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Abstract - In this study, we have introduced a three-parameter univariate continuous distribution called Logistic Chen 

distribution. Some distributional properties of the distribution such as the shapes of the probability density, cumulative 

distribution and hazard rate functions, quantile function, survival function, the skewness, and kurtosis measures are 

derived and established. To estimate the model parameters, we have employed three well-known estimation methods 

namely maximum likelihood estimation (MLE), least-square estimation (LSE), and Cramer-Von-Mises estimation (CVME) 

methods.  A real data set is considered to explore the applicability and capability of the proposed distribution also AIC, 
BIC, CAIC and HQIC are calculated to assess the potentiality of the Logistic Chen distribution.  
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I. INTRODUCTION 

In most of the literature of probability distributions and 

applied statistics, it is observed that the study of reliability 

and survival analysis in various fields of applied statistics 

and life sciences, the probability distributions are often 

used. In modeling survival data, existing models do not 

always reveal a better fit. Hence most of the researchers 
are interested to generalizing standard distributions and 

investigating their flexibility and applicability. Usually, 

these new compounded models produces an improved fit 

as compared to usual classical survival models and are 

obtained by introducing one or more additional shape 

parameter(s) to the parent distribution. 

 A compounded survival model that includes the different 

shapes like bathtub-shaped, increasing, decreasing, and 

inverted bathtub-Shaped failure rate in a single model 

would be beneficial in survival analysis. Such a model 

would provide considerable flexibility and goodness of fit 

for fitting a broad variety of lifetime data sets. Such a 
survival model might also be taken to determine the 

distribution class from which the data is selected, by 

constructing confidence interval over its parameters. The 

proposed distribution introduced here satisfies these 

criteria. 

Reference [1] has proposed a new two-parameter 

lifetime distribution with bathtub shaped or increasing 

failure rate (IFR) function. The cumulative distribution 

function (CDF) of Chen distribution is 

( ) 1 exp[ (1 )];  , 0,  0xG x e x


        (1.1) 

 

And its probability density function (PDF) is

1( ) exp[ (1 )];  , 0,  0x xf x x e e x
         (1.2) 

The motivation to extend the Chen distribution is to 

introduce a flexible model that has revealed the various 

shapes of the hazard and density functions. The Markov 

Chain Monte Carlo methods for Bayesian inference of the 

Chen model has introduced by [2].  [3] have introduced the 

extended Chen (EC) distribution is derived from the 

generalized Burr-Hatke differential equation and nexus 

between the exponential and gamma variables. [4] was 

introduced a new lifetime distribution with increasing, 

decreasing and bathtub-shaped hazard rate function which 

is constructed by the compounding of the Weibull and 

Chen distributions and is called Weibull–Chen (WC) 

distribution. [5] was presented the Lindley-Chen 

Distribution which is more flexible lifetime distribution 

having increasing, decreasing and bathtub-shaped hazard 

rate function. 

The logistic distribution is a univariate continuous 

distribution and both its PDF and CDF functions have been 

used in many different areas such as logistic regression, 

logit models and neural networks. It has been used in the 

physical sciences, demography, sports modeling, and 

recently in finance. The logistic distribution has wider tails 

than a normal distribution so it is more consistent with the 

underlying data and provides better insight into the 

likelihood of extreme events. If X follows the logistic 

random variable with shape parameter λ > 0, its cumulative 

distribution function is given by 

 
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; ;   0,
1 x

F x x
e 

 


  


  (1.3) 

and its corresponding PDF is 

 

 
 

2
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x

x

e
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




 




  


  (1.4) 

[6] have presented logistic modified exponential 

distribution. [7] introduce a new family of continuous 

distributions generated from a logistic random variable 

called the logistic-X family. Its density function can be 
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symmetrical, left-skewed, right-skewed and reversed-J 

shaped, and can have increasing, decreasing, bathtub and 

upside-down bathtub hazard rates shaped. [8] have 

introduced the logistic exponential power distribution 

having flexible hazard rate function. [9] have presented the 
logistic inverse Weibull distribution. [10] have introduced 

an approach to define the logistic compounded model and 

introduced the logistic–exponential survival distribution. 

