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Abstract -- The characteristic of a ring 𝑅, denoted by 𝛹(𝑅), is the smallest positive integer n such that 𝑛𝑟 = 0 for all 𝑟 ∈ 𝑅. If no 

such integer exists, we say that R has characteristic 0. In this article, the characteristic of a ring (𝑅, +, . ) is presented in terms of 

the order of the elements in the commutative group (𝑅, +). 𝐴𝑙𝑠𝑜 𝑖𝑡 has been shown that the prime generators of 𝑂(𝑅) and 𝛹(𝑅) 

are same. This article also gives a relationship among 𝛹(𝑅), 𝛹(𝐼) and 𝛹(𝑅/𝐼) for any ring 𝑅 and any ideal 𝐼 of 𝑅. 
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I. INTRODUCTION  

For a given ring (𝑅, +, . ) and 𝑛 ∈ ℕ, an important task is to find some subrings which are isomorphic to a factor ring ℤ/𝑛ℤ. The 

characteristic of a ring determines the number n for which the ring contains a subring isomorphic to Z=nZ. If there exist a positive 

integer 𝑛 such that 𝑛𝑟 = 0 for each element 𝑟 of a ring 𝑅, the smallest such positive integer is called the characteristic of 𝑅. If no 

such integer exists, we say that 𝑅 has characteristic 0. The characteristic of 𝑅 is denoted by Ψ(𝑅). A ring 𝑅 with finite 

characteristic we mean that Ψ(𝑅) ≠ 0. In this article, the characteristic of a ring  (𝑅, +, . ) is presented in terms of the order of the 

elements in the commutative group (𝑅, +). Also it has been shown that the prime generators of 𝑂(𝑅) and characteristic of 𝑅 are 

same. This article also gives a relationship among Ψ(𝑅), Ψ(𝐼)𝑎𝑛𝑑 Ψ(𝑅/𝐼) for any ring 𝑅 and any ideal 𝐼 of 𝑅. 

II. PRELIMINARIES 

In this section we give some preliminary results, definitions and lemmas on group theory and ring theory. 

 

Theorem 2.1. (Lagrange Theorem)[1]. Let 𝐺 be a finite group and 𝐻 be a subgroup of 𝐺. Then 𝑂(𝐻) divides 𝑂(𝐺). 

Corollary 2.1. If  𝐺 be a finite group and 𝑎 ∈ 𝐺, then 𝑂(𝑎)|𝑂(𝐺). Moreover, 𝑎𝑂(𝐺) = 𝑒𝐺 for all ∈ 𝐺 , where 𝑒𝐺 denotes the 

identity elements of 𝐺. 

Theorem 2.2. (Cauchy's Theorem) [1]. If 𝐺 is a finite group and 𝑝 is a prime dividing 𝑂(𝐺), then  𝐺 has an element of order 𝑝. 

 

Definition 2.1. The additive order of an element𝑎, denoted by 𝑂+(𝑎), in the ring (𝑅, +, . ), we mean the order of the element 𝑎 in 

the group (𝑅, +). An element 𝑎 ∈ 𝑅 is said to be maximal additive order element if 𝑂+(𝑎) ≥ 𝑂+(𝑏) for all  𝑏 ∈ 𝑅. 

 

The following two lemmas follow from the definition of the characteristic of a ring 𝑅. 

 

Lemma 2.1. A ring have finite characteristic if and only if the additive order of maximal elements are finite. 

 

Lemma 2.2. Let 𝑅 be a ring with unity 1. If  Ψ(𝑅) ≠ 0 , then 𝑂+(𝑎)|𝑂+(1) for all  𝑎 ∈ 𝑅 . 

 

Corollary 2.2. The identity element of a ring ring with unity 1 is a maximal additive order element. 

 

From here to onwards, we denote the least common multiple of 𝑛1, 𝑛2, 𝑛3, , … , 𝑛𝑟 by  𝑙𝑐𝑚 {𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑟}. 

