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I. INTRODUCTION 

So far in a finite abelian goup, the discrete logarithm problem (DLP) is finding the integer that was multiplied by the base 

to get the element. Whenever we have a finite abelian group for which the DLP appears to be intractable, we can construct 

various public key cryptosystem in which taking large multiples of a group element is the trap-door function. Such 

cryptosystems were first constructured from the multiplicative group of a finite field. However, because certain special 

techniques are available for attacking the discrete log problem in that case it is worth while to study other sources of finite 

abelian groups. A number of improvements have since occoured, and new algorithms using the class group have appeared. 

More recently, one has shown how tho use the group of points on an elliptic curve, defined over a finite field, in a 

factorization algorithms. Elliptic curves can be equipped with an efficiently computable group law, so that they are suited 
for implementing the cryptographic schemes as suggested first in Koblitz, Miller and Enge [1,2,6,7]. They are particularly 

appealing because they achieve the same level of security as a finite field based cryptosystem with much shorter key 

lengths, which results in a faster encryption and decryption process. For the elliptic curve discrete logarithm problem, there 

are some particular cases where a solution can be found with a complexity better than O(√𝑛) [2],[3]. Similar cases were 

discovered for hyperelliptic curves [4]. However they are very particular and can be easily avoided when designing a 
cryptosystem. 

The use of hyperelliptic curves in public-key cryptography was first proposed by Koblitz in 1989 [4]. It appears as an 

alternative to the use of elliptic curves [5], with the advantage that it uses a smaller base field for the same level of security. 

Several authors have given ways to build hyperelliptic cryptosystems efficiently. The security of such systems relies on the 

difficulty of solving the discrete logarithm problem in the Jacobian of hyperelliptic curves. 

The purpose of the present article is to discuss similarly situation about hyperelliptic curves type which has form 

𝑦2 = 𝑃𝑛(𝑥), 
where 𝑃𝑛(𝑥) is a polynomial of degree 𝑛 ≥ 3, 𝑛 ∈ ℕ. Elliptic curves are the special case of the hyperelliptic curves type. 

So we specialise all results to the case of hyperelliptic type curves, where many of them can be proved by explicit 

computations or more elementary arguments than in the general case. In particular, our reduction procedure will use the 

Euclidean algorithm and be faster than the classical reduction procedure due to Gauss. A modification of it can be used for 

computation in the class group of an algebraic nuber field. 

 

II. BASIC DEFINITIONS AND KNOWLEDGE 

A. Discriminant of quadratic forms 

Let 𝑛 be an odd natural number. Without generality, we assume 𝑛 = −1 𝑚𝑜𝑑 4. Let 𝑸𝑭−𝒏 be the set of positive binary 

integer primitive quadratic forms 𝑎𝑋2 + 𝑏𝑋𝑌+ 𝑐𝑌2, 𝑎, 𝑏, 𝑐 ∈ ℤ, 𝑎 > 0 and which are pairs of primes togetger with 

discriminant 𝑏2 − 4𝑎𝑐. Note that, 𝑸𝑭−𝒏 is nonempty if and only if 𝑛 = 0 or 𝑛 = −1 𝑚𝑜𝑑 4. 

Two forms (𝑎, 𝑏, 𝑐) and (𝑎′ , 𝑏′, 𝑐′) are called equivalent if and only if there is a 2 × 2-matrix 𝐴 ∈ 𝑆𝐿2(ℤ) with determinant 

1 such that 

(

𝑏′

2
𝑐′

𝑎′
𝑏′

2

) =  𝐴𝑇 (

𝑏

2
𝑐

𝑎
𝑏

2

)𝐴 .                                                      (2.1) 
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For 𝑓 ∈ 𝑸𝑭−𝒏 let [𝑓] be its 𝑆𝐿2(ℤ)-equivalence class and let 𝐶−𝑛 be the set of equivalence classes in 𝑸𝑭−𝒏. 𝐶−𝑛 is a finite 

abelian group with respect to an operation called “composition” defined as follows (see [3]) 
[(𝑎1, 𝑏1, 𝑐1)]. [(𝑎2, 𝑏2, 𝑐2)] =  [(𝑎3, 𝑏3, 𝑐3)], 

where 

𝑎3 =
𝑎1𝑎2
𝑑2

 ;  𝑏3 = 𝑏2 + 2.
𝑎2
𝑑
.𝑅 ;  𝑐3 =

𝑏3
2 + 𝑛

4𝑎3
 

with 𝑑,𝑅 such that 

𝑑 =  𝜆𝑎2 + 𝜇𝑎1 + 𝜈
𝑏1 + 𝑏2
2

 

𝑅 =  𝜆.
𝑏1 − 𝑏2
2

− 𝜈𝑐2 

𝜆, 𝜇, 𝜈 ∈ ℤ. 
The group 𝐶−𝑛 is called the class group, its cardinality ℎ−𝑛 is called the class number of the discriminant −𝑛. 

