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I.Introduction 

All the graphs considered in this paper are simple, undirected, finite and connected. In a given network, locating 

dominating set can be viewed as a set of monitors which can determine the exact location of an intruder (e.g., burglar, fire, 

etc.,). The concept of locating dominating set is studied in [2, 3, 4, 5]. For similar related work we refer [7, 8, 9, 10, 11, 12, 

13]. The terms not defined here may found in [1].  

           Throughout this paper G (V, E) denotes a graph. For a vertex v ∊ V, N(v) denotes the set of all vertices of G which 

are adjacent to v and N[v] = N(v) U {v}. The concept of neighbourhood number for a graph was first introduced by E. 

Sampathkumar et al. [6].  A subset D of vertices in a graph G is a dominating set(d-set) if every vertex in V-D is adjacent 

to some vertex in D. The domination number d(G) is the minimum cardinality of a dominating set of G.  A neighbourhood 

dominating set (or simply nd-set) of a graph G is a dominating set D with the property that each adjacent pair of vertices in 

V(G)-D is dominated by a common vertex in D.  A set S ⊆ V(G) is an independent set, if there are no edge between the 

vertices in S. The number of vertices in S is called independent number of G, denoted by id(G).  

 

Definition1.1.  [6] Let G (V, E) be a graph. For a vertex v ∈ V, N(v) denotes the set of all vertices of G which are adjacent 

to v and N[v] = N(v) ∪ {v}.  A subset S of V is called a neighbourhood set or n-set of G, if G =∪𝑣∈𝑆< N[v] > where, < 𝑆 >

 denotes the subgraph of G induced by the set S.  An n-set S is called minimal if no proper subset of S is an n-set. The 

minimum cardinality of a minimal n-set is called the neighbourhood number of G and is denoted by n(G). 

Definition1.2. A subset S of V(G) is called locating dominating set (ld-set) in a connected graph G if for every pair vertices 

u, v ∈ V(G)-S, 𝑁𝐺[u] ∩ S≠ 𝑁𝐺 [v] ∩ S ≠ ∅. The minimum cardinality of locating dominating set is called locating 

domination number of G, denoted by ld(G). 

Definition 1.3.  A subset S of V(G) is called almost locating dominating set in a connected graph G, if for every pair of 

vertices u, v ∈ V(G)-S, 𝑁𝐺[u] ∩ S ≠ 𝑁𝐺 [v]∩S . The minimum cardinality of almost locating dominating set in G is called 

the almost locating domination number of G, denoted by ald(G). Location of each vertices with respect to S in V-S should 

be distinct, that is 𝑁𝐺[𝑣𝑖]  ∩ S = l(𝑣𝑖|S ≠  l(𝑣𝑗|S) = 𝑁𝐺[𝑣𝑗] ∩ S for all 𝑣𝑖 , 𝑣𝑗 ∈ V-S. 

Definition 1.4.  A subset S of V is called a neighbourhood locating dominating set (or nld-set) of G, if S is both 

neighbourhood and locating dominating set of G. The minimum cardinality of a minimal nld-set is called the 

neighbourhood locating domination number of G and is denoted by nld(G). 

We recall the following for immediate reference: 

Theorem 1.5 [6].  A set S of vertices of a graph G is an n-set if and only if every line of < V(G) - S > belongs to a triangle 

one of whose vertices belong to S. 

Remark 1.6 [6].   If G is a triangle free graph, then by Theorem 1.5 a set S is an n-set of G if and only if for each edge e = 

𝑣𝑖 , 𝑣𝑗 of G either 𝑣𝑖 ϵ S or 𝑣𝑗 𝜖 S. 

Remark 1.7 [6].   If G has no triangles, then n(G) = 𝛼𝑜(G), where  𝛼𝑜 (G) is the vertex cover number of G.  
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Remark 1.8.  A set S is an n-set of a triangle free graph if and only if 𝑆 ̅is totally disconnected. 

Remark 1.9 [13]. Let S be a subset of a connected graph G with |V(G)| = m. Then S is always an n-set whenever |S| ≥ m - 

1. 

Theorem1.10 [8].  For any integer n, d (𝑃𝑛  ×  𝑃2)= ⌊
𝑛+2

2
⌋. 

     In this paper, we have obtained results of simple, powerful, maximal and foul of n-set, ld-set and ald-set. We have also 

computed exact values of all these numbers for the ladder graph of order m. 

II. Results on Ladder graph 

     Throughout this paper, 𝐿𝑚  denotes a Ladder graph of order m ≥ 4 and m is an even integer with a vertex set U ∪ V, 

where V = {𝑣𝑖: 1 ≤  i ≤ 
𝑚

2
 }, U = {𝑢𝑖: 1 ≤  i ≤ 

𝑚

2
 },  and an edge set E = {𝑣𝑖𝑣𝑖+1, 𝑢𝑖𝑢𝑖+1, 𝑣𝑗𝑢𝑗;  1≤ 𝑖 ≤ 

𝑚  

2
− 1 and 1 ≤ 𝑗 ≤

 
𝑚

2
 }. 

Remark 2.1.   From the definition of d-set and ald-set, for any graph G, |d(G)| ≤ |ald(G)|. 

Remark 2.2.  If G contains an induced subgraph 𝐶4 then any two adjacent vertices of 𝐶4 must be in S to locate the vertices 

in G. 