 

III. RESULTS ON CHARACTERISTIC OF A RING 

In this section first we present some results on characteristic of a ring 𝑅 in terms of the order of the elements in the commutative 

group (𝑅, +). Then we show that the prime generators of 𝑂(𝑅) and characteristic of 𝑅 are same. 

Lemma 3.1. Let 𝐺 be commutative group and 𝑎 and 𝑏 be two elements of 𝐺 of order 𝑚 and 𝑛, respectively. Then there exists an 

element 𝑐 in 𝐺 such that the order of 𝑐 is the least common multiple of 𝑚 and 𝑛. 

 

Theorem 3.1. For a finite ring 𝑅, Ψ(𝑅)|𝑂(𝑅) , where Ψ(𝑅) denotes the characteristic of 𝑅. 

 

Proof: Let 𝑂(𝑅) = 𝑚. Applying Corollary 2.1 to every element 𝑥 of the additive group (𝑅, +), we have 𝑚. 𝑥 = 0 for any 𝑥 ∈ 𝑅. 

In particular, this tells us that Ψ(𝑅) is finite and hence Ψ(𝑅) ≠ 0. Let Ψ(𝑅) = 𝑛 > 0. Then by the division algorithm, there exist 

𝑞, 𝑟 ∈ ℤ with 0 ≤ 𝑟 < 𝑛 such that 𝑚 = 𝑛𝑞 + 𝑟. For any 𝑥 ∈ 𝑅, we have that 

0 = 𝑚. 𝑥 = (𝑛𝑞 + 𝑟). 𝑥 = (𝑛𝑞). 𝑥 + 𝑟. 𝑥 = 𝑞. (𝑛. 𝑥) + 𝑟. 𝑥 = 𝑞. 0 + 𝑟. 𝑥 = 𝑟. 𝑥 

Thus, 𝑟. 𝑥 = 0 for all 𝑥 ∈ 𝑅. But 𝑛 is the smallest positive integer with this property, and 𝑟 < 𝑛, so it follows that 𝑟 = 0. Hence, 

𝑚 = 𝑛𝑞 = Ψ(𝑅)𝑞, so Ψ(𝑅) divides 𝑂(𝑅). 
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Remark 3.1. Finite ring always have finite characteristic. But the ring having finite characteristic may not be finite. As an 

example, we may consider the polynomial ring ℤ𝑝[𝑥]. 

 

Definition 3.1. For a positive integer 𝑛, by the prime generators, denoted by 𝑃𝐺(𝑛), of n we mean set of all primes that are used 

to represent 𝑛 as prime factors. For examples, if 𝑛 = 20, then the prime generators 

of 𝑛 are 2,5 as 20 = 22. 5. 
 

Theorem 3.2. Let 𝑅 be a ring with an unit 𝑎. If 𝑂+(𝑎) is infinite, then the characteristic of 𝑅 is 0; otherwise Ψ(𝑅) = 𝑂+(𝑎). 

 

Proof : If 𝑂+(𝑎) is infinite, then there exists no positive integer 𝑛 such that 𝑛. 𝑎 = 0. So the characteristic of 𝑅 is 0. Now we 

consider 𝑂+(𝑎) is finite and say, 𝑂+(𝑎) = 𝑛. Then 𝑛. 𝑎 = 0 and this implies (𝑛. 𝑎)𝑎−1 = 0. 𝑎−1 = 0.  Then from this 𝑛. 𝑥 =
0. 𝑥 = 0 for all 𝑥 ∈ 𝑅. Since 𝑂+(𝑎)|Ψ(𝑅), last equality gives Ψ(𝑅) = 𝑛 = 𝑂+(1). 

 

Corollary 3.1. Let 𝑅 be a ring with unity 1. If 𝑂+(1) is infinite, then the characteristic of 𝑅 is 0; otherwise Ψ(𝑅) = 𝑂+(1). 

