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Abstract - This article investigated the treatment effect on LDL-C and atherosclerotic blood flow through microchannel with 

heat and magnetic field. The study involved the formulation of mathematical models which represent the blood momentum 

equation, LDL-C concentration and Energy equation, we also remodeled the region of atherosclerosis in order to incorporate 
the treatment term for the control and prevention of excessive cholesterol bloodstream in order to improve healthy. The 

modeled (PDEs) equations governing the general flow were scaled to a system of dimensionless ordinary differential 

equations (ODEs) using perturbation technique and are solved directly using the method of undetermined coefficient. Wolfram 

Mathematica, version 10 was used to code the various flow profiles with some of the pertinent governing parameters varied. 

From the simulation, it is noticed that the blood velocity increased, as we varied the treamtnt, Soret number, heat radiation, 

Grashof number, solutal Grashof number and the permeability of the porous medium, while the velocity decreases for 

variation of Hartmann number, Schmidt number, chemical reaction and oscillatory frequency, mainwhile the fluid temperautre 

also rises for the variation of growth rate, heat radiation and oscillatory frequency, however, we noticed a decreases in 

temperautre for the increasing values of the Prandtl number. In conclusion, it is seen that, first, if we want to keep blood 

velocity in check, we need to control the impact of the Lorentz force, Soret number, the treatment and keep a watch on the 

intake of the Trans fats, secondly, Hartmann number control could be useful for early detection and treatment of termal 

ailments like tumour growth. If we must avoid Trans fat induced cardiovascular diseases, we must adhere to diet control and 

limit the intake of fatty substances. 

Keywords - Modeling, Treatment, Heat, Blood, Atherosclerosis, atheroma, Cholesterol, Magnetic Field, LDL-C, ODEs and 

PDEs 

I. INTRODUCTION 

Cholesterol and triglycerides cannot circulate loosely in the blood, so they travel in “round parcels” called lipoproteins. 

Lipoproteins contain a special mix of fats and proteins which allow them to flow freely in the blood. They are four main 

lipoproteins (sometimes called apo-lipoproteins). They vary in size, content and how tightly they are packed (density). 

However, problems occur when any one of these arteries becomes narrowed due to the slow build-up of fatty material (called 

plaque or atheroma) [20]. This process is called atherosclerosis, which causes coronary heart disease (CHD). Sometimes an 

artery can become so narrow that it cannot deliver enough oxygenated blood to the tissues and organs of the body. When these 

fatty deposits become very large or extended they may burst, and over time this damage may partly or completely block the 

artery, when this happens it is called acute coronary syndrome (ACS), unstable angina or heart attack. A heart attack is 
sometimes referred to as a myocardial infarction or MI. Fats that circulate in the blood are called lipids. Cholesterol and 

triglycerides are both lipids. They have essential roles in the body. In excess they are harmful. Cholesterol is needed to build 

cell walls and to make hormones and vitamin D. Some of the body cholesterol comes from the food we eat; but most is made in 

the liver. When broken down cholesterol is used to make bile acids which help us to digest our food [26]. 

Atherosclerosis is a disease of the cardiovascular system which involves a hardening of the arteries due to the deposition of 

plaque. Localized atherosclerotic constrictions in arteries, known as arterial stenosis, are predominantly found in the internal 

carotid artery which supplies blood to the brain, the coronary artery which supplies blood to the cardiac muscles, and the 

femoral artery which supplies blood to the lower limbs. Blockage of more than about 70 % (by area) of the artery is considered 

clinically significant, since it presents significant health risks for the patient [23, 25]. Complete closure of the artery can occur 

if a blood-clot becomes lodged in the stenosis, and this can lead to a stroke or a heart attack. Atherosclerosis is a very slow 
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process, happening over many years. It can start very early in life and results in the buildup of fatty material in the linings of 

your blood vessels. These fatty deposits start when the blood vessel lining becomes damaged. This makes it easier for 

cholesterol (carried on lipoproteins like LDL) to stick on and build up more rapidly. HDL lipoproteins can remove cholesterol 

