Some Properties of Analytic and P-Valent Functions Involving Certain Convolution Operators

Yakubu Gambo ${ }^{1}$, Kunle Oladeji Babalola ${ }^{2}$, Adamu Umar Mustapha ${ }^{3}$, Daniel Eneojo Emmanuel ${ }^{4}$
1,3,4 Department of Mathematics and Computer Science Federal University of Kashere, Gombe, Nigeria.
${ }^{2}$ Professor Department of Mathematics, University of Ilorin, Nigeria

Abstract

Let $A(p)$ be denote the class of functions that are analytic in the unit disk E which have the form; $f(z)=z^{p}+a_{p+1} z^{p+1}+a_{p+2} z^{p+2}+a_{p+3} z^{p+3}+\ldots$ the class of functions satisfying the geometric condition $\operatorname{Re}\left\{\left(M_{n}^{\sigma, p} f(z)\right) / z^{p}\right\}>\beta$ was defined where, $M_{n}^{\sigma, p}: A(p) \rightarrow A(p)$ is an operator define using convolution * The main concern of this work is to obtain some basic properties of the class with geometric condition above. These properties include; Inclusion, Growth, and Covering theorem.

Keywords - Convolution operators, analytic and p-valent functions.

I. INTRODUCTION

Let $A(p)$ denotes the class of functions

$$
\begin{equation*}
f(z)=z^{p}+a_{p+1} z^{p+1}+a_{p+2} z^{p+2}+a_{p+3} z^{p+3}+\ldots \text { and } p \in \mathrm{~N}=\{1,2,3, \ldots\} \tag{1.1}
\end{equation*}
$$

which are analytic in E.
Let P be the class of all functions of the form $p(z)=1+c_{1} z+c_{2} z^{2}+\ldots$
which are analytic in E such that for $z \in E, \operatorname{Rep}(z)>0$ and $p(0)=1$.
For $0 \leq \beta<1$, let $P(\beta)$ denote the subclass of P consisting of analytic function of the form

$$
p_{\beta}(z)=\beta+(1-\beta) p(z), \quad p(z) \in P
$$

Let $g(z)=z^{p}+a_{p+1} z^{p+1}+a_{p+2} z^{p+2}+a_{p+3} z^{p+3}+\ldots \in A(p)$ Then, the convolution of f and g, written as $(f * g)(z)$ or $(g * f)(z)$ is defined as $(f * g)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k}$

The Gauss hypergeometric function is defined for $|z|<1, z \in E$ by the power series as

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{k=1}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!} \tag{1.3}
\end{equation*}
$$

Where $(\lambda)_{k}$ is known as the Pochhammer symbol defined in term of Gamma by
$(\lambda)_{k}=\frac{\Gamma(\lambda+k)}{\Gamma(\lambda)}= \begin{cases}1 & \text { if } \mathrm{k}=0 \\ \lambda(\lambda+1)(\lambda+2) \ldots(\lambda+k-1), & \text { if } \mathrm{k}>0\end{cases}$

Where $\lambda \neq(0,-1,-2,-3, \ldots)$
Let σ be any fixed real number and p be a natural number, such that $(\sigma+p-n)>0$, for $\mathrm{n} \in \mathrm{N}_{0}$ such that $n>-p$. Define by

$$
\begin{equation*}
f_{\sigma+p, n}(z)=z_{2}^{p} F_{1}(\sigma+p-n, 1 ; 1 ; z), \quad(\sigma+p-n)>0 \tag{1.4}
\end{equation*}
$$

Let $f_{\sigma+p, n}^{(-1)}(z)$ be defined such that

$$
\begin{equation*}
\left(f_{\sigma+p, n} * f_{\sigma+p, n}^{(-1)}\right)(z)=z^{p}{ }_{2} F_{1}(1,1 ; 1 ; z) \tag{1.5}
\end{equation*}
$$

For $\mathrm{n}=0$, we write $f_{\sigma+p}$ instead of $f_{\sigma+p, 0}$ and $f_{\sigma+p}^{(-1)}$ instead of $f_{\sigma+p, 0}^{(-1)}$