This has several useful probabilistic properties for lifetime 

modeling. Unlike most distributions in the bathtub and 

upside down bathtub classes, the logistic–exponential 

distribution exibit closed-form density, hazard, cumulative 

hazard, and survival functions. The survival function of the 

logistic–exponential distribution is 

 
 

1
; ;   >0, 0, 0

1 1x
S x x

e



    

 

  (1.5) 

Using the same approach used by [10] we have defined the 

new distribution called logistic Chen (LC) distribution. 

The main aim of this study is to present a more flexible 

distribution by adding just one extra parameter to the Chen 

distribution to attain a better fit to the lifetime data sets. 

We have discussed some distributional properties and its 
applicability. The remaining sections of the proposed study 

are arranged as follows. In Section 2 we present the new 

logistic Chen exponential (LC) distribution and its various 

mathematical and statistical properties. We have make use 

of three well-known estimation methods to estimate the 

model parameters namely the maximum likelihood 

estimation (MLE), least-square estimation (LSE) and 

Cramer-Von-Mises estimation (CVME) methods. For the 

maximum likelihood (ML) estimate, we have constructed 

the asymptotic confidence intervals using the observed 

information matrix are presented in Section 3. In Section 4, 

a real data set has been analyzed to explore the 
applications and capability of the proposed distribution. In 

this section, we present the estimated value of the 

parameters and log-likelihood, AIC, BIC and CAIC 

criterion for ML, LSE, and CVME.  Finally, in Section 5 

we present some concluding remarks. 

 
II. THE LOGISTIC CHEN DISTRIBUTION 

Let X be a positive random variable with a positive shape 

parameter α and a positive scale parameter λ then CDF of 

logistic Chen distribution can be defined using (1.1) and 

(1.2) and we can write

 

 
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 (2.1) 

And its PDF is 
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This CDF function be similar to the log logistic CDF 

function with the second term of the denominator being 

changed in its base to Chen function, hence we called it 

Logistic Chen distribution. 

 

A. Reliability function  

The reliability function of Logistic Chen (LC) distribution 

is 

( ) 1 ( )R x F x 
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                                                                      (2.3) 

B. Hazard function  

The failure rate function of LC distribution can be defined 

as, 
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                                                                                     (2.4) (2.4) 

In Fig. 1, we have displayed the plots of the PDF and 

hazard rate function of LC distribution for different values 

of α, β and λ. 

C. Quantile function: 

The Quantile function of Logistic Chen distribution is 
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1/
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ln ln 1 1 ;0 1

1

p
Q p p

p





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       

 (2.5) 

D. Skewness and Kurtosis: 

The Skewness and Kurtosis based on quantile function are, 

Bowley’s coefficient of skewness is 

 

     
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Coefficient of kurtosis based on octiles which was defined 

by [11] is 
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Fig. 1. Plots of PDF (left panel) and hazard function 

(right panel) for different values of α, β and λ. 

 

III. METHODS OF ESTIMATION 

In this section, we have presented some well-known 

estimation methods for estimating parameters of the 

proposed model, which are as follows 

A. Maximum Likelihood Estimates 
For the estimation of the parameter, the maximum 

likelihood method is the most commonly used method 

[12]. Let, 1 2, ,... nx x x  is a random sample from 

 , ,LC     and the likelihood function,  , ,L     is 

given by
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Now log-likelihood density is 
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                                                                       (3.1.1) 

 

Differentiating (3.1.1) with respect to α, β and λ we get, 
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Where   ( ) exp 1ix

iA x e


   