from these deposits. Reducing your LDL cholesterol, increasing your HDL cholesterol and reducing other risk factors can help 

slow down the process of atherosclerosis. 
The heart, blood vessels and blood make up our circulatory system. The heart is a muscle which never stops beating; it pumps 

blood around the body. The left side pumps oxygen and nutrient rich blood to the brain, muscles, organs, and every cell in the 

body. The right side of the heart is slightly smaller and returns blood to the lungs to be topped up with oxygen. The heart has 

its own blood supply which comes from the coronary arteries. These divide many times to provide oxygen and nutrients to 

every part of the heart muscle to help keep it healthy and pumping normally [3]. 

Many investigators have theoretically studied the flow of blood through permeable walls. Elshehawey and Husseny [1] studied 

the peristaltic transport of a magneto-fluid with porous boundaries. Fluid entering the flow region through one plate at the same 

rate as it left through the other plate was considered. Sinha and Misra [2] investigated the blood flow through an artery with 

permeable wall. Makinde and Osalusi [3] studied steady magnetohydrodynamics (MHD) flow in a 2 dimension channel with 

permeable boundaries. Steady MHD flow through a circular vertical pipe with permeable boundaries has been investigated by 

Elangovan and Ratchagar [4]. Makinde and Chinyoka [5] studied the unsteady MHD flow in a porous 2 dimension channel 

with one wall impermeable and the other porous. Recently, Sattar and Waheedullah [6] investigated the unsteady flow of a 
viscoelastic fluid through porous medium bounded by two porous plates. It was assumed that one plate is injected with certain 

constant velocity and that the other sucked it off with the same velocity. Xin-Hui Si et al. [7] studied the asymmetric laminar 

flow in a porous channel with expanding or contracting walls. Homotopy analysis method (HAM) was employed to obtain 

expressions for the velocity fields.  

The study of pulsatile flow in a porous channel or porous pipe has recently becomes the object of scientific research because of 

its importance in some practical phenomena, such as transpiration cooling and gaseous diffusion. Particularly, the study of 

pulsatile flow in a porous channel is useful in understanding the process of dialysis of blood in artificial kidneys and in 

industrial applications in relation to heat exchange efficiency. Also, the pulsatile flow between permeable walls is important in 

understanding blood flow in the circulatory system, where the nutrients are supplied to tissues of various organs and waste 

products are removed. In 1971, Wang [14] studied the interesting problem of pulsatile flow in a porous channel bounded by 

rigid walls. Many researchers studied the effect of slip velocity at permeable boundaries [2-4]. Recently, Eldesoky [8] 
investigated the unsteady pulsatile flow of blood through porous medium in an artery under the influence of periodic body 

acceleration and slip condition in the presence of magnetic field, considering blood as an incompressible electrically 

conducting fluid.  

Most of the researchers dealing with steady incompressible laminar flow with uniform injection or suction have attempted to 

determine the axial pressure variation, wall shear stress on the porous walls, and shapes of the velocity profiles within the tube. 

The unsteady suction problem was considered by Tsangaris et al. [15]. The case of periodic suction for flow through parallel 

plates was considered by Ramanamurthy et al. [16]. The flow of blood can be controlled by applying the appropriate magnetic 

field. Many researchers have shown that blood is an electrically conducting fluid. The Lorentz force will act on the constituent 

particles of blood, and this force will oppose the motion of blood and thus reduce its velocity. This decelerated blood flow may 

help in the treatment of certain cardiovascular diseases and in diseases with accelerated blood circulation, such as hypertension, 

hemorrhage etc. Therefore, it is essential to study the blood flow in presence of a magnetic field. Much work has been done in 

this field by various investigators [8, 13, 21, and 22]. 
The main objective of the present paper is to study the treatment effect on LDL-C and atherosclerotic blood flow through a 

microchannel with heat and magnetic field. The walls are permeable and considering blood as an incompressible electrically 

conducting fluid. The governing modified Navier-Stokes equations are solved by perturbation technique. In the following 

sections, the problem is formulated, analyzed and discussed. 