Let $f \in A(1)$, define the operator $D^{\sigma}: A(1) \rightarrow A(1)$ by $D^{\sigma} f(z)=\left(f_{\sigma+1} * f\right)(z)$

The operator D^{σ} is called Rusheweyh derivative [8], Analogous to D^{σ} Noor [4] defined the integral operator $I_{\sigma}: A(1) \rightarrow A(1)$ by $I_{\sigma} f(z)=\left(f_{\sigma+1}^{(-1)} * f\right)(z)$

Let $f \in A(1)$ Babalola [2] respectively defined the differential and integral operators as
$L_{n}^{\sigma}: A(1) \rightarrow A(1)$ by $L_{n}^{\sigma} f(z)=\left(f_{\sigma+1} * f_{\sigma+1, n}^{(-1)} * f\right)(z)$ and $l_{n}^{\sigma}: A(1) \rightarrow A(1)$ by $l_{n}^{\sigma} f(z)=\left(f_{\sigma+1}^{(-1)} * f_{\sigma+1, n} * f\right)(z)$
The differential and the integral operators above D^{σ} and I_{σ} respectively defined various classes of functions in different literature (see $[1,3,5,6,8]$).

Now, we simply defined the following operators
Definition 1: Let $f \in A(p)$ we define the operator $M_{n}^{\sigma, p}: A(p) \rightarrow A(p)$ by

$$
M_{n}^{\sigma, p} f(z)=\left(f_{\sigma+p} * f_{\sigma+p, n}^{(-1)} * f\right)(z) \text { and }
$$

Definition 2: Let $f \in A(p)$ we define the operator $m_{n}^{\sigma, p}: A(p) \rightarrow A(p)$ by

$$
m_{n}^{\sigma, p} f(z)=\left(f_{\sigma+p}^{(-1)} * f_{\sigma+p, n} * f\right)(z)
$$

Note that; $M_{0}^{\sigma, p} f(z)=M_{0}^{0, p} f(z)=f(z)$ Similarly, $m_{0}^{\sigma, p} f(z)=m_{0}^{0, p} f(z)=f(z)$

Remark 1: Let $f \in A(p)$. Then $M_{n}^{\sigma, p}\left(m_{n}^{\sigma, p} f(z)\right)=m_{n}^{\sigma, p}\left(M_{n}^{\sigma, p} f(z)\right)=f(z)$

Definition 3: Let $f \in A(p)$ and σ be any fixed real number, $n \in N_{0}$ and p is a natural number, then a function $f \in A(p)$ is said to be in the class $\lambda_{n}^{\sigma, p}(\beta)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{M_{n}^{\sigma, p} f(z)}{z^{p}}\right\}>\beta, \quad 0 \leq \beta<1 \tag{1.6}
\end{equation*}
$$

Remark 2: From the Remark 1 and the geometric condition $\mathbf{1 . 6}$ the function in the class $\lambda_{n}^{\sigma, p}(\beta)$ can be represented in terms of function in $p(\beta)$ as $f(z)=m_{n}^{\sigma, p}\left[z^{p} p_{\beta}(z)\right]$. The class $\lambda_{n}^{\sigma, p}(\beta)$ will be investigated in section 3 . However, we require some preliminary discussions and results, which we present in the next section.

II. ITERATED INTEGRAL TRANSFORM OF THE CLASS P

Definition 4: Let $h \in P$ and σ be any fixed real number such that $(\sigma+p-n)>0$ for each $n \geq 1$ we define p-sigma nth iterated integral transform of $h(z), z \in E$ as

$$
\begin{equation*}
h_{\sigma+p, n}(z)=\frac{\sigma+p-n}{z^{\sigma+p-n}} \int_{0}^{z} t^{\sigma+p-(n+1)} h_{\sigma+p, n-1}(t) d t, \quad \mathrm{n} \geq 1 \tag{2.1}
\end{equation*}
$$

