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Abstract -- The characteristic of a ring R, denoted by ¥ (R), is the smallest positive integer n such that nr = 0 for all r € R. If no
such integer exists, we say that R has characteristic 0. In this article, the characteristic of a ring (R, +,.) is presented in terms of
the order of the elements in the commutative group (R, +). Also it has been shown that the prime generators of O(R) and ¥ (R)
are same. This article also gives a relationship among ¥ (R), ¥ (I) and ¥ (R/I) for any ring R and any ideal I of R.
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I. INTRODUCTION

For a given ring (R,+,.) and n € N, an important task is to find some subrings which are isomorphic to a factor ring Z/nZ. The
characteristic of a ring determines the number n for which the ring contains a subring isomorphic to Z=nZ. If there exist a positive
integer n such that nr = 0 for each element r of a ring R, the smallest such positive integer is called the characteristic of R. I1f no
such integer exists, we say that R has characteristic 0. The characteristic of R is denoted by W(R). A ring R with finite
characteristic we mean that ¥(R) # 0. In this article, the characteristic of a ring (R, +,.) is presented in terms of the order of the
elements in the commutative group (R, +). Also it has been shown that the prime generators of O(R) and characteristic of R are
same. This article also gives a relationship among W(R), ¥(I)and ¥(R/I) for any ring R and any ideal I of R.

Il. PRELIMINARIES
In this section we give some preliminary results, definitions and lemmas on group theory and ring theory.

Theorem 2.1. (Lagrange Theorem)[1]. Let G be a finite group and H be a subgroup of G. Then O(H) divides O(G).

Corollary 2.1. If G be a finite group and a € G, then 0(a)|0(G). Moreover, a®@ = ¢, for all € G , where e; denotes the
identity elements of G.

Theorem 2.2. (Cauchy's Theorem) [1]. If G is a finite group and p is a prime dividing 0(G), then G has an element of order p.

Definition 2.1. The additive order of an elementa, denoted by 0*(a), in the ring (R, +,.), we mean the order of the element a in
the group (R, +). An element a € R is said to be maximal additive order element if 0 (a) = 0*(b) for all b € R.

The following two lemmas follow from the definition of the characteristic of a ring R.

Lemma 2.1. A ring have finite characteristic if and only if the additive order of maximal elements are finite.
Lemma 2.2. Let R be a ring with unity 1. If ¥(R) = 0,then0*(a)|0* (1) forall a € R .

Corollary 2.2. The identity element of a ring ring with unity 1 is a maximal additive order element.

From here to onwards, we denote the least common multiple of n,n,, ns,, ...,n, by lem {n,,n,,ns, ...,n,.}.

I11. RESULTS ON CHARACTERISTIC OF A RING
In this section first we present some results on characteristic of a ring R in terms of the order of the elements in the commutative
group (R, +). Then we show that the prime generators of O(R) and characteristic of R are same.
Lemma 3.1. Let G be commutative group and a and b be two elements of G of order m and n, respectively. Then there exists an
element ¢ in G such that the order of c is the least common multiple of m and n.

Theorem 3.1. For afinite ring R, ¥(R)|O(R) , where W(R) denotes the characteristic of R.

Proof: Let O(R) = m. Applying Corollary 2.1 to every element x of the additive group (R, +), we have m.x = 0 for any x € R.

In particular, this tells us that W(R) is finite and hence W(R) # 0. Let W¥(R) = n > 0. Then by the division algorithm, there exist

q,r € Zwith 0 < r < n such thatm = nq + r. For any x € R, we have that
0O=mx=Mmg+r)x=mng).x+rx=qnx)+r.x=q0+r.x=r.x

Thus, r.x = 0 for all x € R. But n is the smallest positive integer with this property, and r < n, so it follows that » = 0. Hence,

m =nq = Y(R)q, so ¥(R) divides O(R).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


https://www.ijmttjournal.org/archive/ijmtt-v67i1p510
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Laxman Saha / IIMTT, 67(1), 66-69, 2021

Remark 3.1. Finite ring always have finite characteristic. But the ring having finite characteristic may not be finite. As an
example, we may consider the polynomial ring Z,[x].