The research questions are as follows:  

 

i. How does Lorentz force enhance blood velocity horizontally?  

ii. How does the increase in atheroma (plaque) affects blood temperature distribution? 

iii. How does treatment helps in improving blood velocity?  

iv. How does the chemical reaction affects blood flow and temperature profile? 

v. Does heat applied to the surface improve oxygenated blood circulation?  

vi. Does Grashof number and solutal Grashof number accelerates oxygenated blood circulation? 

vii. Does the atheroma concentration affects oxygenated blood circulation? 
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II. MATHEMATICAL FORMULATION 

Let consider blood as viscous fluid which is made up of 45% formed elements and 55% plasma, it is also an incompressible, 

and electrically conducting fluid flowing through a porous microchannel saturated with an atheroma. The arteries where flow 

takes place is assumed to be vessel, which is three dimensional where the radius of the vessel it is too small and as such can be 

approximated to be a channel, Misra & Adhikar [28]. We considered drugs as medications used to treat and control the excess 

cholesterol in bloodstream in order to keep the flow in check. If not treated the excessive cholesterol derived from the Trans fat 

and the under utilization of fats produced by the liver could lead to morbidity and mortality. We also assumed that blood is 
pumped to circulation through microchannel, where back flow is unlikely or prevented by the valves in the body. Let us also 

assume that the flow is unidirectional with a velocity  * *0,0,w w in a horizontal direction
*x . Following the 

aformnetioned literature, we sketched diagram showing an atherosclerotic microchannel with magnetic field applied 

perdicularly to the direction of flow with intensity  00,0,B B , (see Figure 2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Following the Figure 2.1, and considering the modification of the region in Amos and Ogulu [21], Midya et. al [18], Bunonyo 

and Amos [20], the geometry of atherosclerosis with treatment and growth rate is modeled as: 
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Figure 2.1: Schematic Diagram Showing Atherosclerotic Channel with Applied Magnetic 

Intensity 
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III. GOVERNING EQUATIONS 

 

Following Bunonyo and Amos [20], we present the models governing blood flow through a microchannel, which is: 

 

A. Blood Momentum Equation 
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B. Energy Equation 
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C. LDL-C Concentration Equation 
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The flow equations in (3.1)–(3.4) are subject to the boundary conditions: 
* * *
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       (3.5) 

 

 

 

where 0Q  is the dimensional heat source of the fluid, bTk is the blood thermal conductivity, mD  is the molecular diffusivity,

T  is far field temperature of the fluid, TD  is the thermal diffusivity of the fluid, b  is the density of blood, e  is electrical 

conductivity, 0B  is the magnetic intensity, 0k  is the chemical term, bpc  is the specific heat capacity of blood, T  is the 

volumetric expansion, C  is the volumetric expansion due to concentration, b  is the dynamic viscosity of blood,   is the 

porosity, 
*k  is the permeability of the porous medium, mT  is the mean temperature of the fluid. 

 

D. DIMENSIONLESS PARAMETERS 

 

Equations (3.2) to (3.5) are made dimensionless using the following quantities: 
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    (3.6) 

Using the dimensionless quantities in equation (3.6), the governing models in equations (3.2)- (3.4) and the corresponding 

boundary condition, equation (3.5) reduces to: 
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The flow equations in equation (3.7) to equation (3.9) are subject to the following boundary conditions: 
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IV. METHOD OF SOLUTIONS 

The flow is purely oscillatory due to the pumping action of the heart, thus, it is appropriate to seek an oscillatory (periodic) 

solution, the coupled partial differential equation (3.7)-(3.9) are reduced to system of ordinary differential equations and the 

boundary conditions in equation (3.10) is also reduced Bunonyo and Amos [20], the solution can be presented in the following 

form:  

   

   

   

0

0

0

0

,

,

,

i t

i t

i t

i t

w y t w y e

y t y e

y t y e

P
P e

x

y

h









 

 








 


 



 

 


 


          (3.11) 

 