Remark 2.3.  For a ladder graph 𝐿𝑚 of order m  ≥ 6, we have |ld(G)| ≥ |ald(G)|. 

Remark 2.4.  For a ladder graph 𝐿𝑚 of order m ≥ 6, any neighbourhood set (n-set) is also an almost locating dominating 

set (ald-set) and hence |nl(G)| ≥ |ald(G)|. 

Remark 2.5.  For a ladder graph 𝐿𝑚 of order m ≥ 6, any neighbourhood set (n-set) is also dominating set (d-set) and hence 

|nd(G)| ≥  |ald(G)|. 

Remark 2.6.  For a ladder graph 𝐿𝑚 of order m ≥ 6, any neighbourhood set (n-set) is also locating dominating set (nl-set) 

and hence |nld(G)| ≥ |ald(G)|. 

Lemma 2.7.  Any independent set S of a ladder 𝐿𝑚 with |S| ≥  
𝑚 

2
  is always an n-set. 

III. Types of Neighbourhood sets 

In this section we call an n-set defined above as a simple n-set. 

Definition 2. 8.  An n-set S of the graph G is called a powerful n-set if 𝑆̅ is also an n-set of G. 

Definition 2.9. An n-set S of the graph G is called a maximal n-set if 𝑆̅ is not an n-set of G. 

Definition 2.10.  A set S of vertices of the graph G is called a foul n-set if neither S nor 𝑆̅  is an n-set of G. 

     The minimum cardinality of a simple n-set, powerful n-set, maximal n-set and foul n-set are respectively, called simple 

n-number, powerful n-number, maximal n-number and foul n-number of G and are denoted by 𝑠𝑖𝑚𝑛(G), 𝑝𝑜𝑤𝑛(G), 

𝑚𝑎𝑥𝑛(G) and 𝑓𝑜𝑢𝑛(G) respectively. From the above definitions it is clear that for every graph G, 𝑝𝑜𝑤𝑛(G) ≥ 𝑠𝑖𝑚𝑛(G) and 

𝑚𝑎𝑥𝑛(G) ≥ 𝑠𝑖𝑚𝑛(G). 

IV. Simple n-set and Powerful n-set of a ladder graph 

Theorem 2.11.  For any even integer m  ≥  4, 𝑠𝑖𝑚𝑛(𝐿𝑚)= 𝑝𝑜𝑤𝑛(𝐿𝑚)= 
𝑚

2
. 

Proof. Let S be an n-set of 𝐿𝑚. Then 𝑆̅ is independent (Since 𝐿𝑚is triangle free graph then by Remark 1.8 𝑆̅  should be 

independent set). Therefore, 𝑠𝑖𝑚𝑛(𝐿𝑚) = V(𝐿𝑚) - | 𝑆̅| ≥  m -  id (𝐿𝑚)= m − 
𝑚

2
 =  

𝑚

2
.  On the other hand, consider a set S  = 

{𝑣1, 𝑣3, ..., 𝑣 −12
𝑚 } ∪{𝑢2, 𝑢3, ..., 𝑢𝑚

2
},  when 

𝑚

2
  is even and S  = {𝑣1, 𝑣3, ..., 𝑣𝑚

2
} ∪{𝑢2, 𝑢3, ..., 𝑢 −12

𝑚 } when 
𝑚

2
  is odd, we see 

that S as well as 𝑆̅  are independent  and hence by Remark  1.8  ∪𝑣∈𝑆 〈𝑁[𝑣]〉 =  𝐿𝑚.  Hence, 𝑆̅ is also an n-set. Therefore, 

𝑠𝑖𝑚𝑛(𝐿𝑚) ≤  𝑝𝑜𝑤𝑛  (𝐿𝑚) ≤  |𝑆| =  
𝑚

2
. 
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V.Maximal n-set of a ladder graph 

Theorem 2.12. For any even integer m  ≥  4,  𝑚𝑎𝑥𝑛(𝐿𝑚) = 
𝑚

2
 +1. 

Proof. Let S be minimal maximal n-set of the graph 𝐿𝑚. Then S is an n-set and  𝑆̅  is not an n-set. For the case m = 4, then 

suppose |S| ≤  3, say |S| = 2. In case of S = {u, v} where u and v are adjacent, both S and 𝑆̅  are not n-sets, a contradiction. 

In case of S = {u, v} where u and v are antipodal vertices, both S and 𝑆̅  are n-set, a contradiction to maximal n-set. Hence 

|S| ≥ 3.  Let us consider a set with |S| = 3, then S is an n-set and 𝑆̅  is not an n-set (Since ∪𝑣∈𝑆̅ 〈𝑁[𝑣]〉 ≠ 𝐿𝑚).  For the case 

m ≥ 6, for the maximal n-set, then both S and 𝑆̅  are independent (Since S is an n-set), |S|  ≥  
𝑚

2
  (by Theorem 2.11) and S is 

not independent (by Remark 1.8). For every independent set 𝑆̅, S is also an independent set. Hence, |S| ≥  
m

2
  + 1. On the 

other hand, a set S = {𝑣1, 𝑣3, ..., 𝑣 −12
𝑚 } ∪ {𝑢1} ∪ {𝑢2, 𝑢4,..., 𝑢𝑚

2
}, when 

𝑚

2
  is even and S = {𝑣1, 𝑣3, ..., 𝑣𝑚

2
} ∪ {𝑢1} ∪ {𝑢2, 

𝑢4, ..., 𝑢 −12
𝑚 }, when 

𝑚

2
  is odd is a maximal n-set (Since S is an n-set by Theorem 2.11 and an edge  𝑣1 𝑢1  ∉  ∪𝑣∈𝑆̅ 〈𝑁[𝑣]〉,  

𝑆̅ is not an n-set). Hence |S| ≤  
 𝑚

2
  + 1. Therefore, 𝑚𝑎𝑥𝑛(𝐿𝑚)   = 

𝑚

2
  + 1. 