Definition 3.1. For a positive integer n, by the prime generators, denoted by PG (n), of n we mean set of all primes that are used
to represent n as prime factors. For examples, if n = 20, then the prime generators
of n are 2,5 as 20 = 22.5.

Theorem 3.2. Let R be a ring with an unit a. If 0% (@) is infinite, then the characteristic of R is 0; otherwise W(R) = 0% (a).

Proof : If 0" (a) is infinite, then there exists no positive integer n such that n.a = 0. So the characteristic of R is 0. Now we
consider 0% (a) is finite and say, 0% (a) = n. Then n.a = 0 and this implies (n.a)a™ = 0.a™* = 0. Then from this n.x =
0.x = 0 for all x € R. Since 0" (a)|¥W(R), last equality gives W(R) = n = 0*(1).

Corollary 3.1. Let R be a ring with unity 1. If 0* (1) is infinite, then the characteristic of R is 0; otherwise W(R) = 0% (1).

Corollary 3.2. Let R be a ring consisting at least two units. Then for any two units a, b € R with finite additive orders, 0% (a) =
0*(b).

Definition 3.2. A relation p between two elements of R is defined as follows: for any two elements a, b € R apb if and only if
0*(a) = 0% (D).

It is not difficult to proof the following lemma.
Lemma 3.2. p is an is an equivalence relation on R.
Lemma 3.3. For every element a in a ring R with finite characteristic ¥ (R), 0% (a) |¥(R).

Proof : Since R is a ring with finite characteristic, there exists a positive integer n such that n.a = 0 for all a € R. Thus
0*(a)|n and hence 07 (a) is finite. If the characteristic of a ring R is finite, then from Lemma 3.2 and Lemma 3.3 it is clear that
the p have finite numbers of equivalence classes and each class contains elements of same additive order.

Lemma 3.4. An element a in a ring R with finite characteristic is maximal additive order element if and only if 0*(a) =
lem{m,,m,,. . .m,} where r denotes the total number of classes of R under p and m, denotes the additive order of an element
of the class L.

Theorem 3.3. Let R be a ring with finite characteristic. Then the following are hold
(a) there exists an element a € R such that 0% (a) = WY(R)
(b) 0*(a) = W(R) ifandonlyif a is a maximal additive order element.

Proof: (a). Let a;,a,,.. .,a.be elements from distinct classes with additive orders m;,m,,. .. ,m,, respectively. Let
lem{m;,m,,. .. ,m,} = L. Then L.x = Ofor all x € R and this implies that W(R)|L. Again from Lemma 3.1 there exists an
element a such that 0*(a) = L. So using Lemma 3.3 , L|¥(R) and consequently W(R) = L = 0*(a). Thus there exists an
element a € R such that 0t (a) = Y(R).

(b) If a is a maximal order element then from Lemma 3.4 and part (a) of this theorem, we have 0% (a) = W(R). Now converse
part follows from the fact that 0% (a)| W(R).

A general questions comes : Is there any finite ring with a given characteristic ? As an example, for distinct p and : Is there any
ring R with O(R) = pq and W(R) = p or g? The answer of this question is negative. In the theorem below we give a relationship
between prime generators of O(R)and W(R) and from this relationship readers may get some preliminary idea about the
existence of a finite ring with a given characteristic.

Theorem 3.4. For a finite ring R, the prime generators of O(R) and W(R) are same.
Proof: From Remark 3.1, W(R)is finite. Let ¥(R) = mand O(R) = n. Then by Theorem m|n and hence PG(m) S PG(n).
Now we show that PG(n)\PG(m) is empty. If possible, let p € PG(n) but p € PG(m). Then from Theorem 3.3, there exists a

maximal additive order element a such that 0*(a) = W(R)=m. Since p € PG(n), by Cauchy’s Theorem (Theorem 2.2) there
exists an element b in R such that 0% (b) = p. Since p € PG(m), so the gcd(O*(a), 0+(b)) = 1. Thus there exists an element ¢
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in the group (R,+) such that 0*(c) = 0*(a).0*(b), which contradicts the fact that a have maximal additive order. Hence
PG(n)\PG(m) is empty and consequently, PG(m) = PG(n).