With $h_{\sigma+p, 0}(z)=p(z)$

Since, $\quad h_{\sigma+p, 0}(z)$ belong to P, the transformation $h_{\sigma+p, n}(z)$ is analytic, satisfying $h_{\sigma+p, 0}(0)=1$ and $h_{\sigma+p, 0}(z) \neq 0$ We denote the family of iterations above by $P_{n}^{\sigma, p}$ With $\mathrm{p}(\mathrm{z})$ given by
it is easily verified that $h_{\sigma+p, n}(z)=1+\sum_{k=1}^{\infty} C_{n, k}^{\sigma, p} z^{k}$
Where $C_{n, k}^{\sigma, p}=\frac{(\sigma+p-1)(\sigma+p-2)(\sigma+p-3) \ldots(\sigma+p-n)}{(\sigma+p+k-1)(\sigma+p+k-2) \ldots(\sigma+p+k-n)} c_{k}$

The multiplier of c_{k} above can be written in factorial form as

$$
\frac{(\sigma+p-1)(\sigma+p-2)(\sigma+p-3) \ldots(\sigma+p-n)}{(\sigma+p+k-1)(\sigma+p+k-2) \ldots(\sigma+p+k-n)}=\frac{(\sigma+p-1)!}{(\sigma+p-n-1)!} \cdot \frac{(\sigma+p+k-n-1)!}{(\sigma+p+k-1)!}
$$

From the fact that $\Gamma(\lambda+1)=\lambda!$ and $(\lambda)_{k}=\frac{\Gamma(\lambda+k)}{\Gamma(k)}$ the above expression can also be represented as $(\sigma+p-n)_{n} /(\sigma+p+k-n)_{n}$ where $(\sigma+p-n)_{n}$ and $(\sigma+p+k-n)_{n}$ are known as Pochhammer symbols. Therefore we have
$C_{n, k}^{\sigma, p}=\frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}}$
with $\frac{(\sigma+p-n)_{0}}{(\sigma+p+k-n)_{0}}=1$

By setting $\quad h_{\sigma+p, 0}(z)=L_{0}(z)=(1+z) /(1-z) \quad$ we get the \quad-sigma \quad nth integral iterations of Möbius function as

$$
\begin{align*}
L_{\sigma+p, n}(z) & =\frac{\sigma+p-n}{z^{\sigma+p-n}} \int_{0}^{z} t^{\sigma+p-(n+1)} L_{\sigma+p, n-1}(t) d t, \quad \mathrm{n} \geq 1 \tag{2.4}\\
& =1+2 \sum_{k=1}^{\infty} \frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}} z^{k}
\end{align*}
$$

Remark 3: From (2.3) above and well known inequality (caratheodory Lemma), we have the following inequality

$$
\left|C_{n, k}^{\sigma, p}\right| \leq 2 \frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}}
$$

With equality if and only if $h_{\sigma+p, n}(z)=L_{\sigma+p, n}(z)$

Remark 4: Let $h_{\sigma+p, n}(z)=\chi_{n}^{(\sigma)}(p(z))$ then for any $p \in P$ and $n, m \in N_{o}=N \cup\{0\}$ we have
$\chi_{m}^{(\nu)}\left(\chi_{n}^{(\sigma)}(p(z))\right)=\chi_{n}^{(\sigma)}\left(\chi_{m}^{(v)}(p(z))\right)$ where $v>0$ is real. This can be seen easily using (2.2) and (2.3) above. For $v=\sigma$ gives $\chi_{m}^{(\sigma)}\left(\chi_{n}^{(\sigma)}(p(z))\right)=\chi_{n}^{(\sigma)}\left(\chi_{m}^{(\sigma)}(p(z))\right)=\chi_{m+n}^{(\sigma)}(p(z))$

We use this remark to study functions in the family $P_{n}^{\sigma, p}$.
Remark 5: We note that for $p=1, P_{n}^{\sigma, 1}=P_{n}^{\sigma}$ a class of function established by Babalola [2]. The following results characterizing the family $P_{n}^{\sigma, p}$ can be obtained mutatis mutandis as in Section 2 of [1], thus we omit the proofs.

