.1. For a finite ring R, $\Psi(R)|O(R)$, where $\Psi(R)$ denotes the characteristic of R.

Proof: Let O(R) = m. Applying Corollary 2.1 to every element *x* of the additive group (R, +), we have $m \cdot x = 0$ for any $x \in R$. In particular, this tells us that $\Psi(R)$ is finite and hence $\Psi(R) \neq 0$. Let $\Psi(R) = n > 0$. Then by the division algorithm, there exist $q, r \in \mathbb{Z}$ with $0 \le r < n$ such that m = nq + r. For any $x \in R$, we have that

0 = m.x = (nq + r).x = (nq).x + r.x = q.(n.x) + r.x = q.0 + r.x = r.x

Thus, $r \cdot x = 0$ for all $x \in R$. But *n* is the smallest positive integer with this property, and r < n, so it follows that r = 0. Hence, $m = nq = \Psi(R)q$, so $\Psi(R)$ divides O(R).

Remark 3.1. Finite ring always have finite characteristic. But the ring having finite characteristic may not be finite. As an example, we may consider the polynomial ring $\mathbb{Z}_p[x]$.

Definition 3.1. For a positive integer *n*, by the *prime generators*, denoted by PG(n), of *n* we mean set of all primes that are used to represent *n* as prime factors. For examples, if n = 20, then the prime generators of *n* are 2,5 as $20 = 2^2$. 5.

Theorem 3.2. Let *R* be a ring with an unit *a*. If $O^+(a)$ is infinite, then the characteristic of *R* is 0; otherwise $\Psi(R) = O^+(a)$.

Proof : If $O^+(a)$ is infinite, then there exists no positive integer n such that n.a = 0. So the characteristic of R is 0. Now we consider $O^+(a)$ is finite and say, $O^+(a) = n$. Then n.a = 0 and this implies $(n.a)a^{-1} = 0.a^{-1} = 0$. Then from this n.x = 0.x = 0 for all $x \in R$. Since $O^+(a) | \Psi(R)$, last equality gives $\Psi(R) = n = O^+(1)$.

Corollary 3.1. Let *R* be a ring with unity 1. If $O^+(1)$ is infinite, then the characteristic of *R* is 0; otherwise $\Psi(R) = O^+(1)$.

Corollary 3.2. Let *R* be a ring consisting at least two units. Then for any two units $a, b \in R$ with finite additive orders, $O^+(a) = O^+(b)$.

Definition 3.2. A relation ρ between two elements of *R* is defined as follows: for any two elements $a, b \in R$ $a\rho b$ if and only if $O^+(a) = O^+(b)$.

It is not difficult to proof the following lemma.

Lemma 3.2. ρ is an is an equivalence relation on *R*.

Lemma 3.3. For every element a in a ring R with finite characteristic $\Psi(R)$, $O^+(a) | \Psi(R)$.

Proof : Since *R* is a ring with finite characteristic, there exists a positive integer *n* such that n.a = 0 for all $a \in R$. Thus $O^+(a)|n$ and hence $O^+(a)$ is finite. If the characteristic of a ring *R* is finite, then from Lemma 3.2 and Lemma 3.3 it is clear that the ρ have finite numbers of equivalence classes and each class contains elements of same additive order.

Lemma 3.4. An element *a* in *a* ring *R* with finite characteristic is maximal additive order element if and only if $O^+(a) = lcm\{m_1, m_2, ..., m_r\}$ where *r* denotes the total number of classes of *R* under ρ and m_l denotes the additive order of an element of the class *l*.

Theorem 3.3. Let *R* be a ring with finite characteristic. Then the following are hold (*a*) there exists an element $a \in R$ such that $O^+(a) = \Psi(R)$ (*b*) $O^+(a) = \Psi(R)$ if and only if *a* is a maximal additive order element.

Proof: (a). Let a_1, a_2, \ldots, a_r be elements from distinct classes with additive orders m_1, m_2, \ldots, m_r , respectively. Let $lcm\{m_1, m_2, \ldots, m_r\} = L$. Then L, x = 0 for all $x \in R$ and this implies that $\Psi(R)|L$. Again from Lemma 3.1 there exists an element a such that $O^+(a) = L$. So using Lemma 3.3, $L|\Psi(R)$ and consequently $\Psi(R) = L = O^+(a)$. Thus there exists an element $a \in R$ such that $O^+(a) = \Psi(R)$.