Corollary 3.3. For a finite integral domain D, 0(D) = p™ for some positive integer n and prime p.
Proof : Since the characteristic of a finite integral domain is prime, applying Theorem 3.4 we get the result.

Remark 3.2. From above theorem we may conclude that there exists no integral domain D with |PG(n)| > 1, where n denotes
the order of D.

Remark 3.3. From above theorem we may conclude that there exists no ring with pg numbers of elements and characteristic p or
q, where p and q are distinct primes. More generally, if O(R) isp;* p,2. . .p," then the characteristic of R must be of the form

pfl pfz. . .pf* where p; are primes and «;'s, 8;'s are integers satisfies 1 < 8; < a; and vise versa.

In Theorem 3.4 it has been shown that for a finite ring R the prime generators of O(R)and W(R) are same. The next theorem
gives the existence of a finite ring R with any finite characteristic having same prime generators as of O(R).

Theorem 3.5. There exists always a ring R with 0(R) = p;* p;2. . .p," and ¥(R) = pfl pfz. . .pff where p; are primes and
a;'s, B;'s are integers satisfies 1 < 5, < a;.

Proof: If 0(R) = W(R) then we consider the ring Z,,. Now let W(R) < O(R). Also lets; = a; — f;, 1 <i <r.Clearlys; > 0.
Define an index set I as I = {i: 1 < s; < r}. Now we consider R = me X Zp,;z X. . .X ZPBT X [1;e; Siy Where S; = Hfil Ly,
1 2 r

It is clear that O(R) = p* pS2. . .p%" and from corollary 4.1, we have W(R) = p”* pf2. . pFr.

IV. CHARACTERISTIC OF OPERATIONAL RINGS
In this section first we give a relationship among W(R), ¥(S) and W(R x S) for any two rings R and S. After that we try to find
out a relationship among W(R), W(I) and W(R/I) for any ring R and any ideal I of R. The proof of Theorem 4.1 may be found
in literature but here the proof is presented by another arguments.

Theorem 4.1. Let R and S be rings with characteristics W (R) and W(S), respectively. If both W(R) and W(R) are finite then
Y(R x S) = lem{¥(R), ¥(S)}, otherwise ¥(R x §) = 0.

Proof : First we consider both W(R) and W(S) are finite. Let W(R) = m and ¥(S) =n. Thenm.x = 0, forall x € Randn.y =
0 for all y € R where 0, and 0, denote the additive identity of R and S, respectively. Therefore, lem{m,n}. (x,y) = 0 for all
x € R and all y € S and this implies that W(R x S) < lem{m, n}. Again from Theorem 3.3, there exist maximal additive order
elements r € R and s € S such that 07 (r) = m and 0% (a) = nand then (r,0s), (0g,s) € R xS with 0*((r,05)) = m and
0*(0g,s) = n. Then applying Lemma 3.1, there exists an element u € R X S such that 0* (u) = lem{m, n} and this implies that
lem{m,n}|¥(R x S). Since ¥(R x §) < lem{m,n} and lem{m, n}|¥(R x S)., we get the result ¥(R X S) = lcm{m, n}.

Corollary 4.1. For the rings R, R,,. . . , R, , YUIR, R) = lem{W(R)),¥Y(R,),. . . ,¥(R,,)} if each W(R)) is finite ;
otherwise W([T2,R) =0

Theorem 4.2. For a ring R with finite characteristic and an ideal I of R, W(R/I) = k.
1<k <gcdWA),P(R/D).