 

B. Field characteristic 

Let 𝐾 is a field with the unit element 𝑒, if for some 𝑛 > 0 we have 

𝑒 + 𝑒 +⋯+ 𝑒⏟        
𝑛 𝑡𝑖𝑚𝑒𝑠

= 𝑛𝑒 = 0, 

then the smallest such 𝑛 is a prime number, it is called the characteristic of 𝐾. If there are no such number 𝑛, then one says 

that characteristic of 𝐾 is 0. For instance, the fields ℚ (rationals), ℝ (reals), ℂ (complex numbers) has characteristic 0, for 𝑝 

a prime, the finite field 𝐺𝐹(𝑝𝑛) has characteristic 𝑝. If 𝐻 is a subfield of 𝐾, then 𝐻 and 𝐾 have the same characteristic. 

 

C. The groups 

Let 𝐾 be an arbitrary field of characteristic ≠ 2, and let 𝐾̅ denote its algebraic closure. We define a hyperelliptic curve type 

𝐶 of genus 𝑛 over 𝐾 to be an equation of the form 

𝑣2 = 𝑓(𝑢),                                                                (2.2) 
where 𝑓(𝑢) is a  polynomial of degree 𝑛 ≥ 3, 𝑛 ∈ ℕ, with all roots distinct and with coefficients in 𝐾. We require that the 

curve have no singular points (𝑢, 𝑣), i.e., in the Weierstrass equation form, its discriminant is zero (see [1]). 

Let 𝐹 be a set containing 𝐾. By an 𝐹-point 𝑃 ∈ 𝐶, we mean either the symbol ∞ or else a solution 𝑢 = 𝑥 ∈ 𝐹, 𝑣 = 𝑦 ∈ 𝐹 

of the equation (2.2), and the solution of (2.2) is called a “finite” point and is denoted by 𝑃𝑥,𝑦 . If 𝜎 is an automorphism of 𝐹 

over 𝐾, we let 𝑃𝜎 denote 𝑃𝜎(𝑥),𝜎(𝑦) and set ∞𝜎 = ∞. 

We define a divisor is a finite form in 𝐾̅ as follows 

𝐷 = ∑𝑚𝑖𝑃𝑖
𝑖

 

and the degree of 𝐷 is ∑ 𝑚𝑖𝑖  . 

Since 𝑣2 = 𝑓(𝑢) on the curve 𝐶, consider a polynomial 𝑝 = 𝑝(𝑢, 𝑣) in the form 

𝑝 =  𝑎0 + 𝑎1𝑣 + 𝑎2𝑣
2 +⋯+ 𝑎𝑘𝑣

𝑘 +⋯ 
we have 

𝑣2 = 𝑓(𝑢), 
𝑣3 = 𝑣. 𝑣2 = 𝑣. 𝑓(𝑢), 
𝑣4 = 𝑣2. 𝑣2 = 𝑓2(𝑢), … 

Therefore, any polynomial 𝑝 = 𝑝(𝑢, 𝑣) when consider as a function on 𝐶, can be written in the following form 

𝑝 = 𝑎 + 𝑏𝑣,                                                                     (2.3) 
where 𝑎 = 𝑎(𝑢) and 𝑏 = 𝑏(𝑢) are polynomials respect to variable 𝑢. 

From (2.3), if 𝑎 + 𝑏𝑣 = 0, then 𝑣 = −
𝑎

𝑏
 and 𝑣2 = 𝑓 =

𝑎2

𝑏2
, this leads 𝑎2 − 𝑏2𝑓 = 0. Therefore, if 𝑝 vanishes at the point 

(𝑥, 𝑦) (this implies 𝑦2 = 𝑓(𝑥)), then the order of the zero of 𝑝 is the exponent of the highest power of (𝑢 − 𝑥) which 

devides 𝑎2 − 𝑏2𝑓. 