Theorem 2.1: Let $\gamma \neq 1$ be a non-negative real number then for any fixed σ a real, $p \in \mathrm{~N}$ and each $n \geq 1$.
$\operatorname{Re} h_{\sigma+p, n-1}(z)>\gamma \Rightarrow \operatorname{Re} h_{\sigma+p, n}(z)>\gamma, \quad 0 \leq \gamma<1$
and
$\operatorname{Re} h_{\sigma+p, n-1}(z)<\gamma \Rightarrow \operatorname{Re} h_{\sigma+p, n}(z)<\gamma, \quad \quad \gamma>1$

Corollary 2.1: $P_{n}^{\sigma, p} \subset P, \quad \mathrm{n} \geq 1$
Theorem 2.2: $P_{n+1}^{\sigma, p} \subset P_{n}^{\sigma, p}, \quad \mathrm{n} \geq 1$
Theorem 2.3: Let $h_{\sigma+p, n}(z) \in P_{n}^{\sigma, p} \quad$ Then,
(a) $\left|\mathrm{h}_{\sigma+\mathrm{p}, \mathrm{n}}(z)\right| \leq 1+2 \sum_{k=1}^{\infty} \frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}} r^{k}, \quad|\mathrm{z}|=r$
(b) $\left|\mathrm{h}_{\sigma+\mathrm{p}, \mathrm{n}}(z)\right| \geq 1+2 \sum_{k=1}^{\infty} \frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}}(-r)^{k}, \quad|z|=r$

The equality is attained in the upper bound for $h_{\sigma+p, n}(z)=L_{\sigma+p, n}(z)$ while for the lower bound the equality is realized if $h_{\sigma+p, n}(z)=L_{\sigma+p, n}(-z)$.

III. CHARACTERIZATIONS OF THE CLASS $\lambda_{n}^{\sigma, p}(\beta)$

we present the main results of this work in this section. These include; Inclusion, Growth, Covering, and Closure under certain integral transformation. A basic relationship between the classes $P_{n}^{\sigma, p}$ and $\lambda_{n}^{\sigma, p}(\beta)$ was given by the following lemma.

Lemma 3.1: Let $f \in A(p), \sigma$ be any fixed real number and $0 \leq \beta<1$ where $n \in \mathrm{~N}$. Then, the following are equivalent.
(i) $f \in \lambda_{n}^{\sigma, p}(\beta)$
(ii) $\quad\left(M_{n}^{\sigma, p} f(z) / z^{p}-\beta\right) /(1-\beta) \in P$
(iii) $\left(f(z) / z^{p}-\beta\right) /(1-\beta) \in P_{n}^{\sigma, p}$

Proof

That (i) \Leftrightarrow (ii) is clear from the definition (3). Now, (ii) is true \Leftrightarrow there exist $p \in P$ such that

$$
\begin{align*}
M_{n}^{\sigma, p} f(z) & =z^{p}[\beta-(1-\beta) p(z)] \\
& =z^{p}+(1-\beta) \sum_{k=1}^{\infty} c_{k} z^{p+k} \tag{3.1}
\end{align*}
$$

Now, by applying the operator $m_{n}^{\sigma, p}$ on (3.1) we get

$$
\begin{equation*}
f(z)=z^{p}+(1-\beta) \sum_{k=1}^{\infty} C_{n, k}^{\sigma, p} z^{k+p} \tag{3.2}
\end{equation*}
$$

We get from (3.2) above that

$$
\begin{equation*}
\left(f(z) / z^{p}-\beta\right) /(1-\beta)=1+\sum_{k=1}^{\infty} C_{n, k}^{\sigma, p} z^{k} \tag{3.3}
\end{equation*}
$$

Thus, the right hand side of (3.3) is a function in $P_{n}^{\sigma, p}$ This completes the proof.