We also assumed long wavelength approximation in equation (3.11), Noreen and Qasim [27] so that the dimensionless 

governing equations (3.7)-(3.9) and the corresponding boundary condition in equation (3.10) are reduced to: 
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The boundary conditions become:  
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We solve equation (3.13) in order to obtain the temperature distribution in the blood, in which the solution becomes: 
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Using the boundary conditions in equation (3.15) to obtain the constant coefficients, we obtained: 
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Differentiating equation (3.17) twice, and substitute the result into equation (3.14), we have the LDL-C equation as: 
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The homogenous solution of equation (3.19) is: 

     0 2 3 2 3h A sinh B cosh               (3.20) 

The particular solution of equation (3.19) reduces to: 
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The general solution of equation (3.19) is: 
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Using the boundary conditions in equation (3.15) in order to solve for the constant coefficients in equation (3.22), we have: 
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in order to investigate the impact of the temperature profile and LDL-C on blood velocity, we substitute equation (3.23) and 

(3.17) into the momentum equation (3.12), we have: 
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Simplifying equation (3.24) we have: 
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The particular solution of equation (3.25) is: 

   0 0 4 2 4 3pw B A cos B cosh              (3.26) 

Applying the boundary conditions (3.15) on equation (3.26), we have: 
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The homogenous solution of equation (3.25), we have: 
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The general solution of equation (3.25) is: 

     
 

 
 

 0 5 2
0 5 1 5 1 2 3

1 2 1 1 2

P h B hGc
w A sinh B cosh cos cosh


        

    
    

 
   

           (3.29) 

Solving for the constant coefficients in equation (3.29) using the boundary condition in equation (3.15), we have: 

   
 

 
 

 0 5 2
0 5 1 2 3

1 2 1 1 2

P h B hGc
w B cosh cos cosh


      

    
   

 
   (3.30) 

where 

   

 
   

 
 

2 3
0 5 2

5

2 1 2 11 1 1 1

cos coshP h B hGc
B

cosh cosh cosh

 

      
  

 
  

In order to obtain the blood velocity, we substitute equation (3.30) into equation (3.11), we have: 

   
 

 
 

 0 5 2
5 1 2 3

1 2 1 1 2

, i tP h B hGc
w t B cosh cos cosh e 

      
    

 
       

    (3.31) 

To obtain the blood temperature profile, we substitute equation (3.17) into equation (3.11), which is: 

 
 

 2

2

,
i t

i te
t cos e

cos


   



 
 
 
 

                (3.32) 

The LDL-C effect on blood velocity, we substitute equation (3.23) into equation (3.11). so we have: 

   
 

 4
2 3 2

2 3

, i tt B cosh cos e 
     

 

  
       

               (3.33) 
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V. RESULTS 

The study involved mathematical formulation, proffering of analytical solution and numerical simulation using Mathematica, 

version 10. Having solved the formulated problem, we’ve performed the numerical computation of equation (3.31) to equation 

(3.33) by varying some of the biophysical parameters such as: the treatment parameter
TR , radiation parameter

1Rd , chemical 

parameter
3Rd , Grashof number Gr , solutal Grashof number Gc , Hartmann number M , Schmidt number Sc , oscillatory 

frequency , pulse rate f . We considered the parameters values within a specific standard range as: 0 5  ,

0 10,Sc  32.2 10 J/ms K, bTk   0 1,  14.65J/kg K, 0 5,bpc M  

121,0 2,0 5 , 0.5TPr xR Rd     , 0 1k  ,
33.2 10b   . The dataset used in this research are obtained 

from the Bunonyo and Amos [25] Chato [29] and Anderson & Valvano [30], also considering the Prandtl number 

21,22,23,24,25Pr  [20]. The results are: 

 
 

 

 

 
 

 

 

Figure 4.2: Effect of Hartmann number M  on axial velocity  ,w t  

with variation of 
 

 

Figure 4.1: Effect of Schmidt number Sc on axial velocity  ,w t  

with variation of 
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Figure 4.3: Effect of permeability parameter k  on axial velocity  ,w t  

with variation of 
 

 