 

Corollary 3.2. Let 𝑅 be a ring consisting at least two units. Then for any two units 𝑎, 𝑏 ∈ 𝑅 with finite additive orders, 𝑂+(𝑎) =
𝑂+(𝑏). 

 

Definition 3.2. A relation 𝜌 between two elements of 𝑅 is defined as follows: for any two elements 𝑎, 𝑏 ∈ 𝑅 𝑎𝜌𝑏 if and only if  

𝑂+(𝑎) = 𝑂+(𝑏). 

 

It is not difficult to proof the following lemma. 

 

Lemma 3.2. 𝜌 is an is an equivalence relation on 𝑅. 

 

Lemma 3.3. For every element 𝑎 in a ring 𝑅 with finite characteristic Ψ(𝑅), 𝑂+(𝑎) |Ψ(𝑅). 

 

Proof : Since 𝑅 is a ring with finite characteristic, there exists a positive integer 𝑛 such that 𝑛. 𝑎 = 0 for all 𝑎 ∈ 𝑅. Thus 

𝑂+(𝑎)|𝑛 and hence 𝑂+(𝑎) is finite. If the characteristic of a ring 𝑅 is finite, then from Lemma 3.2 and Lemma 3.3 it is clear that 

the 𝜌  have finite numbers of equivalence classes and each class contains elements of same additive order. 

 

Lemma 3.4. An element 𝑎 in a ring 𝑅 with finite characteristic is maximal additive order element if and only if  𝑂+(𝑎) =
𝑙𝑐𝑚{𝑚1, 𝑚2, .  .  . 𝑚𝑟} where 𝑟 denotes the total number of classes of  𝑅 under 𝜌  and 𝑚𝑙 denotes the additive order of an element 

of the class 𝑙. 
 

Theorem 3.3. Let 𝑅 be a ring with finite characteristic. Then the following are hold 

 (a) there exists an element 𝑎 ∈ 𝑅 such that 𝑂+(𝑎) =  Ψ(𝑅)  

(b) 𝑂+(𝑎) =  Ψ(𝑅)  if and only if 𝑎 is a maximal additive order element. 

 

Proof: (a). Let 𝑎1, 𝑎2, .  .  .  , 𝑎𝑟be elements from distinct classes with additive orders 𝑚1, 𝑚2, .  .  .  , 𝑚𝑟, respectively. Let 

𝑙𝑐𝑚{𝑚1, 𝑚2, .  .  .  , 𝑚𝑟} = 𝐿. Then 𝐿. 𝑥 = 0for all 𝑥 ∈ 𝑅 and this implies that  Ψ(𝑅)|𝐿. Again from Lemma 3.1 there exists an 

element 𝑎 such that 𝑂+(𝑎) = 𝐿. So using Lemma 3.3 , 𝐿|Ψ(𝑅) and  consequently Ψ(𝑅) = 𝐿 = 𝑂+(𝑎). Thus there exists an 

element 𝑎 ∈ 𝑅 such that 𝑂+(𝑎) =  Ψ(𝑅). 
 

(b) If 𝑎 is a maximal order element then from Lemma 3.4 and part (a) of this theorem, we have 𝑂+(𝑎) =  Ψ(𝑅). Now converse 

part follows from the fact that  𝑂+(𝑎)| Ψ(𝑅). 

 

A general questions comes : Is there any finite ring with a given characteristic ? As an example, for distinct 𝑝 and  : Is there any 

ring 𝑅 with 𝑂(𝑅) = 𝑝𝑞 and Ψ(𝑅) = 𝑝 or 𝑞? The answer of this question is negative. In the theorem below we give a relationship 

between prime generators of 𝑂(𝑅)and Ψ(𝑅) and from this relationship readers may get some preliminary idea about the 

existence of a finite ring with a given characteristic. 
 

Theorem 3.4. For a finite ring 𝑅, the prime generators of 𝑂(𝑅) and  Ψ(𝑅)  are same. 