VI. Foul n-set of a ladder graph 

Theorem 2.13. For any even integer m ≥ 4,  𝑓𝑜𝑢𝑛( 𝐿𝑚) = 2. 

Proof. Let S be a minimal foul n-set of 𝐿𝑚. Then both S and 𝑆̅ are not n-sets. If possible, let |S| = 1, then by Theorem 2.11 

S is not an n-set. But |𝑆̅ | = m-1 is an n-set (by Remark 1.9), a contradiction. Thus, 2 ≤  |S| ≤ m - 2. On the other hand, let 

𝑆1= {𝑢𝑗 , 𝑣𝑗} where 1≤ j≤  
𝑚

2
 . The set 𝑆1 and 𝑆1̅ are not n-set (since ∪𝑣∈𝑆1

〈𝑁[𝑣]〉  ≠ 𝐿𝑚  and 𝑢𝑗  𝑣𝑗 are not an edge of 

∪𝑣∈𝑆1̅̅ ̅ 〈𝑁[𝑣]〉). Since S is minimal |S| = 2. Therefore, 𝑓𝑜𝑢𝑛(𝐿𝑚  ). 

VII. Types of Locating Dominating sets 

In this section we call an ld-set defined above as a simple ld-set. 

Definition 2.14.  A ld-set S of the graph G is called a powerful ld-set if 𝑆̅  is also an ld-set of G. 

Definition 2.15.  A ld-set S of the graph G is called a maximal ld-set if 𝑆̅  is not an ld-set of G. 

Definition 2.16. A set S of vertices of the graph G is called a foul ld-set if neither S nor 𝑆̅  is an ld-set of G. 

     The minimum cardinality of a simple ld-set, powerful ld-set, maximal ld-set and foul ld-set are respectively, called 

simple ld-number, powerful ld-number, maximal ld-number and foul ld-number of G and are denoted by 𝑠𝑖𝑚𝑙𝑑(G), 

𝑝𝑜𝑤𝑙𝑑(G), 𝑚𝑎𝑥𝑙𝑑(G) and 𝑓𝑜𝑢𝑙𝑑(G) respectively. From the above definitions it is clear that for every graph G, 𝑝𝑜𝑤𝑙𝑑(G) ≥
 𝑠𝑖𝑚𝑙𝑑(G) and 𝑚𝑎𝑥𝑙𝑑(G) ≥  𝑠𝑖𝑚𝑙𝑑(G). 

VIII. Simple ld-set and Powerful ld-set of a ladder graph 

Theorem 2.17. For any even integer m ≥ 4,  

𝑠𝑖𝑚𝑙𝑑(𝐿𝑚) = 𝑝𝑜𝑤𝑙𝑑(𝐿𝑚) = {

3,                                               𝑓𝑜𝑟 𝑚 = 6
𝑚

2
,   𝑓𝑜𝑟 𝑚 ≥ 4, 𝑚 ≠ 6 𝑎𝑛𝑑 

𝑚

2
= 𝑒𝑣𝑒𝑛

𝑚

2
− 1,           𝑓𝑜𝑟 𝑚 ≥ 10 𝑎𝑛𝑑 

𝑚

2
= 𝑜𝑑𝑑

 

Proof. For m = 6 result follows from Figure 1 

 

 

 

 

 

                                                       Figure 1: Locating Dominating set of 𝐋𝟔. 
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Let S be minimal simple ld-set of  G = 𝐿𝑚 for m ≥ 4. 

Case(i): When m ≥ 4 and 
𝑚

2
  even except for m = 6. Let 𝑆𝑖= {𝑢2𝑖−1, 𝑣2𝑖−1, 𝑢2𝑖 , 𝑣2𝑖 }, 1 ≤ 𝑖 ≤  

𝑚

4
 .  Since 𝑆𝑖   are the 

partitions of V(G) then by Theorem 1.5 we have S ∩ 𝑆𝑖 = 2≠ ∅. Thus |S| ≥ 2 (
𝑚

4
) = 

𝑚

2
 . Conversely, let S = V ∪ U  where, V 

= {𝑣2, 𝑣4, 𝑣6,… , 𝑣𝑚

2
} and U = {𝑢2, 𝑢4, 𝑢6,… , 𝑢𝑚

2
}  then S is clearly an ld-set(because l(𝑣1|S) ≠  l(𝑣3|S) ≠… ≠ l(𝑣𝑚

2
 −1|S) 

≠ l(𝑢1|S) ≠ l(𝑢3|S) ≠… ≠ l(𝑢𝑚

2
 −1|S). We also see that the chosen set S holds the Definition 2.14. Therefore, both S and 𝑆̅ 

are ld-set. Hence |S| ≤ |S ∩ V| + |S ∩ U| = ( 
𝑚

4
 ) + ( 

𝑚

4
)  =  

𝑚

2
 .  Thus 𝑠𝑖𝑚𝑙𝑑(𝐿𝑚) = 𝑝𝑜𝑤𝑙𝑑(𝐿𝑚)= 

𝑚

2
. 

