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I.Introduction

All the graphs considered in this paper are simple, undirected, finite and connected. In a given network, locating
dominating set can be viewed as a set of monitors which can determine the exact location of an intruder (e.g., burglar, fire,
etc.,). The concept of locating dominating set is studied in [2, 3, 4, 5]. For similar related work we refer [7, 8, 9, 10, 11, 12,
13]. The terms not defined here may found in [1].

Throughout this paper G (V, E) denotes a graph. For a vertex v e V, N(v) denotes the set of all vertices of G which
are adjacent to v and N[v] = N(v) U {v}. The concept of neighbourhood number for a graph was first introduced by E.
Sampathkumar et al. [6]. A subset D of vertices in a graph G is a dominating set(d-set) if every vertex in V-D is adjacent
to some vertex in D. The domination number d(G) is the minimum cardinality of a dominating set of G. A neighbourhood
dominating set (or simply nd-set) of a graph G is a dominating set D with the property that each adjacent pair of vertices in
V(G)-D is dominated by a common vertex in D. A set S< V(G) is an independent set, if there are no edge between the
vertices in S. The number of vertices in S is called independent number of G, denoted by id(G).

Definition1.1. [6] Let G (V, E) be a graph. For a vertex v € V, N(v) denotes the set of all vertices of G which are adjacent
to v and N[v] = N(v) U {v}. AsubsetS of V is called a neighbourhood set or n-set of G, if G =U,,cs< N[v] > where, < S >
denotes the subgraph of G induced by the set S. An n-set S is called minimal if no proper subset of S is an n-set. The
minimum cardinality of a minimal n-set is called the neighbourhood number of G and is denoted by n(G).

Definition1.2. A subset S of V(G) is called locating dominating set (Id-set) in a connected graph G if for every pair vertices
u, v €V(G)-S, Ng[ulnS+#N; [VInS+# @. The minimum cardinality of locating dominating set is called locating
domination number of G, denoted by 1d(G).

Definition 1.3. A subset S of V(G) is called almost locating dominating set in a connected graph G, if for every pair of
vertices u, v € V(G)-S, N;[u] N S # N; [V]nS. The minimum cardinality of almost locating dominating set in G is called
the almost locating domination number of G, denoted by ald(G). Location of each vertices with respect to S in V-S should
be distinct, that is Ng[v;] n S =1(v;|S # I(v;]S) = Ng[v;]1 n S for all v;, v; € V-S.

Definition 1.4. A subset S of V is called a neighbourhood locating dominating set (or nld-set) of G, if S is both
neighbourhood and locating dominating set of G. The minimum cardinality of a minimal nld-set is called the
neighbourhood locating domination number of G and is denoted by nld(G).

We recall the following for immediate reference:

Theorem 1.5 [6]. A set S of vertices of a graph G is an n-set if and only if every line of < V(G) - S > belongs to a triangle
one of whose vertices belong to S.

Remark 1.6 [6]. If Gis a triangle free graph, then by Theorem 1.5 a set S is an n-set of G if and only if for each edge e =
v;, v; of G either v; e Sor v; € S.

Remark 1.7 [6]. If G has no triangles, then n(G) = «,(G), where «, (G) is the vertex cover number of G.
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Remark 1.8. Aset S is an n-set of a triangle free graph if and only if S is totally disconnected.

Remark 1.9 [13]. Let S be a subset of a connected graph G with |[V(G)] = m. Then S is always an n-set whenever [S| = m -
1.

n+2

Theorem1.10 [8]. For any integer n,d (B, X P,)= |

In this paper, we have obtained results of simple, powerful, maximal and foul of n-set, ld-set and ald-set. We have also
computed exact values of all these numbers for the ladder graph of order m.

Il. Results on Ladder graph

Throughout this paper, L,, denotes a Ladder graph of order m >4 and m is an even integer with a vertex set U U V,
where V={v;: 1< i<~} U={u;:1< i<~} andan edge set E = {vvyy, ity vy 1Si<s——1landl<j <

m
27r
Remark 2.1. From the definition of d-set and ald-set, for any graph G, |[d(G)| < |ald(G)|.

Remark 2.2. If G contains an induced subgraph C, then any two adjacent vertices of C, must be in S to locate the vertices
in G.