 

Proof: From Remark  3.1, Ψ(𝑅)is finite. Let Ψ(𝑅) = 𝑚 and 𝑂(𝑅) = 𝑛. Then by Theorem 𝑚|𝑛 and hence 𝑃𝐺(𝑚) ⊆ 𝑃𝐺(𝑛). 

Now we show that 𝑃𝐺(𝑛)\𝑃𝐺(𝑚) is empty. If possible, let 𝑝 ∈ 𝑃𝐺(𝑛) but 𝑝 ∉ 𝑃𝐺(𝑚). Then from Theorem 3.3, there exists a 

maximal additive order element 𝑎 such that 𝑂+(𝑎) = Ψ(𝑅)=m. Since 𝑝 ∈ 𝑃𝐺(𝑛), by Cauchy’s Theorem (Theorem 2.2) there 

exists an element 𝑏 in 𝑅 such that 𝑂+(𝑏) = 𝑝. Since 𝑝 ∉ 𝑃𝐺(𝑚), so the  gcd(𝑂+(𝑎), 𝑂+(𝑏)) = 1. Thus there exists an element 𝑐 
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in the group (𝑅, +) such that 𝑂+(𝑐) = 𝑂+(𝑎). 𝑂+(𝑏), which contradicts the fact that 𝑎 have maximal additive order. Hence 

𝑃𝐺(𝑛)\𝑃𝐺(𝑚) is empty and consequently, 𝑃𝐺(𝑚) = 𝑃𝐺(𝑛). 
 

Corollary 3.3. For a finite integral domain 𝐷, 𝑂(𝐷) = 𝑝𝑛 for some positive integer 𝑛 and prime 𝑝. 

 

Proof : Since the characteristic of a finite integral domain is prime, applying Theorem 3.4 we get the result. 

 

Remark 3.2. From above theorem we may conclude that there exists no integral domain 𝐷 with |𝑃𝐺(𝑛)| > 1, where 𝑛 denotes 

the order of 𝐷. 

 

Remark 3.3. From above theorem we may conclude that there exists no ring with 𝑝𝑞 numbers of elements and characteristic 𝑝 or 

𝑞, where 𝑝 and 𝑞 are distinct primes. More generally, if  𝑂(𝑅) is 𝑝1
𝛼1  𝑝2

𝛼2 .  .  . 𝑝𝑟
𝛼𝑟  then the  characteristic of 𝑅 must be of the form 

𝑝1
𝛽1  𝑝2

𝛽2 .  .  . 𝑝𝑟
𝛽𝑟 where 𝑝𝑖 are primes and 𝛼𝑖 's, 𝛽𝑖 's are integers satisfies 1 ≤ 𝛽𝑖 ≤ 𝛼𝑖 and vise versa. 

 

In Theorem 3.4 it has been shown that for a finite ring 𝑅 the prime generators of 𝑂(𝑅)𝑎𝑛𝑑  Ψ(𝑅) are same.  The next theorem 

gives the existence of a finite ring 𝑅 with any finite characteristic having same prime generators as of 𝑂(𝑅). 

 

Theorem 3.5. There exists always a ring 𝑅 with 𝑂(𝑅) = 𝑝1
𝛼1  𝑝2

𝛼2 .  .  . 𝑝𝑟
𝛼𝑟  and Ψ(𝑅) = 𝑝1

𝛽1  𝑝2
𝛽2 .  .  . 𝑝𝑟

𝛽𝑟 where 𝑝𝑖 are primes  and  

𝛼𝑖 's, 𝛽𝑖 's are integers satisfies 1 ≤ 𝛽𝑖 ≤ 𝛼𝑖. 

 

Proof: If 𝑂(𝑅) = Ψ(𝑅) then we consider the ring ℤ𝑛.  Now let Ψ(𝑅) < 𝑂(𝑅). Also let 𝑠𝑖 = 𝛼𝑖 − 𝛽𝑖, 1 ≤ 𝑖 ≤ 𝑟. Clearly 𝑠𝑖 ≥ 0.  