Suppose now 𝑝 = 𝑝(𝑢, 𝑣) and 𝑞 = 𝑞(𝑢, 𝑣) are polynomials in 𝐾[𝑢, 𝑣] such that 𝑞(𝑢, 𝑣) is not divisible by 𝑣2 − 𝑓(𝑢). 

Then ℎ =
𝑝

𝑞
 can defined on 𝐶, and the function ℎ has a finite number of zeros and poles on 𝐶. From Laurent series 

expansion for the function ℎ, we can associate ℎ with its divisor (ℎ) =  ∑ 𝑚𝑖𝑃𝑖𝑖 , where 𝑃𝑖 are zeros and poles of ℎ on 𝐶 

with coefficients 𝑚𝑖 (𝑚𝑖 are possitves if 𝑃𝑖 of ℎ and negative if it is a pole). A divisor of a nozero function, such as (ℎ) is 
called principal, a principal divisor has degree 0. The divisors form an additive group 𝐷 under additive form 

∑𝑚𝑖𝑃𝑖
𝑖

+ ∑𝑛𝑖𝑃𝑖
𝑖

= ∑(𝑚𝑖 + 𝑛𝑖)𝑃𝑖
𝑖

 

and the divisors of degree 0 form is a subgroup denoted by 𝐷0. 
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We define 𝐺𝐶𝐷(∑ 𝑚𝑖𝑃𝑖𝑖 , ∑ 𝑛𝑖𝑃𝑖𝑖 ) to be ∑ min (𝑚𝑖 , 𝑛𝑖)𝑃𝑖𝑖 . The principal divisors form a subgroup 𝑃 of 𝐷0 and Jacobian of 

𝐶 is defined by the quotient group 𝐽𝑎𝑐𝑜(𝐶) =  𝐷0/𝑃. If 𝐷1 and 𝐷2 are principal divisors and 𝐷1 is equivalent to 𝐷2 in 

𝐽𝑎𝑐𝑜(𝐶), then we write 𝐷1 = 𝐷2(𝑚𝑜𝑑 𝑃) or 𝐷1~𝐷2, that means 𝐷1 −𝐷2 ∈ 𝑃. 

Given a finite point 𝑃 = 𝑃(𝑥, 𝑦) ∈ 𝐶, we define its “opposite” 𝑃̃ to be 𝑃̃ = (𝑥, −𝑦). If 𝑃 = ∞ then we define 𝑃̃ =  ∞. If 

𝑃 = 𝑃(𝑥, 𝑦) is a point on the curve 𝐶, then we have 𝑃 −∞ = −(𝑃̃ −∞), therefore, the point 𝑃 and 𝑃̃ are zeros of the 

function (𝑢 − 𝑥), which has a double pole at ∞. Thus the divisor 𝑃 + 𝑃̃ − 2.∞ ≡ 0(𝑚𝑜𝑑 𝑃) or 𝑃̃  ≡ 𝑃 − 2.∞(𝑚𝑜𝑑 𝑃). It 
follows that each element of 𝐽𝑎𝑐𝑜(𝐶) can be presented in the form 

𝐷 = ∑𝑃𝑖

𝑟

𝑖=1

− 𝑟.∞ , 

where 𝑟 = ∑ 𝑚𝑖𝑖  and if 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖) appears in 𝐷, then 𝑃̃𝑖 = (𝑥𝑖 , −𝑦𝑖) does not appear as one of the 𝑃𝑗  (𝑗 ≠ 𝑖). This 

implies, in particular, that points of the form (𝑥, 0) appear at most once in 𝐷, we call such a divisor semireduced. From the 

Riemann-Roch theorem [Lang], it follows that, each element of 𝐽𝑎𝑐𝑜(𝐶) can be presented uniquely by such a divisor with 

restriction 𝑟 ≤ 𝑛. Such divisors to be called reduced. Any semereduced divisor 𝐷 can be represented uniquely by a pair of 

polynomials (𝑎(𝑢), 𝑏(𝑢)) satisfying 𝐷 = 𝐺𝐶𝐷((𝑎), (𝑏 − 𝑣)), where 𝑎 = 𝑎(𝑢) =  ∏(𝑢 − 𝑥𝑖)
𝑚𝑖 and 𝑏 = 𝑏(𝑢) is the 

unique polynomial of degree less than deg (𝑎) satisfying 𝑏(𝑥𝑖) =  𝑦𝑖  , (1 ≤ 𝑖 ≤ 𝑟) with appropriate multiplicity when the 