Equating above three non linear equations to zero and 

solving simultaneously for α, β and λ, we get the 

maximum likelihood estimate ˆ ˆˆ ,    and    of the 

parameters α, β and λ. By using computer software like R, 

Matlab, Mathematica etc for maximization of (3.1.1) we 

can obtain the estimated value of α, β and λ. For the 

confidence interval estimation of α, β and λ and testing of 

the hypothesis, we have to calculate the observed 

information matrix. The observed information matrix for 

α, β and λ can be obtained as, 
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Let ( , , )     denote the parameter space and the 

corresponding MLE of   as ˆ ˆˆ ˆ( , , )    , then 

    
1

3
ˆ 0,N J

   
 

 where  J   is the Fisher’s 

information matrix. Using the Newton-Raphson algorithm 

to maximize the likelihood creates the observed 

information matrix and hence the variance-covariance 

matrix is obtained as, 

 

 
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1 ˆ ˆ ˆ ˆˆcov( , ) var( ) cov( , )

ˆ ˆ ˆ ˆˆcov( , ) cov( , ) var( )

J
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 
 
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 
 
 

  (3.1.2) 

Hence from the asymptotic normality of MLEs, 

approximate 100(1-α) % confidence intervals for α, β and 

λ can be constructed as, 

 
/2

ˆ ˆ( )Z SE  , ˆ ˆ( )/2Z SE  and, 
/2

ˆ ˆ( )Z SE   

where /2Z is the upper percentile of standard normal 

variate 

 

B. Method of Least-Square Estimation (LSE) 

The ordinary least square estimators and weighted least 

square estimators are proposed by [13] to estimate the 

parameters of Beta distributions. Here we have employed 

the same method for the LC distribution. The least-square 

estimators of the unknown parameters α, β and λ of LC 
distribution can be obtained by minimizing  

               
2

1

; , , ( )
1

n

i

i

i
T X G X

n
  



 
   
   (3.2.1) 

with respect to unknown parameters α, β and λ. 

Consider ( )iG X represents the distribution function of the 

ordered random variables
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distribution function G(.). The least-square estimators of α, 

β and λ say ˆ ˆˆ ,   and    respectively, can be obtained by 

minimizing 
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(3.2.1) (3.2.2) 
with respect to α, β and λ. 

Differentiating (3.2.1) with respect to α, β and λ we get, 
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Similarly, the weighted least square estimators can be 

obtained by minimizing 
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with respect to α, β and λ. The weights wi are 
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Hence, the weighted least square estimators of α, β and λ 

respectively can be obtained by minimizing, 
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with respect to α, β and λ. 

 

C. Method of Cramer-Von-Mises estimation (CVME) 

The CVME estimators of α, β and λ of LC distribution are 
obtained by minimizing the function 
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                                                                          (3.3.1) 

Differentiating (3.3.1) with respect to α, β and λ we get, 
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Here we use   ( ) exp 1ix
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By solving 
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 
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simultaneously we will get the CVM estimators. 
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IV. ILLUSTRATION WITH TWO REAL DATASETS 

For the illustration we have used two real data sets used by 

previous researchers, which are as follows 

 

Dataset-I (NP data) 

We illustrate the applicability of the LC model using a real 

dataset used by former researchers. We have taken 100 
observations on breaking the stress of carbon fibers (in 

Gba) used by [14]. 

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 

4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 

3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 

3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 

3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 

1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 

3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 

2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 

1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 
1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65. 

 

The MLEs are calculated directly by using the optim() 

function in R software [15] and [16] by maximizing the 

likelihood function (3.1). By maximizing the likelihood 

function in (3.1) we have obtained ̂ = 2.3155, ̂ = 

0.6160, ̂ = 0.1387 and corresponding Log-Likelihood 

value is l = -141.4061. In Table I, we have demonstrated 

the MLE’s with their standard errors (SE) and 95% 

confidence interval for α, β, and λ. 

Table I 
MLE, SE AND 95% CONFIDENCE INTERVAL FOR α, β AND λ 

Parameter MLE SE 95% ACI 

alpha 2.3155 0.7103 (0.9233, 3.7077) 

beta 0.6160 0.1277 (0.3657, 0.8663) 

lambda 0.1387 0.0388 (0.0627, 0.2147) 

.  