Define an index set 𝐼 as 𝐼 = {𝑖: 1 ≤ 𝑠𝑖 ≤ 𝑟}. Now we consider 𝑅 = ℤ
𝑝1

𝛽1 × ℤ
𝑝2

𝛽2 × .  .  .× ℤ
𝑝𝑟

𝛽𝑟 
× ∏ 𝑆𝑖𝑖∈𝐼 , where 𝑆𝑖 = ∏ ℤ𝑝𝑖

𝑠𝑖
𝑖=1 . 

It is clear that 𝑂(𝑅) = 𝑝1
𝛼1  𝑝2

𝛼2 .  .  . 𝑝𝑟
𝛼𝑟  and from corollary 4.1, we have  Ψ(𝑅) = 𝑝1

𝛽1  𝑝2
𝛽2 .  .  . 𝑝𝑟

𝛽𝑟. 

IV. CHARACTERISTIC OF OPERATIONAL RINGS 

In this section first we give a relationship among Ψ(𝑅), Ψ(𝑆) and Ψ(𝑅 × 𝑆) for any two rings 𝑅 and 𝑆. After that we try to find 

out a relationship among Ψ(𝑅), Ψ(𝐼) and Ψ(𝑅/𝐼) for any ring 𝑅 and any ideal  𝐼 of 𝑅. The proof of Theorem 4.1 may be found 

in literature but here the proof is presented by another arguments. 

 

Theorem 4.1. Let 𝑅 and 𝑆 be rings with characteristics Ψ(𝑅) and Ψ(𝑆), respectively. If both Ψ(𝑅) and Ψ(𝑅) are finite then 

Ψ(𝑅 × 𝑆) = 𝑙𝑐𝑚{Ψ(𝑅), Ψ(𝑆)}, otherwise Ψ(𝑅 × 𝑆) = 0. 

 

Proof : First we consider both Ψ(𝑅) and Ψ(𝑆) are finite. Let Ψ(𝑅) = 𝑚 and Ψ(𝑆) = 𝑛. Then 𝑚. 𝑥 = 0𝑅 for all 𝑥 ∈ 𝑅 and 𝑛. 𝑦 =
0𝑆 for all 𝑦 ∈ 𝑅 where 0𝑅 and 0𝑆 denote the additive identity of 𝑅 and 𝑆, respectively. Therefore, 𝑙𝑐𝑚{𝑚, 𝑛}. (𝑥, 𝑦) = 0 for all 

𝑥 ∈ 𝑅 and all 𝑦 ∈ 𝑆 and this implies that Ψ(𝑅 × 𝑆) ≤ 𝑙𝑐𝑚{𝑚, 𝑛}. Again from Theorem 3.3, there exist maximal additive order 

elements 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 such that 𝑂+(𝑟) = 𝑚 and  𝑂+(𝑎) = 𝑛 and then (𝑟, 0𝑆), (0𝑅 , 𝑠) ∈ 𝑅 × 𝑆 with 𝑂+((𝑟, 0𝑆)) = 𝑚 and  

𝑂+(0𝑅 , 𝑠) = 𝑛. Then applying Lemma 3.1, there exists an element 𝑢 ∈ 𝑅 × 𝑆 such that 𝑂+(𝑢) = 𝑙𝑐𝑚{𝑚, 𝑛} and this implies that 

𝑙𝑐𝑚{𝑚, 𝑛}|Ψ(𝑅 × 𝑆). Since Ψ(𝑅 × 𝑆) ≤ 𝑙𝑐𝑚{𝑚, 𝑛} and 𝑙𝑐𝑚{𝑚, 𝑛}|Ψ(𝑅 × 𝑆)., we get the result  Ψ(𝑅 × 𝑆) = 𝑙𝑐𝑚{𝑚, 𝑛}. 