Case(ii): When m ≥ 10 and 
𝑚

2
  odd: Let 𝑆𝑖= {𝑢2𝑖−1, 𝑣2𝑖−1, 𝑢2𝑖 , 𝑣2𝑖 }, 1≤ 𝑖 ≤  

𝑚−2

4
 . Since 𝑆𝑖 are the partitions of V(G) then 

by Theorem 1.5 we have S∩ 𝑆𝑖= 2≠ ∅ Thus |S| ≥ 2(
𝑚−2

4
) = 

𝑚

2
 -1. Conversely, let S =V ∪ U where, V = {𝑣2, 𝑣4, 𝑣6,… , 

𝑣𝑚

2
 −1}  and U = {𝑢2, 𝑢4, 𝑢6,… , 𝑢𝑚

2
 −1}   be a subset of V(G) then S is clearly an ld-set  (because l(𝑣1|S) ≠  l(𝑣3|S) ≠… ≠

 l(𝑣𝑚

2
|S) ≠ l(𝑢1|S) ≠ l(𝑢3|S)≠… ≠ l(𝑢𝑚

2
}|S)). So S is an ld-set. We also see that the chosen set S holds the Definition2.14. 

Therefore, both S and 𝑆̅ are ld-set. Hence |S| ≤ |S ∩ V| + |S ∩ U| = ( 
𝑚−2

4
 )+( 

𝑚−2

4
  

 

) =  
𝑚

2
− 1. Thus 𝑠𝑖𝑚𝑙𝑑(𝐿𝑚) = 𝑝𝑜𝑤𝑙𝑑(𝐿𝑚) = 

𝑚

2
− 1. 

IX. Maximal ld-set of a ladder graph 

Theorem 2.18. For any even integer m ≥ 4,  𝑚𝑎𝑥𝑙𝑑(𝐿𝑚) =  
𝑚

2
+1. 

Proof. For m = 4,6 result follows from Figure 2 

  

 

 

 

 

 

                                             Figure 2: Maximal Locating Dominating set of 𝐋𝟒 and 𝐋𝟔. 

Let S be minimal maximal ld-set of G = 𝐿𝑚 for m ≥ 4. 

Case i : When m ≥ 8 and 
𝑚

2
  even. Let   𝑆𝑖  = {𝑢2𝑖−1, 𝑣2𝑖−1 }, 1 ≤ i ≤  

m−2

4
,  𝑇 𝑖= {𝑣2𝑖, 𝑢2𝑖 }, 1 ≤ i ≤  

𝑚−2

4
, and W = 

{𝑣𝑚

2
, 𝑢𝑚

2
 }.  Since 𝑆𝑖, 𝑇𝑖  and W are the partitions of V(G) then by Theorem 1.5 we have S ∩ 𝑆𝑖 ≠ ∅ , S ∩ 𝑇𝑖 ≠ ∅  and S ∩

𝑊 ≠ ∅. Thus |S| ≥ ( 
𝑚−2

4
) + (

𝑚−2

4
) + 2 = 

𝑚

2
+ 1. Conversely, let S = V ∪ U  ∪ W, where V = {𝑣1, 𝑣3, 𝑣5, … , 𝑣𝑚

2
−1},  U = 

{𝑢2, 𝑢4, 𝑢6, … , 𝑢𝑚

2
−2} and W = {𝑣𝑚

2
, 𝑢𝑚

2
}  then S is clearly an ld-set (because l(𝑣2|S)≠ l(𝑣4|S) ≠... ≠ l(𝑣𝑚

2
 −1|S) ≠ l(𝑢1|S) ≠

 l(𝑢3|S) ≠...≠ l(𝑢𝑚

2
 −1|S)).  so S is an ld-set. We also see that the chosen set S holds the Definition 2.15. Therefore, both S 

and 𝑆̅ are ld-set. Hence |S| ≤ |S ∩ V| + |S ∩ U|+ |S ∩ W| = ( 
𝑚

4
) + (

𝑚−4

4
 ) + 2 =  

𝑚

2
  + 1.  Thus 𝑚𝑎𝑥𝑙𝑑(𝐿𝑚) = 

𝑚

2
 + 1. 

Case ii: When m ≥ 10 and  
𝑚

2
 odd. Let 𝑆𝑖  = {𝑢2𝑖−1, 𝑣2𝑖−1 }, 1 ≤ i ≤  

𝑚

4
,  𝑇𝑖  = {𝑣2𝑖, 𝑢2𝑖 }, 1 ≤ i ≤  

𝑚

4
− 1 and W = {𝑣𝑚

2
, 𝑢𝑚

2
 }. 