Remark 2.3. For a ladder graph L,, of order m > 6, we have |ld(G)| = |ald(G)|.

Remark 2.4. For a ladder graph L,,, of order m > 6, any neighbourhood set (n-set) is also an almost locating dominating
set (ald-set) and hence |nl(G)| = |ald(G)].

Remark 2.5. For a ladder graph L,,, of order m = 6, any neighbourhood set (n-set) is also dominating set (d-set) and hence
[nd(G)| = |ald(G)].

Remark 2.6. For a ladder graph L,, of order m = 6, any neighbourhood set (n-set) is also locating dominating set (nl-set)
and hence |nld(G)| = |ald(G)|.

Lemma 2.7. Any independent set S of a ladder L,,, with |S| = % is always an n-set.

I11. Types of Neighbourhood sets
In this section we call an n-set defined above as a simple n-set.
Definition 2. 8. An n-set S of the graph G is called a powerful n-set if S is also an n-set of G.
Definition 2.9. An n-set S of the graph G is called a maximal n-set if S is not an n-set of G.
Definition 2.10. A set S of vertices of the graph G is called a foul n-set if neither Snor S is an n-set of G.

The minimum cardinality of a simple n-set, powerful n-set, maximal n-set and foul n-set are respectively, called simple
n-number, powerful n-number, maximal n-number and foul n-number of G and are denoted by sim,(G), pow,(G),
max,(G) and fou, (G) respectively. From the above definitions it is clear that for every graph G, pow,(G) = sim,,(G) and
max,(G) = sim,(G).

IV. Simple n-set and Powerful n-set of a ladder graph

Theorem 2.11. For any even integer m > 4, sim,,(L,,)= pow,, (L,,)= ?

Proof. Let S be an n-set of L,,. Then S is independent (Since L,,is triangle free graph then by Remark 1.8 S should be
independent set). Therefore, sim,,(L,,) = V(L,,) - | S| = m - id (L,,,)= m — ?: ? On the other hand, consider a set S =

{1, V3, oy vm_1} U{iy, U3, ., um}, when = isevenand S = {vy, vs, ..., vm} U{uy, us, ..., um_; } when = is odd, we see
2 2

that S as well as S are independent and hence by Remark 1.8 U, (N[v]) = L,,. Hence, S is also an n-set. Therefore,
simy(Ly,) < pow, (L,,) < IS = %
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V.Maximal n-set of a ladder graph

Theorem 2.12. For any even integer m > 4, max,(L,,) = ?+1.

Proof. Let S be minimal maximal n-set of the graph L,,. Then Sis an n-setand S is not an n-set. For the case m = 4, then
suppose [S| < 3, say |S| = 2. In case of S = {u, v} where u and v are adjacent, both Sand S are not n-sets, a contradiction.
In case of S = {u, v} where u and v are antipodal vertices, both S and S are n-set, a contradiction to maximal n-set. Hence
IS| > 3. Let us consider a set with |S| = 3, then Sis an n-set and S is not an n-set (Since U, s (N[v]) # L,,). For the case
m > 6, for the maximal n-set, then both Sand S are independent (Since S is an n-set), |S| > % (by Theorem 2.11) and S is

m

not independent (by Remark 1.8). For every independent set S, S is also an independent set. Hence, |S| > St 1. On the

other hand, a set S = {vy, v3, ..., vm_;1} U {uy} U {uy, uy,..., um}, when ? iseven and S = {v,, vg, ..., vm} U {u} U {u,,
2 2

Uy ooy Um_1}, when% is odd is a maximal n-set (Since S is an n-set by Theorem 2.11 and an edge v; u; € U,es (N[v]),

+ 1.

S is not an n-set). Hence |S| < 7’” + 1. Therefore, max,,(L,,) :%

VI. Foul n-set of a ladder graph
Theorem 2.13. For any even integer m > 4, fou,(L,,) = 2.

Proof. Let S be a minimal foul n-set of L,,. Then both S and S are not n-sets. If possible, let |S| = 1, then by Theorem 2.11
S is not an n-set. But |S | = m-1 is an n-set (by Remark 1.9), a contradiction. Thus, 2 < [S| < m - 2. On the other hand, let
S1= {w;, v;} where 1< j< % . The set S; and S, are not n-set (since Uyes, (N[v]} # L,, and u; v; are not an edge of
Uyes; (N[v])). Since S is minimal [S| = 2. Therefore, fou,(L,, ).