point 𝑃𝑖 appears more than once in 𝐷. In the case 𝑃𝑖 appears 𝑘 times in 𝐷, (𝑏 − 𝑦𝑖) must be divisible by (𝑢 − 𝑥𝑖)
𝑘. This 

implies that (𝑏2 − 𝑓) be divisible by 𝑎. We denote this divisor 𝐷 by div(𝑎, 𝑏). Note that 𝐷 is reduced if and only if 

deg (𝑎) ≤ 𝑛. If we define 𝑐 =  
𝑏2−𝑓

𝑎
, then the presentation (𝑎, 𝑏, 𝑐) of 𝐷 is analogous to the similar presentation of the 

quadratic form 𝑎𝑋2 + 2𝑏𝑋𝑌 + 𝑐𝑌2 with discriminant 𝑓. 

If 𝑎 and 𝑏 have coefficients in 𝐾, we say that the divisor 𝐷 rational over 𝐾. If 𝐾 is compact, then 𝐷 will be rational over 𝐾 

if and only if 𝐷 = 𝐷𝜎 for all automorphism 𝜎 of 𝐾̅ over 𝐾. 

In trivial case, if 𝑛 = 3, then 𝑎 is a linear polynomial (𝑢 − 𝑥) and 𝑏 is a constant 𝑦, in this case, 𝐽𝑎𝑐𝑜(𝐶) is isomorphic to 

𝐶, and the reduced divisor (𝑎, 𝑏), considered as an element of 𝐽𝑎𝑐𝑜(𝐶), corresponds to the point (𝑥, 𝑦) on 𝐶 (which is an 

elliptic curve). Hence, we will not distinguish between an element of 𝐽𝑎𝑐𝑜(𝐶) and its reduced representative div(𝑎, 𝑏). In 

the case, to add two elements 𝐷1=div(𝑎1, 𝑏1) and 𝐷2=div(𝑎2, 𝑏2) of 𝐽𝑎𝑐𝑜(𝐶), we consider as in the classical composition 

quadratic forms. 

 

III. OVERVIEW OF THE ALGORITHM AND VERIFY ITS CORRECTNESS 

Let 𝐾 be a field with characteristic not equal to 2. From the Euclidean algorithm, we see that, if 𝑎, 𝑏 and 𝑐 are three 

polynomials in a variable 𝑢, then the notation 𝑏 = 𝑐(𝑚𝑜𝑑 𝑎) means that 𝑏 equal to the residue of 𝑐 modulo 𝑎, i.e., it is the 

unique polynomial 𝑏 of degree < deg (𝑎) such that 𝑎 divides (𝑐 − 𝑏). 
The algorithm for adding divisors 𝐷 ∈ 𝐽𝑎𝑐𝑜(𝐶) consists of two steps. Given 𝐷1 = div(𝑎1, 𝑏1) and 𝐷2 = div(𝑎2, 𝑏2), we 

first find a semireduced divisor 𝐷 = div(𝑎, 𝑏) such that 𝐷~𝐷1 +𝐷2. Next, we reduced 𝐷, that means, we find polynomials 

𝑎′(𝑢) and 𝑏′(𝑢) such that deg(𝑎′)  ≤ 𝑛 div 2, deg(𝑏′)  ≤ deg(𝑎′), and 𝐷~div(𝑎′, 𝑏′). Thus we want to find the sum of 

div(𝑎1, 𝑏1) and div(𝑎2, 𝑏2) on 𝐽𝑎𝑐𝑜(𝐶), (i.e., which satisfy 𝑣2 = 𝑓(𝑢)), where 𝑎1, 𝑎2, 𝑏1, 𝑏2 and 𝑓 are all polynomial in 𝑢. 

Here, 𝑓 has coefficients in 𝐾, and 𝑎1, 𝑎2, 𝑏1, 𝑏2 have coefficients in 𝐾̅. 

Step 1. Let 𝑑 = 𝑑(𝑢) be the 𝐺𝐶𝐷(𝑎1(𝑢), 𝑎2(𝑢), 𝑏1(𝑢) + 𝑏2(𝑢)) and choose 𝑠1(𝑢), 𝑠2(𝑢) and 𝑠3(𝑢) to be polynomials in 𝑢 

such that 

𝑑 =  𝑠1𝑎1 + 𝑠2𝑎2 + 𝑠3(𝑏1 + 𝑏2).                                            (2.4) 
Set  

𝑎 =
𝑎1𝑎2
𝑑2

 

and 

𝑏 =  
𝑠1𝑎1𝑏2+ 𝑠2𝑎2𝑏1 + 𝑠3(𝑏1𝑏2 + 𝑓)

𝑑
 (𝑚𝑜𝑑 𝑎).                        (2.5) 

We have deg(𝑏) < deg(𝑎), and div(𝑎, 𝑏) is semireduced. 