Since  𝑆𝑖 ,  𝑇𝑖  and W are the partitions of V(G) then by Theorem 1.5 we have S ∩ 𝑆𝑖 ≠ ∅ , S ∩ 𝑇𝑖 ≠ ∅  and S ∩ 𝑊 ≠ ∅. Thus 

|S| ≥ ( 
𝑚

4
) + (

𝑚

4
− 1) + 2 = 

𝑚

2
+ 1.  Conversely, let S = V ∪ U  ∪ W, where V = {𝑣1, 𝑣3, 𝑣5, … , 𝑣𝑚

2
 − 2},  U = 

{𝑢2, 𝑢4, 𝑢6, … , 𝑢𝑚

2
 − 1} and W = {𝑣𝑚

2
, 𝑢𝑚

2
}  then S is clearly an ld-set (because l(𝑣2|S)≠ l(𝑣4|S)≠... ≠ l(𝑣𝑚

2
 −1|S) ≠ l(𝑢1|S) ≠

{b,c} 

b c 

a 

a 

c {a,b

} 

b 

{a,b,d

} 

d 
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 l(𝑢3|S) ≠...≠ l(𝑢𝑚

2
−2|S)). so S is an ld-set. We also see that the chosen set S holds the Definition 2.15. Therefore, both S 

and  𝑆 ̅are ld-set. Hence |S| ≤ |S ∩ V| + |S ∩ U|+ |S ∩ W| = ( 
𝑚−2

4
) + (

𝑚−2

4
 ) + 2 =  

𝑚

2
  + 1.  Thus 𝑚𝑎𝑥𝑙𝑑(𝐿𝑚) = 

𝑚

2
 + 1. 

X. Foul ld-set of a ladder graph 

Theorem 2.19.  For any even integer m ≥ 4,  𝑓𝑜𝑢𝑙𝑑(𝐿𝑚) = 3. 

Proof. Let S be minimal foul ld-set. Then S is not an ld-set and 𝑆̅  is also not an ld-set of 𝐿𝑚. For m ≥ 4. If possible, let 

|S|=1, then S is not an ld-set. But |𝑆̅| = m-1 is an ld-set, which contradicts the Definition 2.16.  If S = {u, v} where u, v ∈ G 

then |𝑆̅| = m - 2 is an ld-set, which contradicts the Definition 2.16.  Thus 3 ≤ |S| ≤  m - 3. On the other hand, let 𝑆1 = 

{𝑢1, 𝑣1, 𝑣2}. The set 𝑆1 and 𝑆1̅ are not ld-sets (because l(𝑢2|𝑆1) = l(𝑣3|𝑆1) and l(𝑢1|V-𝑆1) = l(𝑣2|V-𝑆1) respectively). Since 

S is minimal, |S| = 3. Therefore 𝑓𝑜𝑢𝑙𝑑(𝐿𝑚) = 3. 

XI. Types of Almost Locating Dominating sets 

In this section we call an ald-set defined above as a simple ald-set. 

Definition 2.20.  An ald-set S of the graph G is called a powerful ald-set if 𝑆̅ is also an ald-set of G. 

Definition 2.21.  An ald-set S of the graph G is called a maximal ald-set if 𝑆̅  is not an ald-set of G. 

Definition 2.23.  A set S of vertices of the graph G is called a foul ald-set if neither S nor 𝑆̅  is an ald-set of G. 

     The minimum cardinality of a simple ald-set, powerful ald-set, maximal ald-set and foul ald-set are respectively, called 

simple ald-number, powerful ald-number, maximal ald-number and foul ald-number of G and are denoted by 𝑠𝑖𝑚𝑎𝑙𝑑(G), 

𝑝𝑜𝑤𝑎𝑙𝑑(G), 𝑚𝑎𝑥𝑎𝑙𝑑(G), and 𝑓𝑜𝑢𝑎𝑙𝑑(G). From the above definitions it is clear that for every graph G, 𝑝𝑜𝑤𝑎𝑙𝑑(G) ≥ 

𝑠𝑖𝑚𝑎𝑙𝑑(G) and 𝑚𝑎𝑥𝑎𝑙𝑑(G) ≥  𝑠𝑖𝑚𝑎𝑙𝑑(G). 

XII. Simple ald-set and Powerful ald-set of a ladder graph 

Theorem 2.23. For any even integer m ≥ 4,  𝑠𝑖𝑚𝑎𝑙𝑑(𝐿𝑚) = 𝑝𝑜𝑤𝑎𝑙𝑑(𝐿𝑚)  = {
2,       𝑓𝑜𝑟 𝑚 = 4, 6
𝑚

2
− 1,   𝑓𝑜𝑟 𝑚 ≥ 8

 

 

Proof. When m = 4 and 6 result follows from the Figure 3. 

 

  

 

 

 

                                             Figure 3: Almost Locating Dominating set of 𝐋𝟒and 𝐋𝟔. 

Let S be a minimal simple ald-set of G = 𝐿𝑚 for m ≥ 8. 

Case i: When m ≡ 0 (mod 3): 

Subcase (i): When 
𝑚

2
 ≡ 0 (mod 6): Let  𝑆𝑖= {𝑣2𝑖, 𝑢2𝑖}, 1 ≤ i ≤  

𝑚

4
− 1 and  𝑇𝑖= {𝑣2𝑖−1, 𝑢2𝑖−1}, 1 ≤ i ≤  

𝑚

4
. Then  

𝑆1, 𝑆2, … , 𝑇1𝑇2,… are the partitions of V(G) and by the Theorem 1.5 we have S ∩ 𝑆𝑖 ≠ ∅ and S ∩ 𝑇𝑖 ≠ ∅ . Therefore, |𝑆| ≥