(b) If a is a maximal order element then from Lemma 3.4 and part (a) of this theorem, we have $O^+(a) = \Psi(R)$. Now converse part follows from the fact that $O^+(a) | \Psi(R)$.

A general questions comes : Is there any finite ring with a given characteristic ? As an example, for distinct p and : Is there any ring R with O(R) = pq and $\Psi(R) = p$ or q? The answer of this question is negative. In the theorem below we give a relationship between prime generators of O(R) and $\Psi(R)$ and from this relationship readers may get some preliminary idea about the existence of a finite ring with a given characteristic.

Theorem 3.4. For a finite ring R, the prime generators of O(R) and $\Psi(R)$ are same.

Proof: From Remark 3.1, $\Psi(R)$ is finite. Let $\Psi(R) = m$ and O(R) = n. Then by Theorem m|n and hence $PG(m) \subseteq PG(n)$. Now we show that $PG(n) \setminus PG(m)$ is empty. If possible, let $p \in PG(n)$ but $p \notin PG(m)$. Then from Theorem 3.3, there exists a maximal additive order element *a* such that $O^+(a) = \Psi(R) = m$. Since $p \in PG(n)$, by Cauchy's Theorem (Theorem 2.2) there exists an element *b* in *R* such that $O^+(b) = p$. Since $p \notin PG(m)$, so the $gcd(O^+(a), O^+(b)) = 1$. Thus there exists an element *c* in the group (R, +) such that $O^+(c) = O^+(a)$. $O^+(b)$, which contradicts the fact that *a* have maximal additive order. Hence $PG(n) \setminus PG(m)$ is empty and consequently, PG(m) = PG(n).

Corollary 3.3. For a *finite integral domain* D, $O(D) = p^n$ for some *positive integer* n *and prime* p.

Proof : Since the characteristic of a finite integral domain is prime, applying Theorem 3.4 we get the result.

Remark 3.2. From above theorem we may conclude that there exists no integral domain *D* with |PG(n)| > 1, where *n* denotes the order of *D*.

Remark 3.3. From above theorem we may conclude that there exists no ring with pq numbers of elements and characteristic p or q, where p and q are distinct primes. More generally, if O(R) is $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ then the characteristic of R must be of the form $p_1^{\beta_1} p_2^{\beta_2} \dots p_r^{\beta_r}$ where p_i are primes and α_i 's, β_i 's are integers satisfies $1 \le \beta_i \le \alpha_i$ and vise versa.

In Theorem 3.4 it has been shown that for a finite ring *R* the prime generators of O(R) and $\Psi(R)$ are same. The next theorem gives the existence of a finite ring *R* with any finite characteristic having same prime generators as of O(R).

Theorem 3.5. There exists always a ring R with $O(R) = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ and $\Psi(R) = p_1^{\beta_1} p_2^{\beta_2} \dots p_r^{\beta_r}$ where p_i are primes and α_i 's, β_i 's are integers satisfies $1 \le \beta_i \le \alpha_i$.

Proof: If $O(R) = \Psi(R)$ then we consider the ring \mathbb{Z}_n . Now let $\Psi(R) < O(R)$. Also let $s_i = \alpha_i - \beta_i$, $1 \le i \le r$. Clearly $s_i \ge 0$. Define an index set I as $I = \{i: 1 \le s_i \le r\}$. Now we consider $R = \mathbb{Z}_{p_1^{\beta_1}} \times \mathbb{Z}_{p_2^{\beta_2}} \times \ldots \times \mathbb{Z}_{p_r^{\beta_r}} \times \prod_{i \in I} S_i$, where $S_i = \prod_{i=1}^{s_i} \mathbb{Z}_{p_i}$. It is clear that $O(R) = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_r^{\alpha_r}$ and from corollary 4.1, we have $\Psi(R) = p_1^{\beta_1} p_2^{\beta_2} \ldots p_r^{\beta_r}$.