We have displayed the graph of the profile log-likelihood 

function of α, β, and λ in Fig. 2 and observed that the 

MLEs are unique. 

 
Fig. 2. Graph of profile log-likelihood function of α, β, 

and λ. 

In Fig. 3 we have presented the Q-Q plot (empirical 

quantile against theoretical quantile) and CDF plot 

(empirical distribution function against theoretical 

distribution function). 
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Fig 3. The Q-Q plot (left panel) and CDF plot (right 

panel) of LEE distribution 

 

 

Dataset-II (Lee) 

The second real data set represents the remission times (in 

months) of a random sample of 128 bladder cancer patients 

[17], sorted data  
0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 
1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 
2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 
3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 
4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 
5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 

6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 
7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 
9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 
12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 
14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 
20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 
36.66, 43.01, 46.12, 79.05 

By maximizing the likelihood function in (3.1) we have 

obtained ̂ = 4.4642, ̂ = 0.1551, ̂ = 0.2490 and 

corresponding Log-Likelihood value is l = -409.421. In 

Table II we have demonstrated the MLE’s with their 

standard errors (SE) and 95% confidence interval for α, β, 

and λ. 

TABLE II 
MLE AND 95% CONFIDENCE INTERVAL FOR α, β AND λ 

Parameter MLE SE 95% ACI 

alpha 4.4642 1.8973 (0.7455, 8.1829) 

beta 0.1551 0.0559 (0.0455, 0.2647) 

lambda 0.2490 0.0479 (0.1551, 0.3429) 

 

We have displayed the graph of the profile log-likelihood 

function of α, β, and λ in Fig. 2 and observed that the 

MLEs are unique. 

 

 
Fig. 2. Graph of profile log-likelihood function of α, β, 

and λ. 

In Fig. 3 we have presented the Q-Q plot (empirical 

quantile against theoretical quantile) and CDF plot 

(empirical distribution function against theoretical 

distribution function). 
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Fig 3. The Q-Q plot (left panel) and CDF plot (right 

panel) of LEE distribution 

By using MLE method we estimate the parameter of each 

of these distributions. For the goodness of fit purpose we 

use negative log-likelihood (-LL), Akaike information 

criterion (AIC), Bayesian information criterion (BIC), 

Corrected Akaike Information criterion (CAIC) and 
Hannan-Quinn information criterion (HQIC), statistic to 

select the best model among selected models. The 

expressions to calculate AIC, BIC, CAIC and HQIC are 

listed below: 

a) ˆ2 ( ) 2AIC l k     

b)  ˆ2 ( ) logBIC l k n    

c)  2 1

1

k k
CAIC AIC

n k


 

 
  

d)  ˆ2 ( ) 2 log logHQIC l k n     
  

where k is the number of parameters and n is the size of 

the sample in the model under consideration. Further, in 

order to evaluate the fits of the LHC distribution with 

some selected distributions we have taken the 
Kolmogorov-Simnorov (KS), the Anderson-Darling (W) 

and the Cramer-Von Mises (A2) statistic. These statistics 

are widely used to compare non-nested models and to 

illustrate how closely a specific CDF fits the empirical 

distribution of a given data set.  These statistics are 

calculated as 

  

1

1
max ,i i

i n

i i
KS d d

n n 

 
   

 

 

 

   1

1

1
2 1 ln ln 1

n

i n i

i

W n i d d
n

 



         

 
2

2

1

2 11

12 2

n

i

i

i
A d

n n

 
   

 
  

where  i i  ;d CDF x  the xi’s being the ordered 

observations. In Table III and Table IV we have displayed 

the estimated value of the parameters of Logistic Chen 
distribution using MLE, LSE and CVME method and their 

corresponding KS, W and A2 statistic with p-value.  