MAIN RESULTS

Theorem 3.1: For any fixed σ satisfying $(\sigma+p-n)>0$. The following inclusion holds $\lambda_{n+1}^{\sigma, p}(\beta) \subset \lambda_{n}^{\sigma, p}(\beta)$ Proof

Let $f \in \lambda_{n+1}^{\sigma, p}(\beta)$ then by Lemma 3.1 we have $\left(f(z) / z^{p}-\beta\right) /(1-\beta) \in P_{n+1}^{\sigma, p}$ By theorem 2.2 we have $\left(f(z) / z^{p}-\beta\right) /(1-\beta) \in P_{n}^{\sigma, p}$ by Lemma 3.1 again $f \in \lambda_{n}^{\sigma, p}(\beta)$. This completes the proof.

Theorem 3.2

Let $f \in \lambda_{n}^{\sigma, p}(\beta)$, then
$r^{p}+2(1-\beta) \sum_{k=1}^{\infty} \frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}}(-1)^{k} r^{p+k} \leq|f(z)| \leq r^{p}+2(1-\beta) \sum_{k=1}^{\infty} \frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}} r^{p+k}$
$|z|=r, \quad 0 \leq r<1$. And the inequalities are sharp

Proof

The result follows by setting $h_{\sigma+p}(z)=\left(f(z) / z^{p}-\beta\right) /(1-\beta)$ in Theorem 2.3.

Equality is attained in upper bound for the function $f(z)=|z|^{p}+2(1-\beta) \sum_{k=1}^{\infty} \frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}}|z|^{p+k}$
While equality in the lower bound is realized for the function given by

$$
f(z)=|z|^{p}+2(1-\beta) \sum_{k=1}^{\infty} \frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}}(-1)^{k}|z|^{p+k}
$$

Hence, the proved.

Theorem 3.3

Each function $f(z)$ in the class $\lambda_{n}^{\sigma, p}(\beta)$ maps the unit disk onto a domain which covers the disk

$$
|w|<r^{p}+2(1-\beta) \sum_{k=1}^{\infty} \frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}}(-1)^{k} r^{p+k}
$$

Proof

From theorem 3.2 above we have the inequality below

$$
|f(z)| \geq r^{p}+2(1-\beta) \sum_{k=1}^{\infty} \frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}}(-1)^{k} r^{p+k}
$$

This implies that the range of every function $f(z)$ in the class $\lambda_{n}^{\sigma, p}(\beta)$ covers the disk
$|w|<r^{p}+2(1-\beta) \sum_{k=1}^{\infty} \frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}}(-1)^{k} r^{p+k}$
$|w|<1+2(1-\beta) \sum_{k=1}^{\infty} \frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}}(-1)^{k}$
$=\inf _{\mathrm{r} \rightarrow 1}\left\{r^{p}+2(1-\beta) \sum_{k=1}^{\infty} \frac{(\sigma+p-n)_{n}}{(\sigma+p+k-n)_{n}}(-1)^{k} r^{p+k}\right\}$ Hence, proved.

REFERENCES

[1] Babalola, K. O., \& Opoola, T. O. (2006). Iterated integral transforms of Caratheodory functions and their applications to analytic and univalent functions. Tamkang Journal of Mathematics, 37(4), 355-366.
[2] Babalola, K. O., (2008). New subclasses of analytic and univalent functions involving certain convolution operators. Mathematica Tome, 50(73), 3-12.
[3] Goel, R. M., \& Sohi, N. S. (1980). Subclasses of univalent functions. Tamkang. J.. Math. 77-81.
[4] Noor, K.I. (1998). On an integral operator, J. Nat. Geometry, 13 (2), 127200.
[5] Noor, K. I. (2005). Generalized integral operator and multivalent functions. J. Inequal. Pure Appl. Math, 6, 1-7.
[6] Noor, K. I. (2004). Some classes of p-valent analytic functions defined by certain integral operator. Applied Mathematics and Computation, 157(3), 835-840.
[7] Pommerenke, Ch., Univalent functions, Springer-Verlag, New York Inc., 1983.
[8] Ruscheweyh, S. (1975). New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1), 109115.