IV. CHARACTERISTIC OF OPERATIONAL RINGS

In this section first we give a relationship among $\Psi(R)$, $\Psi(S)$ and $\Psi(R \times S)$ for any two rings *R* and *S*. After that we try to find out a relationship among $\Psi(R)$, $\Psi(I)$ and $\Psi(R/I)$ for any ring *R* and any ideal *I* of *R*. The proof of Theorem 4.1 may be found in literature but here the proof is presented by another arguments.

Theorem 4.1. Let *R* and *S* be rings with characteristics $\Psi(R)$ and $\Psi(S)$, respectively. If both $\Psi(R)$ and $\Psi(R)$ are finite then $\Psi(R \times S) = lcm\{\Psi(R), \Psi(S)\}$, otherwise $\Psi(R \times S) = 0$.

Proof : First we consider both $\Psi(R)$ and $\Psi(S)$ are finite. Let $\Psi(R) = m$ and $\Psi(S) = n$. Then $m. x = 0_R$ for all $x \in R$ and $n. y = 0_S$ for all $y \in R$ where 0_R and 0_S denote the additive identity of R and S, respectively. Therefore, $lcm\{m, n\}$. (x, y) = 0 for all $x \in R$ and all $y \in S$ and this implies that $\Psi(R \times S) \leq lcm\{m, n\}$. Again from Theorem 3.3, there exist maximal additive order elements $r \in R$ and $s \in S$ such that $O^+(r) = m$ and $O^+(a) = n$ and then $(r, 0_S), (0_R, s) \in R \times S$ with $O^+((r, 0_S)) = m$ and $O^+(0_R, s) = n$. Then applying Lemma 3.1, there exists an element $u \in R \times S$ such that $O^+(u) = lcm\{m, n\}$ and this implies that $lcm\{m, n\}|\Psi(R \times S)$. Since $\Psi(R \times S) \leq lcm\{m, n\}$ and $lcm\{m, n\}|\Psi(R \times S)$., we get the result $\Psi(R \times S) = lcm\{m, n\}$.

Corollary 4.1. For the rings R_1, R_2, \ldots, R_m , $\Psi(\prod_{i=1}^m R_i) = lcm\{\Psi(R_1), \Psi(R_2), \ldots, \Psi(R_m)\}$ if each $\Psi(R_i)$ is finite; otherwise $\Psi(\prod_{i=1}^m R_i) = 0$

Theorem 4.2. For a ring R with finite characteristic and an ideal I of R, $\Psi(R/I) = k \cdot \frac{\Psi(R)}{\Psi(I)}$ where k is positive integer satisfies $1 \le k \le \gcd(\Psi(I), \Psi(R/I))$.

Proof: Since $\Psi(R)$ is finite and *I* is an ideal, $\Psi(I)$ is also finite and $\Psi(I)|\Psi(R)$. Again we know that for every $r \in R$, $O^+(r + I)|O^+(r)$ and so $\Psi(R/I)$ is finite and $\Psi(R/I)|\Psi(R)$. Let $\Psi(R)$, $\Psi(I)$, $\Psi(R/I)$ be *n*, *m*, *l*, respectively. Then *m*. *a* = 0 for all $a \in I$ and *l*. (x + I) = I for all $x \in I$. Again *l*. (x + I) = I implies l.x + I = I and this is true if $l.x \in I$. Thus we have for all $x \in R$, *m*. (l.x) = (ml). x = 0 for all $x \in R$. Thus n|m.l and hence $\frac{n}{m} \leq l$ Again since $\Psi(I)|\Psi(R)$ and $\Psi(R/I)|\Psi(R)$, $lcm\{m,l\}|n$ and hence $l \leq \gcd(l,m)\frac{n}{m}$. Replacing the values of *n*, *m* and *l* we get the result.

In the next example we show that there are rings and ideals for which $\Psi(R/I) = k \cdot \frac{\Psi(R)}{\Psi(I)}$ with $k = \text{gcd}(\Psi(I), \Psi(R/I))$.

Example 4.1. Let us consider the ring $R = \mathbb{Z}_m \times \mathbb{Z}_n$ with m > n and an ideal of R as $I = \langle (1,0) \rangle$. Since $\Psi(\mathbb{Z}_m) = m$ and $\Psi(\mathbb{Z}_n) = n$, $\Psi(R) = \operatorname{lcm}\{m, n\}$. Also $\Psi(I) = m$ and $\Psi(R/I) = n$. Therefore, $\Psi(R/I) = \operatorname{gcd}(m, n) \frac{\Psi(R)}{\Psi(I)}$.