 

Corollary 4.1. For the  rings 𝑅1, 𝑅2, .  .  .  , 𝑅𝑚 , Ψ(∏ 𝑅𝑖
𝑚
𝑖=1 ) = 𝑙𝑐𝑚{Ψ(𝑅1), Ψ(𝑅2), .  .  .  , Ψ(𝑅𝑚)} if each Ψ(𝑅𝑖) is  finite ; 

otherwise  Ψ(∏ 𝑅𝑖
𝑚
𝑖=1 ) = 0 

Theorem 4.2. For a ring 𝑅 with finite characteristic and an ideal 𝐼 of 𝑅, Ψ(𝑅/𝐼) = 𝑘.
Ψ(𝑅)

Ψ(𝐼)
  where k is positive integer satisfies 

1 ≤ 𝑘 ≤ gcd (Ψ(I), Ψ(R/I)). 

 

Proof : Since Ψ(R) is finite and 𝐼 is an ideal, Ψ(I) is also finite and Ψ(I)|Ψ(R). Again we know that for every 𝑟 ∈ 𝑅, 𝑂+(𝑟 +
𝐼)|𝑂+(𝑟) and so Ψ(R/I)is finite and Ψ(R/I)|Ψ(R). Let  Ψ(R), Ψ(I), Ψ(R/I) be 𝑛, 𝑚, 𝑙, respectively. Then 𝑚. 𝑎 = 0 for all 𝑎 ∈ 𝐼 

and 𝑙. (𝑥 + 𝐼) = 𝐼 for all 𝑥 ∈ 𝐼. Again 𝑙. (𝑥 + 𝐼) = 𝐼 implies 𝑙. 𝑥 + 𝐼 = 𝐼 and this is true if 𝑙. 𝑥 ∈ 𝐼. Thus we have for all 𝑥 ∈ 𝑅, 

𝑚. (𝑙. 𝑥) = (𝑚𝑙). 𝑥 = 0for all 𝑥 ∈ 𝑅. Thus 𝑛|𝑚. 𝑙 and hence 
𝑛

𝑚
≤ 𝑙 Again since  Ψ(I)|Ψ(R) and Ψ(R/I)|Ψ(R), 𝑙𝑐𝑚{𝑚, 𝑙}|𝑛 and 

hence 𝑙 ≤ gcd (𝑙, 𝑚)
𝑛

𝑚
. Replacing the values of 𝑛, 𝑚 and 𝑙 we get the result. 

 

In the next example we show that there are rings and ideals for which  Ψ(𝑅/𝐼) = 𝑘.
Ψ(𝑅)

Ψ(𝐼)
  with 𝑘 = gcd (Ψ(I), Ψ(R/I)). 

 

Example 4.1. Let us consider the ring 𝑅 = ℤ𝑚 × ℤ𝑛 with 𝑚 > 𝑛 and an ideal of 𝑅 as 𝐼 = 〈(1,0)〉. Since   Ψ(ℤm) = m and 

Ψ(ℤn) = n, Ψ(R) = lcm{m, n}. Also Ψ(I) = m and Ψ(R/I) = n. Therefore,Ψ(R/I) = gcd (m, n)
Ψ(R)

Ψ(I)
. 
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In the next theorem we show that there are rings and ideals for which Ψ(𝑅/𝐼) =
Ψ(𝑅)

Ψ(𝐼)
.   

Theorem 4.3. For any ring 𝑅 with finite characteristic, there exists an ideal 𝐽 such that  Ψ(𝑅/𝐽) =
Ψ(𝑅)

Ψ(𝐽)
. 