( 
𝑚

4
− 1) + ( 

𝑚

4
) = 

𝑚

4
− 1. Conversely, let S = V ∪ U where, V = {𝑣1, 𝑣3, 𝑣5, … , 𝑣𝑚

2
 −1} and  U = {𝑢2, 𝑢4, 𝑢6, … , 𝑢𝑚

2
 − 2} then 

both S and 𝑆̅ are ald-set(because l(𝑣2|S) ≠ l(𝑣4|S) ≠ l(𝑣6|S) ≠...≠ l(𝑣𝑚

2
|S) ≠ l(𝑢1|S) ≠ l(𝑢3|S) ≠...≠ l(𝑢𝑚

2
|S)).  Hence |S| ≤

  |S ∩ V| + |S ∩ U| = ( 
𝑚

4
) + (

𝑚

4
− 1) + 2 =  

𝑚

2
− 1.  Thus 𝑠𝑖𝑚𝑎𝑙𝑑(𝐿𝑚) = 𝑝𝑜𝑤𝑎𝑙𝑑(𝐿𝑚) =   

𝑚

2
− 1. 

b 

{a} a 

{b} 

a 

{b

} 

{a

} 

{

} 

{a,b} b 
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Subcase(ii): When 
𝑚

2
  ≠ 0 (mod 6): Let   𝑆𝑖  = {𝑣2𝑖, 𝑢2𝑖}, 1 ≤ i ≤  

𝑚−2

4
 and  𝑇𝑖  = {𝑣2𝑖−1, 𝑢2𝑖−1}, 1 ≤ i ≤  

𝑚−2

4
. Then  

𝑆1, 𝑆2, … , 𝑇1𝑇2, …  are the partitions of V(G) and by the Theorem 1.5 we have S ∩ 𝑆𝑖 ≠ ∅ and S ∩ 𝑇𝑖 ≠ ∅ . Therefore, |𝑆| ≥

( 
𝑚−2

4
) + ( 

𝑚−2

4
) = 

𝑚

4
− 1. Conversely, let S = V ∪ U where, V = {𝑣1, 𝑣3, 𝑣5, … , 𝑣𝑚

2
 − 2} and U = {𝑢2, 𝑢4, 𝑢6, … , 𝑢𝑚

2
 − 1} then 

both S and 𝑆̅ are ald-set(because l(𝑣2|S) ≠ l(𝑣4|S) ≠ l(𝑣6|S) ≠...≠ l(𝑣𝑚

2
|S) ≠ l(𝑢1|S) ≠ l(𝑢3|S) ≠...≠ l(𝑢𝑚

2
|S)).  Hence, |S| ≤

 |S ∩ V| + |S ∩ U| = ( 
𝑚−2

4
) + (

𝑚−2

4
) + 2 =  

𝑚

2
− 1.  Thus 𝑠𝑖𝑚𝑎𝑙𝑑(𝐿𝑚) = 𝑝𝑜𝑤𝑎𝑙𝑑(𝐿𝑚) =   

𝑚

2
− 1. 

Case(ii): When m ≡ 2 (mod 3): Let  𝑆𝑖  = {𝑢3𝑖−2, 𝑣3𝑖−2 , 𝑢3𝑖−1, 𝑣3𝑖−1}, 1 ≤ i ≤  
𝑚−2

6
 and 𝑇𝑖  = {𝑢3𝑖, 𝑣3𝑖}, 1 ≤ i ≤  

𝑚−2

6
. Then  

𝑆1, 𝑆2, … , 𝑇1𝑇2, …  are the partitions of V(G) and by the Theorem 1.5 we have S ∩ 𝑆𝑖 = 2 ≠ ∅ and S ∩ 𝑇𝑖 ≠ ∅ .  Since 𝑆𝑖  is 

a set containing 2 elements of an ald-set. Therefore, total number of elements in 𝑆𝑖 sets which are the elements of ald-set is 

2 ( 
𝑚−2

6
 ).  Thus, |S| ≥ 2 ( 

𝑚−2

6
 ) + ( 

𝑚−2

6
 ) = 

𝑚

2
− 1. Conversely, let S = 𝑉1  ∪ 𝑉2 ∪ 𝑈   where, 𝑉1= {𝑣2, 𝑣5, 𝑣8, … , 𝑣𝑚

2
 − 2},  

𝑉2= {𝑣3, 𝑣6, 𝑣9, … , 𝑣𝑚

2
 − 1}   and U = {𝑢2, 𝑢5, 𝑢8, … , 𝑢𝑚

2 
 − 2}   then both S and 𝑆̅  are ald-set(because l(𝑣1|S) ≠ l(𝑣4|S) ≠ 

l(𝑣7|S) ≠...≠ l(𝑣𝑚

2
|S) ≠ l(𝑢1|S) ≠ l(𝑢3|S) ≠...≠ l(𝑢𝑚

2
|S)).  Hence, |S| ≤ |S ∩ 𝑉1| +|S ∩ 𝑉2|+ |S ∩ U| = ( 

𝑚−2

6
) + (

𝑚−2

6
) + 

𝑚−2

6
  

=  
𝑚

2
− 1.  Thus 𝑠𝑖𝑚𝑎𝑙𝑑(𝐿𝑚) = 𝑝𝑜𝑤𝑎𝑙𝑑(𝐿𝑚) =   

𝑚

2
− 1. 

Case(iii): When m ≡ 1(mod 3): Let  𝑆𝑖  = {𝑢3𝑖−1, 𝑣3𝑖−1 , 𝑢3𝑖, 𝑣3𝑖}, 1 ≤ i ≤  
𝑚−4

6
 and  𝑇𝑖  = {𝑣3𝑖−2, 𝑢3𝑖−2}, 1 ≤ i ≤  

𝑚+2

6
. 