We now verify correctness for (2.5). As usual, consider a polynomial  𝑐 = 𝑐(𝑢) in variable 𝑢, we denote 𝑜𝑟𝑑𝑥(𝑢) the 

largest integer 𝑟 for which (𝑢 − 𝑥)𝑟 divides 𝑐. From (2.4), w have  

𝑏 =  
𝑏2(𝑑 − 𝑠2𝑎2 − 𝑠3(𝑏1 + 𝑏2)) + 𝑠2𝑎2𝑏1 + 𝑠3(𝑏1𝑏2 + 𝑓)

𝑑
 . 

This leads 

𝑏 = 𝑏2 +
𝑠2𝑎2(𝑏1 − 𝑏2)

𝑑
+
𝑠3(𝑓 − 𝑏2

2)

𝑑
 .                                           (2.6) 

Since 𝑓 − 𝑏2
2  ≡ 0 (𝑚𝑜𝑑 𝑎2), the division in (2.4) is exact, so that 𝑏 is a polynomial. We can multiply (2.6) by (𝑏1 + 𝑏2) 

and simplify to obtain 

(𝑏1 + 𝑏2)𝑏 = 𝑏1𝑏2 + 𝑓 +
𝑠1𝑎1(𝑏2

2 − 𝑓) + 𝑠2𝑎2(𝑏1
2 − 𝑓)

𝑑
 

or 
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𝑏1 + 𝑏2
𝑏 − 𝑣

= (𝑏1 − 𝑣)(𝑏2 − 𝑣) +
𝑠1𝑎1(𝑏2

2 − 𝑓) + 𝑠2𝑎2(𝑏1
2 − 𝑓)

𝑑
 . 

There are following cases: 

Case A. Suppose that the point 𝑃 = (𝑥, 𝑦) has multiplicity 𝑟𝑠 ≥ 0 in 𝐷𝑠  ; 𝑠 = 1,2, and if 𝑦 ≠ 0, then 𝑃̃ = (𝑥, −𝑦) does not 

occur in either, and we have 

(i) 𝑜𝑟𝑑𝑥(𝑎) =  {
𝑟 =  𝑟1 + 𝑟2    if 𝑦 ≠ 0

(𝑟1 + 𝑟2)(𝑚𝑜𝑑 2) if 𝑦 = 0,
 

(ii) 𝑜𝑟𝑑𝑥(𝑏 − 𝑦) ≥ 𝑟. 
Case B. Suppose that 𝑃 = (𝑥, 𝑦) has multiplicity 𝑟1 > 0 in 𝐷1 and 𝑃̃ = (𝑥,−𝑦) has multiplicity 𝑟2 > 0 in 𝐷2. Put 𝑟 =
|𝑟1 − 𝑟2|, we have 

(i) 𝑜𝑟𝑑𝑥(𝑎) = 𝑟, 
(ii) If 𝑟1 ≥ 𝑟2, then 𝑜𝑟𝑑𝑥(𝑏 − 𝑦) ≥ 𝑟 and 𝑟1 ≤ 𝑟2 , then 𝑜𝑟𝑑𝑥(𝑏 + 𝑦) ≥ 𝑟. 

In the case 𝑟1 ≤ 𝑟2 , we have 𝑜𝑟𝑑𝑥(𝑏2 − 𝑦) ≥ 𝑟2 , 𝑜𝑟𝑑𝑥(𝑠2𝑎2(𝑏1 − 𝑏2)) =  𝑟2  and 𝑜𝑟𝑑𝑥(𝑠3(𝑓 − 𝑏2
2)/𝑑) ≥  𝑟2 − 𝑟1 . Hence 

using (2.6), 𝑜𝑟𝑑𝑥(𝑏 − 𝑦) ≥ 𝑟. 
(See more detail in [2]) 

Specical case, if 𝑎1 and 𝑎2 have no common factor, then 𝑑 = 1, we can take 𝑠3 = 0, and so 𝑎 =  𝑎1𝑎2, 𝑏 = (𝑠1𝑎1𝑏2 +
𝑠2𝑎2𝑏1)(𝑚𝑜𝑑 𝑎). 
Step 2. Given 𝐷 = div(𝑎, 𝑏) with deg(𝑎) > 𝑛 div 2 (i.e., 5 div 2 = 2), the following procedure repalces 𝐷 by 𝐷′ =
div(𝑎′, 𝑏′), where deg(𝑎′) < deg(𝑎). By successively applying the procedure, we obtain 𝐷′′ = div(𝑎′′, 𝑏′′) where 𝐷~𝐷′′ 
and deg(𝑎′′)  ≤ 𝑛 div 2. 