Figure 4.4: Effect of solutal Grashof parameterGc  on axial velocity  ,w t  

with variation of 
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Figure 4.5: Effect of Grashof parameter Gr  on axial velocity  ,w t   

with variation of 
 

 

Figure 4.6: Effect of Radiation parameter 1Rd  on axial velocity  ,w t  

with variation of 
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Figure 4.7: Effect of Chemical parameter 3Rd  on axial velocity  ,w t  

with variation of   

 

Figure 4.8: Effect of Oscillatory frequency  on axial velocity  ,w t  

with variation of 
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Figure 4.9: Effect of Soret number 0S  on axial velocity  ,w t  

with variation of 
 

 

Figure 4.10: Effect of time parameter t  on axial velocity  ,w t  

with variation of 
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Figure 4.11: Effect of Growth rate a  on axial velocity  ,w t  

with variation of 
 

 

Figure 4.12: Effect of Growth rate a  on Temperature  ,t   

  with variation of 
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Figure 4.3: Effect of Prandtl number Pr  on Temperature  ,t   

with variation of   

Figure 4.14: Effect of oscillatory frequency on Temperature  ,t   

with variation of   



K.W. Bunonyo et al.  / IJMTT, 67(10), 41-58, 2021 

 

55 

 
 

 

 

 

IV. DISCUSSION AND CONCLUSIONS 

This study investigates mathematical model of the treatment effect on LDL-C and atherosclerotic blood flow microchannel 

with radiative heat. The coupled partial differential equations were scaled, reduced to system of ordinary differential equations 

and solved analytically within the set boundary conditions; the analytical profiles obtained are blood velocity, LDL-C 

concentration and blood temperature profiles respectively. We developed Mathematica codes to perform the numerical 

computations, where we varied the pertinent parameter values. 1 0.5, 10, 15, 0.5, 0.5,TRd Gr Gr R    

3 03, 0.5, 21Rd Sc Pr   and 0.2   the following analysis was reached as 1 as y h   .  The discussions are as 

follows: 

Figure 4.1 illustrates that the axial blood velocity decreases for an increase in Schmidt number 0.2,0.4,0.6,0.8,1.0Sc  . 

This shows that mass diffusivity is greater than momentum diffusivity, and if that happen the blood velocity decreases. The 

figure clearly indicates maximum blood velocity at the point when 0  , however, the velocity began to decrease as the 

boundary layer of the stenosis increases until it is zero when 1  . The effect of the magnetic field was also investigated, and 

Figure 4.2 depicts a decrease in blood velocity, for various numbers of the magnetic field 1,2,3,4,5M  . Figure 4.2 is of the 

view that if a magnetic field is perpendicularly applied on an electrically conducting fluid such as blood, it generates a force 

called the Lorentz force which opposes flow and inhibits the movement of the fluid in the vessel. The figure also showed that 

the velocity is at its peak when 0  before it reduces at the boundary layer gets bigger 1  . The permeability effect in 

allowing blood velocity was investigated using Figure 4.3: this figure depicts an increase in blood velocity for the increase in 

permeability parameter 0.01,0.02,0.03,0.04,0.05k  as blood flows axially. Permeability measures the rate of ease with 

which cholesterol saturated channel will permit the passage of blood through it. It is also illustrated in Figures 4.4 to 4.5, where 

the blood velocity increases for the increase in Grashof number 5,10,15,20,25Gr  and 5,10,15,20,25Gc  . These 

results are of the view that the viscous force is greater than the buoyancy force due to high cholesterol in circulation; however, 

the cholesterol did not inhibit the flow because of the presence of the treatment 0.5TR  . Treatment drugs like pentoxifylline 

is used to improve blood flow in patients with circulation problem to reduce aching, cramping, and tiredness in hands and feet. 

It works by decreasing the thickness (viscosity) of blood, and this change allows the blood to flow more easily, especially in 

the small blood vessels of the hands and feet. 