Then  𝑆1, 𝑆2, … , 𝑇1𝑇2, …  are the partitions of V(G) and by the Theorem 1.5 we have S ∩ 𝑆𝑖 = 2 ≠ ∅ and S ∩ 𝑇𝑖 ≠ ∅ .  

Since 𝑆𝑖  is a set containing 2 elements of an ald-set. Therefore, total number of elements in 𝑆𝑖 sets which are the elements 

of ald-set is 2 ( 
𝑚−4

6
 ). Thus, |S|  ≥  2( 

𝑚−4

6
 ) + ( 

𝑚+2

6
 ) = 

𝑚

2
− 1. Conversely, let S = 𝑉1  ∪ 𝑉2  ∪  𝑈   where, 𝑉1= 

{𝑣1, 𝑣4, 𝑣7, … , 𝑣𝑚

2
 − 1}  , 𝑉2 = {𝑣3, 𝑣6, 𝑣9, … , 𝑣𝑚

2
 − 2}   and U = {𝑢3, 𝑢6, 𝑢9, … , 𝑢𝑚

2
 − 2} then both S and 𝑆̅  are ald-set(because 

l(𝑣2|S) ≠ l(𝑣5|S) ≠ l(𝑣8|S) ≠...≠ l(𝑣𝑚

2
|S) ≠ l(𝑢1|S) ≠ l(𝑢2|S) ≠...≠ l(𝑢𝑚

2
|S)).  Hence, |S| ≤ |S ∩ 𝑉1| +|S ∩ 𝑉2| + |S ∩ U| = ( 

𝑚+2

6
) + (

𝑚−4

6
) + 

𝑚−4

6
  =  

𝑚

2
− 1.  Thus 𝑠𝑖𝑚𝑎𝑙𝑑(𝐿𝑚) = 𝑝𝑜𝑤𝑎𝑙𝑑(𝐿𝑚) =   

𝑚

2
− 1. 

XIII. Maximal ald-set of a ladder graph 

Theorem 2.24.  For any even integer m ≥ 4,  𝑚𝑎𝑥𝑎𝑙𝑑(𝐿𝑚)   =  {
3,       𝑓𝑜𝑟 𝑚 = 4 
𝑚

2
,   𝑓𝑜𝑟 𝑚 ≥ 6

 

Proof. Let S be minimal maximal ald-set of G = 𝐿𝑚  for m  ≥ 4. For m = 4 if |S| = 1 then S is not an ald-set (because 

l(𝑣2|S) = l(𝑢1|S)) and 𝑆̅ is an ald-set, which contradicts Definition 2.21. If  |S| = 2 and S = {u, v}, if u is adjacent to v then 

both S and  𝑆̅ are ald-set (because l(𝑢1|S) ≠ l(𝑣1|S) and l(u |V - S) ≠ l(v |V- S) respectively), which contradicts Definition 

2.21. Suppose if u is not adjacent to v then S is not an ald-set (because l(𝑢1|S) = l(𝑣1|S)). If  |S| = 3 then S is an ald-set and 

𝑆̅ is not an ald-set (because l(𝑣2|S) = l(𝑢1|S)). Hence the result and is as shown in Figure 4. 

  

 

 

 

 

                                                              Figure 4: Maximal ald-set for m = 4. 

Case(i).  For  
𝑚

2
 ≡ 1(mod 3): Let  𝑆𝑖  = {𝑣3𝑖−1, 𝑢3𝑖−1 }, 1 ≤ i ≤  

𝑚−2

6
,  𝑇𝑖= {𝑣3𝑖, 𝑢3𝑖, 𝑣3𝑖+1, 𝑢3𝑖+1 }, 1 ≤ i ≤  

𝑚−2

6
 and W = { 

𝑢1, 𝑣1}. Since  𝑆𝑖 , 𝑇2𝑖  𝑎𝑛𝑑 𝑊  are the partitions of V(G) and by the Theorem 1.5 we have S ∩ 𝑆𝑖 ≠ ∅, S ∩ 𝑇𝑖 ≠ ∅  and S ∩

𝑊 ≠ ∅ . Therefore, |𝑆| ≥ ( 
𝑚−2

6
) + 2 ( 

𝑚−2

6
) +1 =  

𝑚

2
.  Conversely, let S = 𝑉 ∪  𝑈 ∪ W where, V = 

{𝑣3, 𝑣6, 𝑣9, … , 𝑣𝑚

2
 − 4, 𝑣𝑚

2 
 − 1}, U = {𝑢2, 𝑢3, 𝑢5, 𝑢6, 𝑢8,  𝑢9, … , 𝑢𝑚

2
 − 2, 𝑢𝑚

2
 − 1} and W = {𝑣1}. We See that the set S chosen in 

this case holds the Definition 2.21. Therefore, S is ald-set of G.  Hence, |S| ≤ |S ∩ V| +|S ∩ U| + |S ∩ W| = ( 
𝑚−2

6
) +

2 (
𝑚−2

6
) + 1 =  

𝑚

2
.   Thus 𝑚𝑎𝑥𝑎𝑙𝑑(𝐿𝑚) =   

𝑚

2
. 