 

Proof: If  Ψ(𝑅) = Ψ(𝐼)for every ideal 𝐼 of 𝑅 then the theorem is true for 𝐽 = 𝑅 Now we consider Ψ(𝑅) ≠ Ψ(𝐼) for some ideal 𝐼. 
Let Ψ(𝑅) = 𝑛 and Ψ(𝐼) = 𝑚. It is clear that m | n. Let 𝑛 = 𝑚𝑘. Let us define 𝐽 = {𝑟 ∈ 𝑅: 𝑚𝑟 = 0}. We show that 𝐽 is an ideal 

of 𝑅. If 𝛼, 𝛽 ∈ 𝐽 then 𝑚𝛼 = 0 = 𝑚𝛽_. Hence 𝑚(𝛼 − 𝛽) = 0 and 𝑚(𝛼𝛽) = 0 so 𝐽 is closed under subtraction and under 

multiplication, so 𝐽 is a subring of 𝑅. Similarly, for any 𝑟 ∈ 𝑅 we have 𝑚(𝛼𝑟) = (𝑚𝛼)𝑟 = 0, and also 𝑚(𝑟𝛼) = 𝑟(𝑚𝛼) = 0 by 

the distributive laws, so 𝛼𝑟, 𝑟𝛼 ∈  𝐼𝑚. Thus 𝐼𝑚 is an ideal of 𝑅. Now we show that Ψ(Im) = k =
n

m
. For any 𝑟 ∈ 𝑅 as 𝑚(𝑘𝑟) =

𝑛𝑟 = 0, 𝑘𝑟 ∈ 𝐼𝑚, so 𝑘(𝑟 + 𝐼𝑚) = 𝑘𝑟 + 𝐼𝑚 = 𝐼𝑚. Therefore Ψ(Im) ≤ k. If possible let Ψ(Im) = 𝑙 < 𝑘. Since Ψ(R) = n, 

applying Theorem 3.3 there exists an element 𝑎 ∈ 𝑅 such that 𝑂+(𝑎) = 𝑛 i.e., 𝑛 is the least positive integer such that 𝑛𝑎 = 0. 

Again Ψ(Im) = 𝑙 implies that 𝑙(𝑎 + 𝐼𝑚) = 𝐼𝑚 and this is true only if 𝑙𝑎 ∈  𝐼𝑚 i.e., only when 𝑚(𝑙𝑎) = 0 = (𝑚𝑙)𝑎. Now 𝑙 < 𝑘 

implies that 𝑚𝑙 < 𝑚𝑘 = 𝑛 which is contradicts the fact that 𝑛 is the least positive integer such that 𝑛𝑎 = 0. So Ψ(Im) = k =
n

m
=

Ψ(R)

Ψ(J)
. 

 

Remark 4.1. From Example 4.1 and Theorem 4.3 we can say that the multiplicity k in the Theorem 4.2 can not be determined 

uniquely over rings. 

 

Theorem 4.4. Let 𝑅 be a ring with finite characteristic and 𝐼 be an ideal of 𝑅. If 𝑅/𝐼 is an integral domain then  Ψ(R/I) =
Ψ(R)

Ψ(I)
  

or Ψ(R) = Ψ(I). 

Proof : Since 𝑅/𝐼 is an integral domain and Ψ(R)is finite, Ψ(R/I) is a prime number, say it is p. By similar argument as in the 

proof of Theorem 4.2, we have Ψ(I)|Ψ(R) and Ψ(R)|pΨ(I)and so Ψ(R) = k1Ψ(I), pΨ(I) = k2Ψ(R) for some positive integers 

𝑘1 and 𝑘2. Combining these two equations we have 𝑝Ψ(I) = k1k2Ψ(I)  and so 𝑝 = k1k2. Since 𝑝 is prime exactly one of  

k1 and k2 must be 1. If k1 = 1, then Ψ(R) = Ψ(I) and if  k2 = 1 then  
Ψ(R)

Ψ(I)
= p = Ψ(R/I). Hence the theorem. 

 

Corollary 4.2. For a prime or maximal ideal 𝐼 of a ring 𝑅 with finite characteristic  Ψ(R/I) =
Ψ(R)

Ψ(I)
  or  Ψ(R) = Ψ(I). 

 

Remark 4.2. The result of Theorem 4.4 can be used to determine an ideal is prime or not. 
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