VII. Types of Locating Dominating sets
In this section we call an Id-set defined above as a simple Id-set.
Definition 2.14. A ld-set S of the graph G is called a powerful Id-set if S is also an Id-set of G.
Definition 2.15. A Id-set S of the graph G is called a maximal Id-set if S is not an ld-set of G.
Definition 2.16. A set S of vertices of the graph G is called a foul Id-set if neither Snor S is an Id-set of G.

The minimum cardinality of a simple Id-set, powerful Id-set, maximal Id-set and foul Id-set are respectively, called
simple ld-number, powerful Id-number, maximal Id-number and foul ld-number of G and are denoted by sim;,;(G),
pow,4(G), max,;;(G) and fou,,(G) respectively. From the above definitions it is clear that for every graph G, pow;4(G) =
sim;4(G) and max;3(G) = sim,(G).

VIII. Simple Id-set and Powerful Id-set of a ladder graph

Theorem 2.17. For any even integer m > 4,

3, form=6
m m

simu (L) = pow,g(Ly) =4 37 form >=4,m # 6and S = even
m

;—1, forleOand?zodd

Proof. For m = 6 result follows fr {ab rel b {b,c
\J
a {a,b,c c

Figure 1: Locating Dominating set of L.
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Let S be minimal simple Id-set of G = L,,, for m > 4.

Case(i): When m=>4 and — even except for m = 6. Let §;= {up;_y1, Vpioy, Upi Vi 1, LS @ < 7. Since S; are the
partitions of V(G) then by Theorem 1.5 we have S N S; = 2# @. Thus |S| = 2 (7) == . Conversely, let S =V U U where, V
= {v;, V4, Vs,... , vm}and U = {u,, u,, ug,..., um} then Sis clearly an ld-set(because I(v,[S) # 1(v3]S) #... # I(vm _,|S)
# l(u,|S) # 1(u5]S) ; * I(u%_1|S). We also seezthat the chosen set S holds the Definition 2.14. Therefore, both Szand S

are Id-set. Hence [S| < [SN V| +[SNU| = () +(5) = . Thus simyg(Lyn) = powa(Ly)= -

Case(ii): When m > 10 and% odd: Let S;= {uy;_q, Vi1, Uz, Vg 1 1< 0 < mT_Z . Since S; are the partitions of V(G) then

by Theorem 1.5 we have Sn S;= 2# @ Thus |S| > 2(’”T‘Z) =~ -1. Conversely, let S =V U U where, V = {v,, v, vs,... ,
vm_ } and U ={u,, u,, ug,... ,um _,} be asubset of V(G) then Sis clearly an Id-set (because I(v,|S) # I(v5]S) #... #
2 2
I(vm|S) # [(1y]S) # 1(u3]S)#... # l(um}|S)). So S is an ld-set. We also see that the chosen set S holds the Definition2.14.
2 2

Therefore, both S and S are ld-set. Hence |S| < |SN V| + SN U| = (mT_2)+( mT_Z

) = = — L Thus simyq(Ly) = pow(Lm) =% — L.
IX. Maximal ld-set of a ladder graph
Theorem 2.18. For any even integer m > 4, max;;(L,,) = ? +1.

Proof. For m = 4,6 result follows from Figure 2

a {b,c} {a,b b c
\V
b c a {a,b,d d

Figure 2: Maximal Locating Dominating set of L, and L.

Let S be minimal maximal Id-set of G = L,,, for m = 4.

Case i : When m> 8 and = even. Let S;= {up;_, V1 }, 1S < mT_z T .= {vyuy b 1<i< mT_Z and W =

{v%, u% }. Since S;, T; and W are the partitions of V(G) then by Theorem 1.5 we have SNS; #0,SNT; # @ and SN
W = @. Thus [S| = (mT_Z) + (mT_Z) +2= ?+ 1. Conversely, let S=V uU UW, where V = {v;,vs,vs, ...,v%_l}, U=
{u,, uy, ug, ...,u%_z} and W = {v%, u%} then S is clearly an ld-set (because 1(v,|S)# 1(v4]S) #... # I(v%_1|S) # 1(u,|S) #
I(us)S) #...# I(u%_1|8)). S0 S is an ld-set. We also see that the chosen set S holds the Definition 2.15. Therefore, both S

m

and S are Id-set. Hence [S| < SN V[ +[SN U[+[SNW| = () + (’"T“*) +2= 2 + 1 Thus maxyg(Ly) =5 + 1.