In the next theorem we show that there are rings and ideals for which $\Psi(R/I) = \frac{\Psi(R)}{\Psi(I)}$. **Theorem 4.3.** For any ring R with finite characteristic, there exists an ideal J such that $\Psi(R/J) = \frac{\Psi(R)}{\Psi(I)}$.

Proof: If $\Psi(R) = \Psi(I)$ for every ideal *I* of *R* then the theorem is true for J = R Now we consider $\Psi(R) \neq \Psi(I)$ for some ideal *I*. Let $\Psi(R) = n$ and $\Psi(I) = m$. It is clear that $m \mid n$. Let n = mk. Let us define $J = \{r \in R: mr = 0\}$. We show that *J* is an ideal of *R*. If $\alpha, \beta \in J$ then $m\alpha = 0 = m\beta_-$. Hence $m(\alpha - \beta) = 0$ and $m(\alpha\beta) = 0$ so *J* is closed under subtraction and under multiplication, so *J* is a subring of *R*. Similarly, for any $r \in R$ we have $m(\alpha r) = (m\alpha)r = 0$, and also $m(r\alpha) = r(m\alpha) = 0$ by the distributive laws, so $\alpha r, r\alpha \in I_m$. Thus I_m is an ideal of *R*. Now we show that $\Psi(I_m) = k = \frac{n}{m}$. For any $r \in R$ as m(kr) = nr = 0, $kr \in I_m$, so $k(r + I_m) = kr + I_m = I_m$. Therefore $\Psi(I_m) \leq k$. If possible let $\Psi(I_m) = l < k$. Since $\Psi(R) = n$, applying Theorem 3.3 there exists an element $a \in R$ such that $O^+(a) = n$ i.e., *n* is the least positive integer such that na = 0. Again $\Psi(I_m) = l$ implies that $l(a + I_m) = I_m$ and this is true only if $la \in I_m$ i.e., only when m(la) = 0 = (ml)a. Now l < k implies that ml < mk = n which is contradicts the fact that *n* is the least positive integer such that na = 0. So $\Psi(I_m) = k = \frac{n}{m} = \frac{\Psi(R)}{\Psi(I)}$.

Remark 4.1. From Example 4.1 and Theorem 4.3 we can say that the multiplicity k in the Theorem 4.2 can not be determined uniquely over rings.

Theorem 4.4. Let *R* be a ring with finite characteristic and *I* be an ideal of *R*. If *R*/*I* is an integral domain then $\Psi(R/I) = \frac{\Psi(R)}{\Psi(I)}$ or $\Psi(R) = \Psi(I)$.

Proof : Since R/I is an integral domain and $\Psi(R)$ is finite, $\Psi(R/I)$ is a prime number, say it is p. By similar argument as in the proof of Theorem 4.2, we have $\Psi(I)|\Psi(R)$ and $\Psi(R)|p\Psi(I)$ and so $\Psi(R) = k_1\Psi(I)$, $p\Psi(I) = k_2\Psi(R)$ for some positive integers k_1 and k_2 . Combining these two equations we have $p\Psi(I) = k_1k_2\Psi(I)$ and so $p = k_1k_2$. Since p is prime exactly one of k_1 and k_2 must be 1. If $k_1 = 1$, then $\Psi(R) = \Psi(I)$ and if $k_2 = 1$ then $\frac{\Psi(R)}{\Psi(I)} = p = \Psi(R/I)$. Hence the theorem.

Corollary 4.2. For a prime or maximal ideal I of a ring R with finite characteristic $\Psi(R/I) = \frac{\Psi(R)}{\Psi(I)}$ or $\Psi(R) = \Psi(I)$.

Remark 4.2. The result of Theorem 4.4 can be used to determine an ideal is prime or not.

V. REFERENCES

- [1] D.S. Dummit, and R.M. Foote, Abstract Algebra, Wiley India Pvt. Ltd., 2017.
- [2] Kleiner, The Genesis of the Abstract Ring Concept, American Mathematical Monthly. 103(1996) 417-424.
- [3] G. Birkhoff, and S.M. Lane, A Survey of Modern Algebra, 5th 2d,(1996).