{a,c} 

b a 

c 
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Case(ii). For 
𝑚

2
  ≡ 2(mod 3): Let  𝑆𝑖= {𝑣3𝑖−1, 𝑢3𝑖−1 }, 1 ≤ i ≤  

𝑚+2

6
,  𝑇𝑖 = {𝑣3𝑖, 𝑢3𝑖, 𝑣3𝑖+1, 𝑢3𝑖+1 }, 1 ≤ i ≤  

𝑚−4

6
 and W = { 

𝑢1, 𝑣1}. Since   𝑆𝑖 , 𝑇2𝑖  𝑎𝑛𝑑 𝑊 are the partitions of V(G) and by the Theorem 1.5 we have S ∩ 𝑆𝑖 ≠ ∅, S ∩ 𝑇𝑖 ≠ ∅  and S ∩

𝑊 ≠ ∅ . Therefore, |𝑆| ≥ ( 
𝑚+2

6
) + 2 ( 

𝑚−4

6
) + 1 =  

𝑚

2
.  Conversely, let S = 𝑉 ∪  𝑈  ∪ W where, V = 

{𝑣3, 𝑣6, 𝑣9, … , 𝑣𝑚

2
 − 5, 𝑣𝑚

2
 − 2}, U = {𝑢2, 𝑢3, 𝑢5, 𝑢6, 𝑢8, 𝑢9 , … , 𝑢𝑚

2
 − 3, 𝑢𝑚

2
 − 2, 𝑢𝑚

2
} and W = {𝑣1}. We See that the set S chosen 

in this case holds the Definition 2.21. Therefore, S is maximal ald-set of G.  Hence, |S| ≤ |S ∩ V| +|S ∩ U|+ |S ∩ W| = ( 
𝑚−4

6
) + 2 (

𝑚−1

6
) + 1 =  

𝑚

2
.   Thus 𝑚𝑎𝑥𝑎𝑙𝑑(𝐿𝑚) =   

𝑚

2
. 

Case(iii).  For  
𝑚

2
≡  0 (mod 3): Let  𝑆𝑖  = {𝑣3𝑖−1, 𝑢3𝑖−1 }, 1 ≤ i ≤  

𝑚−6

6
,  𝑇𝑖= {𝑣3𝑖, 𝑢3𝑖, 𝑣3𝑖+1, 𝑢3𝑖+1}, 1 ≤ i ≤  

𝑚−6

6
 ,  W = { 

𝑢1, 𝑣1} and 𝑊1  = {𝑢𝑚

2
,  𝑣𝑚

2
,  𝑢𝑚

2
 − 1, 𝑣𝑚

2
 − 1}. Since 𝑆𝑖 , 𝑇𝑖 , 𝑊 𝑎𝑛𝑑 𝑊1  are the partitions of V(G) and by the Theorem 1.5 we 

have S ∩ 𝑆𝑖 ≠ ∅, S ∩ 𝑇𝑖 ≠ ∅ , S ∩ 𝑊 ≠ ∅ and 𝑆 ∩ 𝑊1 ≠ ∅.  Therefore, |𝑆| ≥ ( 
𝑚−6

6
) + 2 ( 

𝑚−6

6
) +1+2 = 

𝑚

2
. Conversely, let 

S = 𝑉 ∪ 𝑈 ∪W ∪ 𝑊1  where, V = {𝑣3, 𝑣6, 𝑣9, … , 𝑣𝑚

2
 − 3} , U = {𝑢2, 𝑢3, 𝑢5, 𝑢6, 𝑢8, 𝑢9 , … , 𝑢𝑚

2
 − 4, 𝑢𝑚

2
 − 3} , W = {𝑣1} and 𝑊1 = 

{𝑢𝑚

2
 − 1, 𝑢𝑚

2
}. We See that the set S chosen in this case holds the Definition 2.21. Therefore, S is maximal ald-set of G.  

Hence, |S| ≤ |S ∩ V| +|S ∩ U| + |S∩ W|+|S∩ 𝑊1|  = ( 
𝑚−6

6
) + 2 (

𝑚−6

6
) + 1 + 2 =  

𝑚

2
.   Thus 𝑚𝑎𝑥𝑎𝑙𝑑(𝐿𝑚) =   

𝑚

2
. 

XIV. Foul ald-set of a ladder graph 

Theorem 2.25. For any even integer m  ≥ 4,  𝑓𝑜𝑢𝑎𝑙𝑑(𝐿𝑚)  =    {
2,       𝑓𝑜𝑟 𝑚 = 4 
3,     𝑓𝑜𝑟 𝑚 ≥ 6

 

Let S be minimal foul ald-set,  then S is not an ald-set and 𝑆̅ is also not an ald-set of 𝐿𝑚.  For m = 4, result follows from 

Figure 5. 

 

 

 

 

 

                                                                Figure5: Foul ald-set for m = 4. 

For m ≥  6. If possible, let |S| = 1, then S is not an ald-set. But |𝑆̅| = m - 1 is an ald-set, which contradicts the Definition 

2.22. If S = {u, v} where u, v ∈ G then |𝑆̅ | = m - 2 is an ald-set, which contradicts the Definition 2.22. Thus 3 ≤ |S| ≤  m - 

3. On the other side, let 𝑆1= { 𝑣1, 𝑢2, 𝑢3}. The set 𝑆1 and 𝑆1̅ are not ald-sets (because l(𝑣2|𝑆1) = l (𝑢1|𝑆1) and l(𝑣1|V- 𝑆1) = 

l(𝑢2|V - 𝑆1) respectively). Since S is minimal, |S| = 3. Therefore 𝑓𝑜𝑢𝑎𝑙𝑑(𝐿𝑚) = 3. 
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