Case ii: Whenm > 10 and —- odd. Let S; = {upi_, V1 }, LS TS 7 Ti= {1, 1< i< T —Land W= {vm,un}.

Since S;, T; and W are the partitions of V(G) then by Theorem 1.5wehave SNS; #0,SNT; #® andSNnW =+ @. Thus
SIZ () + (G =1 + 2 =2+1 Conversely, let S =V U UUW, where V = {v,v3,v5,..,vm_,}, U =
2

{uz ug,ug, ..., um _ }and W = {vm, um} then S is clearly an ld-set (because I(v,|S)# I(v4]S)#... # l(vm _,|S) # 1(w, |S) #
2 2 2 2
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I(us]S) #...# I(u%_2|S)). S0 S is an ld-set. We also see that the chosen set S holds the Definition 2.15. Therefore, both S
and Sare Id-set. Hence [S| <[SN V[ + (SN U+ [SNW| = (52 + (B2) +2= 2 + 1. Thus maxjg(Ly,) =2 + 1.

X. Foul Id-set of a ladder graph
Theorem 2.19. For any even integer m> 4, fouyy(L,,) = 3.

Proof. Let S be minimal foul Id-set. Then S is not an ld-set and S is also not an Id-set of L,,. For m > 4. If possible, let
|S|=1, then S is not an Id-set. But |S| = m-1 is an ld-set, which contradicts the Definition 2.16. If S = {u, v} where u, ve G
then |S| = m - 2 is an Id-set, which contradicts the Definition 2.16. Thus 3< |S|< m - 3. On the other hand, let S, =
{u,,v;,v,}. The set S; and S, are not Id-sets (because I(u,|S;) = I(v5|S;) and I(u,|V-S;) = I(v,|V-S;) respectively). Since
S is minimal, |S| = 3. Therefore fou;;(L,,) = 3.

XI. Types of Almost Locating Dominating sets
In this section we call an ald-set defined above as a simple ald-set.
Definition 2.20. An ald-set S of the graph G is called a powerful ald-set if S is also an ald-set of G.
Definition 2.21. An ald-set S of the graph G is called a maximal ald-set if S is not an ald-set of G.
Definition 2.23. A set S of vertices of the graph G is called a foul ald-set if neither Snor S is an ald-set of G.

The minimum cardinality of a simple ald-set, powerful ald-set, maximal ald-set and foul ald-set are respectively, called
simple ald-number, powerful ald-number, maximal ald-number and foul ald-number of G and are denoted by sim;,4(G),
pow44(G), max,,(G), and foug,,(G). From the above definitions it is clear that for every graph G, pow,,(G) =
Simgq(G) and max ;4 (G) = simy;4(G).

XII. Simple ald-set and Powerful ald-set of a ladder graph

2, form=4,6

Theorem 2.23. For any even integer m > 4, simy4(Ly,) = powgq(Ly) = {? _1, form >8

Proof. When m = 4 and 6 result follows from the Figure 3.

{b} b {a { {b
{a} a a {a,b} b

Figure 3: Almost Locating Dominating set of L,and L,
Let S be a minimal simple ald-set of G = L,,, for m > 8.
Case i: When m = 0 (mod 3):
Subcase (i): When = = 0 (mod 6): Let S;= {vy;, up}, 1<i< =—1and T= {vpy,up} L<i< T Then

$1,85, .., T1T,,... are the partitions of V(G) and by the Theorem 1.5 we have SN S; + @ and SN T; # @ . Therefore, |S| =
(=1 +(5) =7~ 1 Conversely, let S = VU U where, V = {v;,v3,v5,..,vm_,}and U= {uy, uy, g, .., um _,} then
2 2

both S and S are ald-set(because 1(v,|S) # 1(v,|S) # 1(vg|S) #...# I(vm|S) # I(u,|S) # I(u3|S) #...# I(um|S)). Hence |S| <
2 2
ISAVI+[SN U= () + (= 1) +2= == L Thus simgq(Lyn) = poweig(Lm) = 5 — 1.