 

 

                                                                                             

TABLE III 

(Dataset-I) 
ESTIMATED PARAMETERS, KS, W AND A2 STATISTIC WITH P-VALUE OF MLE, LSE AND CVME METHOD  

Estimation Method ̂  ̂  ̂  KS(p-value) W(p-value) A2(p-value)  

MLE 2.31545 0.61597 0.13873 0.0628(0.8246) 0.0649(0.7846) 0.3849(0.8633)  

LSE 1.29409 0.89243 0.07217 0.0472(0.9793) 0.0448(0.9078) 0.7447(0.5223)  

CVME 1.28886 0.9032 0.07012 0.0496(0.9663) 0.0442(0.9115) 0.8032(0.4784)  

 

TABLE IV 

(Dataset-II) 
ESTIMATED PARAMETERS, KS, W AND A2 STATISTIC WITH P-VALUE OF MLE, LSE AND CVME METHOD  

Estimation Method ̂  ̂  ̂  KS(p-value) W(p-value) A2(p-value) 

MLE 4.46424 0.15506 0.24904 0.0309(0.9997) 0.0144(0.9997) 0.0930(0.9999) 

LSE 6.93816 0.10434 0.29433 0.0301(0.9998) 0.0127(0.9999) 0.0987(0.9999) 

CVME 6.98329 0.10491 0.29382 0.0307(0.9997) 0.0122(0.9999) 0.0968( 0.9999) 
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Fig 4. The Histogram and the density function of fitted distributions of dataset-I (left panel) and dataset-II (right 

panel) of MLE, LSE and CVME. 

 

 

 
Fig 5. Sample quantiles verses fitted quantiles of MLE, LSE and CVME of dataset-I (left panel) and dataset-II 

(right panel). 
 

 

To illustrate the goodness of fit of the Lindley inverse 

exponential distribution, we have taken some well known 

distribution for comparison purpose which are listed 

below, 

A. Generalized Exponential Extension (GEE) 

distribution: 

The probability density function of GEE introduced by 

[18] having upside down bathtub-shaped hazard function 

distribution with parameters ,   and  is 

      

  

1

1

1 1 1

1 1 1 0

GEEf x; , , x exp x

exp x ; x .

 




     







   

    
  

 

B. Lindley-Exponential (LE) distribution: 

The probability density function of LE [19] can be 

expressed as 

    
2

1

( ) 1 1 ln 1 ; , >0, 0
1

x x x

LEf x e e e x


  
  




   

     
 

 

C. Generalized Exponential (GE) distribution 

The probability density function of generalized 

exponential distribution defined by [20] 

     
1

1 ; 0 0x x
GEf x; , e e , , x


      


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D. Chen distribution 

The probability density function of Chen distribution

  1 1 0 0x x
CNf x; , x e exp e ; ( , ) , x

          
     

  

. 

E. Exponential power (EP) distribution 

The probability density function Exponential power (EP) 

distribution defined by [21] is 

   1( ) exp 1 ; ( , ) 0, 0
x x

EPf x x e e x
 

       
    

 

. 
where α and λ are the shape and scale parameters, 

respectively. 

For the judgment of potentiality of the proposed model we 

have presented the value of  Akaike information criterion 

(AIC), Bayesian information criterion (BIC), Corrected 

Akaike information criterion (CAIC) and Hannan-Quinn 

information criterion (HQIC) which are presented in Table 

V and Table VI for dataset I and II.  

TABLE V 
LOG-LIKELIHOOD (LL), AIC, BIC, CAIC AND HQIC (DATASET-I) 

Model -LL AIC BIC CAIC HQIC 

LCD 141.4061 288.8121 296.6276 289.0621 291.9752 

GEE 141.3708 288.7416 296.5571 288.9916 291.9047 

LE 143.2473 290.4946 295.7049 290.6183 292.6033 

EP 145.9589 295.9179 301.1282 296.0391 298.0266 

GE 146.1823 296.3646 301.5749 296.4883 298.4733 

Chen 148.9044 301.8089 307.0192 301.9326 303.9176 

 

 