Y(R)

) where K is positive integer satisfies

Proof : Since W(R) is finite and I is an ideal, W(I) is also finite and W(I)|¥(R). Again we know that for every r € R, 0+ (r +
D]0*(r) and so W(R/Dis finite and ¥ (R/D|¥(R). Let ¥(R), ¥ (1), ¥(R/I) be n,m, [, respectively. Thenm.a =0 foralla € I
and .(x+1) =1 forall x € I. Again L. (x + I) = I implies l.x + I = I and this is true if I.x € I. Thus we have for all x € R,
m. (I.x) = (ml).x = Ofor all x € R. Thus n|m.[ and hence % < [ Again since W(D|¥(R) and ¥(R/D|¥(R), lcm{m, [}|n and

hence [ < gcd(l, m) % Replacing the values of n,m and [ we get the result.

In the next example we show that there are rings and ideals for which W(R/I) = k.% with k = gcd(W (), ¥ (R/D)).

Example 4.1. Let us consider the ring R = Z,,, X Z,, with m > n and an ideal of R as I = ((1,0)). Since ¥(Z,,) = m and
¥(Z,) = n, ¥(R) = lem{m, n}. Also ¥(I) = m and ¥(R/I) = n. Therefore, ¥(R/I) = gcd(m, n) %
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In the next theorem we show that there are rings and ideals for which W(R/I) = %
Theorem 4.3. For any ring R with finite characteristic, there exists an ideal J such that W(R/]) = %

Proof: If W(R) = W(I)for every ideal I of R then the theorem is true for ] = R Now we consider W(R) # W(I) for some ideal I.
Let W(R) = n and W(I) = m. Itis clear that m | n. Let n = mk. Let us define /] = {r € R:mr = 0}. We show that J is an ideal
of R. If a,8 €] then ma =0=mpB_. Hence m(a — B) = 0and m(aB) =0 so J is closed under subtraction and under
multiplication, so J is a subring of R. Similarly, for any r € R we have m(ar) = (ma)r = 0, and also m(ra) = r(ma) = 0 by
the distributive laws, so ar,ra € I,,. Thus I, is an ideal of R. Now we show that W(I,,,) = k= % For any r € R asm(kr) =

nr=0, krel,, so k(r+1,)=kr+1I, =1I,. Therefore W(I,,) < k. If possible let ¥(I,,) =1 < k. Since ¥(R) = n,
applying Theorem 3.3 there exists an element a € R such that 0*(a) = n i.e,, n is the least positive integer such that na = 0.
Again W(1,,,) = [ implies that l(a + I,,,) = I, and this is true only if la € I, i.e., only when m(la) = 0 = (ml)a. Now [ < k

implies that ml < mk = n which is contradicts the fact that n is the least positive integer such that na = 0. So ¥(1,,) = k =
n _ YR

mo v
Remark 4.1. From Example 4.1 and Theorem 4.3 we can say that the multiplicity k in the Theorem 4.2 can not be determined
uniquely over rings.

Theorem 4.4. Let R be a ring with finite characteristic and I be an ideal of R. If R/I is an integral domain then W(R/I) = P®R)

w(@
or ¥(R) = ¥(I).
Proof : Since R/I is an integral domain and W(R)is finite, W(R/I) is a prime number, say it is p. By similar argument as in the
proof of Theorem 4.2, we have ¥(I)|¥(R) and W (R)|p¥(Dand so ¥(R) =k, ¥(D), p¥(1) = k,¥(R) for some positive integers

k, and k,. Combining these two equations we have p¥(I) = k,;k,¥(I) and so p = k;k,. Since p is prime exactly one of
P (R)

k,; and k, must be 1. Ifk; = 1, then ¥(R) = W(I) and if k, = 1then Yo —P= W(R/I). Hence the theorem.
Corollary 4.2. For a prime or maximal ideal I of a ring R with finite characteristic W(R/I) = % or ¥(R) =¥(D.

Remark 4.2. The result of Theorem 4.4 can be used to determine an ideal is prime or not.
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