125



Lalita Lamani &Yogalakshmi S/ 1IIMTT, 67(1), 121-128, 2021

m—2 m-—2

Subcase(ii): When % # 0 (mod 6): Let S;= {v,,uy}t 1<i< - and T;= {vy_q1, Uy} 1< < - Then
$1,S5, ., T1T,, ... are the partitions of V(G) and by the Theorem 1.5 we have SN S; = @ and SN T; # @ . Therefore, |S| =
(mT_Z) + (mT_z) ==~ 1. Conversely, let S = VU U where, V = {vy,v3,v5,...,vm _,} and U = {u,, Uy, Ug, .., um _,} then
2 2
both S and S are ald-set(because 1(v,|S) # 1(v,|S) # I(vg|S) #...# I(vm|S) # I(u|S) # I(u3]S) #...# l(um|S)). Hence, |S| <
2 2
SOV +[SN Ul = (=2 + (B +2= Z— 1 Thus simgq(Lu) = powaia(lm) = = — 1.

m-—2 m-—2

Case(ii): When m =2 (mod 3): Let S; ={us;_5, V3j_2 , Ugj_1, V3i_1 1, L <1< — and T; = {uz;, v3,}, 1<i< - Then

S5.,Sy, ..., TiT,, ... are the partitions of V(G) and by the Theorem 1.5wehave SNS; =2+ @andSN T; = @ . Since S; is

a set containing 2 elements of an ald-set. Therefore, total number of elements in S; sets which are the elements of ald-set is

2 (mT_z ). Thus, |S|> 2 (mT_Z ) + (mT_z ) == —1. Conversely, let S =V, UV, UU where, V= {v,, Vs, Vg, .., um _,},
2

Vo= {v3,V6,Vg, .., vm_ .} and U = {u,, us, ug, ..., um _,} then both Sand S are ald-set(because I(v;|S) # I(v,]S) #
2 2
I(v,18) #...# I(vm[S) # I(uy[S) # I(ui5S) #...# I(um|S)). Hence, [S| <[S N V4| +[S N W[+ [Sn U| = (52 + (55 + ==
2 2
= = — 1. Thus simgi(Lm) = poWaia(Lm) = 5 = L.

Case(jii): When m = 1(mod 3): Let ;= {usi—y, Vaicy » Uspy U3k 1T < T2 and T = {vgi g} 10 < B

Then S,,S,,..,TiT,, ... are the partitions of V(G) and by the Theorem 1.5 we have SN S§;=2#@and SN T, # D .
Since S; is a set containing 2 elements of an ald-set. Therefore, total number of elements in S; sets which are the elements
of ald-set is 2 ( mT_“ ). Thus, |S| = 2( mT_‘L ) + (mTJr2 ) = ?— 1. Conversely, let S =V, UV, U U where, V;=
{vy,v,, v, ...,v%_ 1} Ve ={vs, 06,0, ..., v%_ .+ and U = {us, ug, u,, ...,u%_ ,} then both Sand S are ald-set(because
[(v,]S) # l(vs]S) # I(vg|S) #...# I(v%|S) # 1wy |S) # I(u,|S) #...# I(u%|8)). Hence, S| S |SN V| +|SN TV, +|SN U|=(

-4 —4 .
=)+ () + 7 = == L Thus simag (L) = powgia(Lm) = 5= L.

XII1. Maximal ald-set of a ladder graph

3, form=4

Theorem 2.24. For any even integer m > 4, maxg4(L,,) = {? form =6

Proof. Let S be minimal maximal ald-set of G =L,, for m >4. For m = 4 if |[S| = 1 then S is not an ald-set (because
I(v,|S) = I(u,]S)) and S is an ald-set, which contradicts Definition 2.21. If |S| =2 and S = {u, v}, if u is adjacent to v then
both S and S are ald-set (because I(u;|S) # I(v4|S) and I(u |V - S) # I(v |V- S) respectively), which contradicts Definition
2.21. Suppose if u is not adjacent to v then S is not an ald-set (because 1(u,|S) = 1(v4]S)). If |S| = 3 then S is an ald-set and
S is not an ald-set (because I(v,|S) = I(u,|S)). Hence the result and is as shown in Figure 4.

c {a.c}

b a

Figure 4: Maximal ald-set for m = 4.

