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Abstract -  Let )( pA be denote the class of functions that are analytic in the unit disk E which have the form; 
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 was defined where,  A (p ): A (p )M σ,p

n  is an operator define using convolution * The 

main concern of this work is to obtain some basic properties of the class with geometric condition above. These properties 

include; Inclusion, Growth, and Covering theorem. 
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I. INTRODUCTION 

Let )( pA  denotes the class of functions 
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which are analytic in E. 

Let P be the class of all functions of the form (1.2)                           ...1)( 2

21  zczczp  

which are analytic in E such that for Ez , Rep(z) > 0 and p(0) = 1. 

For 0 ≤ β < 1, let P(β) denote the subclass of P consisting of analytic function of the form 
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 Then, the convolution of  f  and g, written 

as (f * g)(z) or (g * f )(z) is defined as 
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The Gauss hypergeometric function is defined for Ezz    ,1  by the power series as 
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Where k)(  is known as the Pochhammer symbol defined in term of Gamma by 
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Where ...) ,3,2,1,0(   

Let   be any fixed real number and p be a natural number, such that  Nnfor   ,0)( 0 np such that pn  . 

Define by 
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  be defined such that 

  (1.5)                                                                            );1 ;1 ,1()( 12

)1(

,, zFzzff p

npnp  

   

For n=0, we write pf  instead of 0,pf   and 
)1(

 pf   instead of 
)1(

0,



 pf  

Let )1(Af  , define the operator ))(()(by    )1()1(: 1 zffzfDAAD  


 

The operator 
D  is called Rusheweyh derivative [8], Analogous to 

D  Noor [4] defined the 

integral operator   )()(by   )1()1(: )1(

1 zffzfIAAI  

  

Let )1(Af   Babalola [2] respectively defined the differential and integral operators as 
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The differential and the integral operators above 
D and I respectively defined various classes 

of functions in different literature (see [1, 3, 5, 6, 8] ). 

Now, we simply defined the following operators 

Definition 1: Let )( pAf   we define the operator by  )()(:, pApAM p

n 
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Definition 2: Let )( pAf   we define the operator by  )()(:, pApAm p
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Remark 1: Let )( pAf  . Then     )()()( ,,,, zfzfMmzfmM p
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Definition 3: Let )( pAf  and  be any fixed real number, 0Nn  and p is a natural number, then a function )( pAf 

is said to be in the class )(,  p

n  if and only if 
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Remark 2: From the Remark 1 and the geometric condition 1.6 the function in the class )(,  p

n can be represented in terms 

of function in )(p  as  )()( , zpzmzf pp

n 
 . The class )(,  p

n will be investigated in section 3. However, we require 

some preliminary discussions and results, which we present in the next section. 

II. ITERATED INTEGRAL TRANSFORM OF THE CLASS P 

Definition 4: Let Ph and  be any fixed real number such that 0)(  np for each 

1n  we define p-sigma nth iterated integral transform of )(zh , Ez  as 
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With )()(0, zpzh p   

Since, )(0, zh p belong to P, the transformation )(, zh np  
is analytic, satisfying 1)0(0,  ph  

and 0)(0,  zh p  We denote the family of iterations above by 
p
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 With p(z) given by    (1.1) 
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From the fact that !)1(  
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 the above expression can also be represented as 

nn nkpnp )/()(    where nnp )(   and nnkp )(   are known as Pochhammer symbols. 

Therefore we have 
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By setting )1/()1()()( 00, zzzLzh p   we get the p-sigma nth integral iterations of 

Möbius function as 
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Remark 3: From (2.3) above and well known inequality (caratheodory Lemma), we have the 

following inequality 
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With equality if and only if  )()( ,, zLzh npnp     

Remark 4: Let  )()( )(

, zpzh nnp


   then for any Pp  and }0{,  NNmn o  we have 

     )()( )()()()( zpzp v

mnn

v

m     where 0v  is real. This can be seen easily using (2.2) and (2.3) above. For 

v gives        )()()( )()()()()( zpzpzp nmmnnm

    

We use this remark to study functions in the family 
p

nP ,
. 

Remark 5: We note that for 1p , 


nn PP 1,
a class of function established by Babalola [2]. The following results 

characterizing the family 
p

nP ,
can be obtained mutatis mutandis as in Section 2 of [1], thus we omit the proofs. 
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Theorem 2.1:  Let 1  be a non-negative real number then for any fixed   a real, p  and each .1n  
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The equality is attained in the upper bound for )()( ,, zLzh npnp    while for the lower bound 

the equality is realized if )()( ,, zLzh npnp    . 

                                              III. CHARACTERIZATIONS OF THE CLASS )(,  p

n  

we present the main results of this work in this section. These include; Inclusion, Growth, Covering, and Closure under certain 

integral transformation. A basic relationship between the classes 
p

nP ,
 and )(,  p

n was given by the following lemma. 

Lemma 3.1: Let   ),( pAf  be any fixed real number and 0 ≤ β < 1 where n ∈ N. Then, the following are equivalent. 
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Now, by applying the operator 
p

nm ,
 on (3.1) we get 
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We get from (3.2) above that  
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Thus, the right hand side of (3.3) is a function in 
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This completes the proof. 

 

MAIN RESULTS 

Theorem 3.1: For any fixed   satisfying (σ + p − n) > 0. The following inclusion holds )()( ,,
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Hence, the proved. 

Theorem 3.3 
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Each function )(zf in the class )(,  p

n  maps the unit disk onto a domain which covers the disk 
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Proof 

From theorem 3.2 above we have the inequality below  
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This implies that the range of every function )(zf  in the class )(,  p

n covers the disk 
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 Hence, proved. 
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