Figure 4.6 showed an increase in blood velocity for the various increase in radiation parameter  1 2,4,6,8,10,Rd 
 
this 

result is of the view that heat therapy increases blood flow to a specific area and also improved circulation. This is because heat 

Figure 4.15: Effect of radiation parameter value 1Rd  on Temperature 

 ,t   

with variation of   
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on an inflame area causes the blood vessels to dilate, and allows blood to flow to the injured area. The application of heat to an 

affected area can provide comfort and increase muscle flexibility, as well as heal damaged tissue. 
 

The effect of chemical parameter 3 1,2,3,4,5Rd   on blood velocity in an axial direction was investigated as see in Figure 

4.7, and the result showed a decrease of the velocity, for various values of chemical reaction parameters. Figure 4.8 depicts that 

blood velocity decrease for various input of the oscillatory frequency
2

0.1,0.2,0.3,0.4,0.5
cT


   as it flows towards the 

axial direction. Cardiac output measures blood flow from the heart through the ventricles, it is in liters per minute. The factors 

that cause cardiac output to increase, by elevating heart rate or stroke volume, will elevate blood pressure and promote blood 

flow. However, the decrease is as a result of the increase in cholesterol level. Using Figure 4.9, the ratio of temperature 

difference to concentration difference was investigated. The figure depicts that the blood velocity increases for various increase 

in Soret or metabolic heat parameter 0 0.2,0.4,0.6,0.8,1.0S  , it is seen that the blood velocity attained the peak at the 

centerline of the vessel 0  and began to decrease for each of the profiles as the boundary thickness increases until it gets to

1  . 

Radiation causes the affected blood vessels to narrow and this limits the blood flow to the area. Therefore, patients who have 

had radiation treatment are at an increased risk of developing the condition. It is seen in Figure 4.15, that increasing the 

radiation level beyond a threshold could be injurious to health of the patient. The article also looked at the effect of time 

parameter, growth rate and Prandtl number on both blood velocity and temperature profiles as depicted in Figures 4.10 – 

Figure 15. 

In conclusion, in our investigation we can conclude that the blood velocity is improved with the help of an appropriate 

treatment, magnetic field intensity increase caused the blood velocity to decrease and the height of stenosis impede the blood 

velocity. The novelty is this research is the researchers ability to remodel the region of atheorslcerosis, where the treatment was 

incorporated and the growth rate that was looked into too, as it affect the general flow behavior.  
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NOMENCLATURE 

*x   Dimensional coordinate along the channel 
*y   Dimensional coordinate perpendicular to the channel 

R   Radius of an abnormal channel 

0R   Radius of normal channel 

TR   Treatment parameter 

0d   Onset of stenosis 

1Rd   Heat radiation parameter 

3Rd   Chemical reaction parameter 

bk   Thermal conductivity of blood 

k   Permeability term 
*w   Dimensional blood velocity 

w   Dimensionless blood velocity 

0w   Perturbed blood velocity 

h   Atherosclerotic region 

C   LDL-Concentration of lipoprotein-C 

wC   LDL-Concentration at the wall 

C   LDL-Concentration at far field 

bpc   The specific heat capacity of blood 

*t   Dimensionless time 

T   Blood Temperature 
*T   Far field blood temperature 

*

wT   Temperature at the wall 

cT   The periodic cardiac cycle 
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mD   Molecular diffusivity of lipoprotein-C concentration 

0B   Magnetic intensity    

0Q   Dimensional heat source term 

 

Greek Symbols 

    Kinematic viscosity of blood 

b    Dynamic viscosity of blood  

Pr    Prandtl number for blood 

g    Acceleration due to gravity  

*    Height of stenosis 

e    Electrical conductivity    

*    Length of stenosis 

2

cT


    Oscillatory frequency 

    Dimensionless LDL-Concentration 

0    Perturbed LDL-Concentration  

    Dimensionless Blood Temperature 

0    Perturbed Blood Temperature 

b    Density of the fluid 

    Boundary layer thickness 

 

 

Subscripts 

w   Wall 

b   Blood 

p   Pulse 
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