TABLE VI 
LOG-LIKELIHOOD (LL), AIC, BIC, CAIC AND HQIC (DATASET-II) 

Model -LL AIC BIC CAIC HQIC 

LCD 409.4744 824.9487 833.5048 825.1423 828.4251 

GEE 410.6013 827.2026 835.7586 827.3961 830.6789 

LE 412.6254 829.2507 834.9548 829.3467 831.5683 

EP 413.0776 830.1552 835.8592 830.2512 832.4728 

GE 426.6474 857.2948 862.9989 857.3893 859.6124 

Chen 431.1625 866.3251 872.0291 866.4211 868.6427 

 

 

  
Fig. 6. The Histogram and the density function of fitted distributions for the dataset-I (left panel) and dataset-II 

(right panel). Empirical distribution function with estimated distribution function for the dataset-I 

(left panel) and dataset-II (right panel). 
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The Histogram and the density function of fitted distributions and Empirical distribution function with estimated 

distribution function of LIE and some selected distributions are presented in Fig. 6. 

 

 

 
Fig. 7. Empirical distribution function with estimated distribution function for the dataset-I (left panel) and 

dataset-II (right panel). 

 

To compare the goodness-of-fit of the LC distribution with other competing distributions we have presented the value of 

Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von Mises (CVM) statistics in Table VII and 

Table VIII. It is observed that the LC distribution has the minimum value of the test statistic and higher p-value thus we 

conclude that the LC distribution gets quite better fit and more consistent and reliable results from others taken for 
comparison. 

 

TABLE VII 
THE GOODNESS-OF-FIT STATISTICS AND THEIR CORRESPONDING P-VALUE (DATASET-I) 

 

Model KS(p-value) AD(p-value) CVM(p-value) 

LCD  0.0628(0.8246)  0.0649(0.7846)  0.3849(0.8633) 

GEE  0.0654(0.7862)  0.0723(0.7385)  0.4202(0.8281)  

LE  0.0838(0.4836)  0.1225(0.4860)  0.7042(0.5549)  

EP  0.0993(0.2771)  0.1861(0.2963)  1.3081(0.2297)  

GE  0.1078(0.1959)  0.2293(0.2174)  1.2250(0.2581)  

Chen  0.0945(0.3336)  0.2180(0.2353)  1.6938(0.1364)  

 

TABLE VIII 
THE GOODNESS-OF-FIT STATISTICS AND THEIR CORRESPONDING P-VALUE (DATASET-II) 

 

Model KS(p-value) AD(p-value) CVM(p-value) 

LCD  0.0321(0.9994)  0.0149(0.9997)  0.1010(0.9999)  

GEE  0.0442(0.9636)  0.0394(0.9367)  0.2630(0.9631)  

LE  0.0691(0.5740)  0.1131(0.5252)  0.6276(0.6219)  

EP  0.0725(0.5115)  0.1279(0.4652)  0.7137(0.5472)  

GE  0.1199(0.0503)  0.5993(0.0223)  3.6745(0.0126)  

Chen  0.1426(0.0108)  0.6879(0.0135)  4.3878(0.0057)  

 

V. CONCLUSIONS 

In this study, we have introduced a three-

parameter univariate continuous Logistic Chen 

distribution. Some distributional and statistical properties 

of the LC distribution are presented such as the shapes of  

 

the probability density, cumulative density and hazard rate 

functions, survival function, hazard function quantile 

function, the skewness, and kurtosis measures are derived 

and established and found that the proposed model is 

flexible and inverted bathtub shaped hazard function. The 
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model parameters are estimated by using three well-known 

estimation methods namely maximum likelihood 

estimation (MLE), least-square estimation (LSE), and 

Cramer-Von-Mises estimation (CVME) methods and we 

concluded that the MLEs are quite better than LSE, and 
CVM. A real data set is considered to explore the 

applicability and suitability of the proposed distribution 

and found that the proposed model is quite better than 

other lifetime model taken into consideration.  
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