Case(i). For == 1(mod 3): Let S; = {v3;_1, Uz }, 1< < mT_Z, Ty= {Vs, Usj, Vajeqs Usisg b L <0< mT_Z and W = {

uy, v4}. Since S;,T,; and W are the partitions of V(G) and by the Theorem 1.5we have SNS; #@,SNT; # ® andSn

W # @ . Therefore, |S| > ( mT_z) + 2 ( mT_Z) +1 = = Conversely, let S = VUU U W where, V =
{v3,v6,v9, .., vm _,, vm_ U = {uy, Uz, Us, Ug, Ug, Ug, ..., Um _,, um _ }and W = {v;}. We See that the set S chosen in
2 2 2 2

this case holds the Definition 2.21. Therefore, S is ald-set of G. Hence, |S| <|SN V| +SnNn U] +|Sn W| = (mT_Z) +

29 +1= 2 Thusmaxga(Ln) = -
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m+2 . m—4
v Ty = {vsi, Uz, Vajgqs Usipr h 1SITS A and W= {

Case(ii). For% =2(mod 3): Let S;= {vai_y,usq h 1<i< =

u,, v1}. Since S;, T,; and W are the partitions of V(G) and by the Theorem 1.5we have SN S; # @, SN T; # @ andSnN
W #@.Therefore, IS|>( =+ 2 (=5 + 1= 2. Conversely, let S = VUU U W where, V =
{vs, V6, Vo, ..., v%_ 5 v%_ oh U={uy, us, us, ug, ug, Ug , ..., um u%_ - u%} and W = {v, }. We See that the set S chosen
in this case holds the Definition 2.21. Therefore, S is maximal ald-set of G. Hence, |S| <|S N V| +[Sn U[+ [Sn W| = (

2 "%
-4 -1
=) +2() 1= 2. Thusmaxgg(Lm) = -

m—6 m-—6

Case(iii). For %E 0 (mod 3): Let S; ={vsi_q,U3;_41 H 1< — T;= {vs;, Usjy V3ipqs Ugipr hr 1 SITS > W={

uy, vy and Wy = {um, vm, um __,vm__}. Since S;, T;, W and W, are the partitions of V(G) and by the Theorem 1.5 we

2 2 2 2

haveSNS; #®, SNT, #®,SNW = @ and S N W, # @. Therefore, |S| > (mT‘G) +2 (mT‘ﬁ) +1+2 = 2. Conversely, let

S=V UUUWU W, where, V = {vs,vs, Vg, ..., vm _ .}, U ={uy, us, us, Ug, Ug, Ug , .., um _,, um_,}, W={v;}and W, =
2 2 2

-1’

{um_,,um}. We See that the set S chosen in this case holds the Definition 2.21. Therefore, S is maximal ald-set of G.
2 2
Hence, S| < |S N V| +|S N U| + |SN W|+|SN W, | = (mT‘é) +2 (’”T‘G) +1+2= 2 Thus maxgq(lm) = -

XIV. Foul ald-set of a ladder graph

2, form=4

Theorem 2.25. For any even integer m =>4, fougq(Ly) = {3 form =6

Let S be minimal foul ald-set, then S is not an ald-set and S is also not an ald-set of L,,,. For m = 4, result follows from
Figure 5.

{a,b} b

{a} {a,b}
Figure5: Foul ald-set for m = 4.

For m > 6. If possible, let |S| = 1, then S is not an ald-set. But |S| = m - 1 is an ald-set, which contradicts the Definition
2.22. 1f S={u, v} where u, v € G then |S | = m - 2 is an ald-set, which contradicts the Definition 2.22. Thus 3 < |S| < m -
3. On the other side, let S;= { v;,u,, u3}. The set S; and S, are not ald-sets (because I(v,]S;) = | (u4|S;) and I(v,|V- S;) =
I(u,|V - S;) respectively). Since S is minimal, |S| = 3. Therefore fou,4(L,,) = 3.
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