We set 

𝑎′ =
𝑓 − 𝑏2

𝑎
                                                                  (2.7) 

and then 

𝑏′ = −𝑏(𝑚𝑜𝑑 𝑎′)                                                           (2.8) 
It is not difficult to show that div(𝑎′, 𝑏′)~div(𝑎, 𝑏) and deg(𝑎′) < deg(𝑎). This concludes the description of the algorithm. 

Remarks 

(i) In the case 𝑛 = 3 (elliptic curves), the reduced divisors 𝐷 = div(𝑢 − 𝑥, 𝑦) are one-to-one correspondence with the point 

𝑃𝑥,𝑦 ∈ 𝐶. The above algorithm is then easily seen to reduce to the usual formulas for the addition of points on an elliptics 

curve. 

(ii) If classical algorithm are used, then the computation of the product of two polynomials of degree 𝑚 and the 

computation of their 𝐺𝐶𝐷 each take 𝑂(𝑚2) field operations, while if the above algorithm is used, then the computation of 

their product takes 𝑂(𝑚 log𝑚) operations and the computation of their 𝐺𝐶𝐷 takes 𝑂(𝑚(log𝑚)2) operations. It follows 

that the computation algorithm takes 𝑂(𝑛(log 𝑛)2) operations. 

 

IV. CRYPTOSYSTEMS 

Let 𝐾 be a perfect field, and let 𝐿 be an algebraic field extension of 𝐾. We let 𝐽𝑎𝑐𝑜(𝐿) denote the set of 𝐿-points of 

𝐽𝑎𝑐𝑜(𝐶), i.e., the divisors 𝐷 such that 𝐷𝜎 = 𝐷 for all automorphisms 𝜎 of 𝐾̅ over 𝐿. Since this invariance propertiy is 

preserved under addition, 𝐽𝑎𝑐𝑜(𝐿) is a subgroup of 𝐽𝑎𝑐𝑜(𝐶). And then, an 𝐿-points of 𝐽𝑎𝑐𝑜(𝐶) is simply an element 

div(𝑎, 𝑏) for which the polynomials 𝑎 and 𝑏 have coefficients in 𝐿. 

We assume that 𝐾 = 𝐹𝑞 is a finite field with 𝑞 elements, we can see that the abelian group 𝐽𝑎𝑐𝑜(𝐿) is finite for any 

extension = 𝐹𝑞𝑠 . 

The discrete logarithm problem on 𝐽𝑎𝑐𝑜(𝐹𝑞𝑠) is the problem: Given two divisors 𝐷1 and 𝐷2 defined over 𝐹𝑞𝑠, of determing 

an integer 𝑚 ∈ ℤ such that 𝐷2~𝑚𝐷1 if such 𝑚 exists. 

According to the Diffie-Hellman phenomenon in [Hellman], this key change in the context of 𝐽𝑎𝑐𝑜(𝐹𝑞𝑠) works as follows: 

The finite 𝐹𝑞𝑠 and the equation of 𝐶 are publicly known, as is a fixed element 𝐷0 ∈ 𝐽𝑎𝑐𝑜(𝐹𝑞𝑠). Each user A chooses a 

large integer 𝑚𝐴, which is kept secret and computes and makes public the divisor 𝑚𝐷0. When two users A and B wish to 

have a key for use in some other cryptosystem, they use the divisor 𝑚𝐴𝑚𝐵𝐷0 ∈ 𝐽𝑎𝑐𝑜(𝐹𝑞𝑠). Here divisors are reduced to 

the form div(𝑎, 𝑏) with deg(𝑏) < deg(𝑎)  ≤ 𝑛 div 2, and some standard way is agreed upon, using the coefficients of 𝑎 

and 𝑏, to associate to div(𝑎, 𝑏) an integer which serves as the key. 

Similarly, the ElGaml system [5] can be applied for the group 𝐽𝑎𝑐𝑜(𝐹𝑞𝑠), ofcourse, we are taking multiples of divisors 

rather than simply points. 

In cryptosystems of this sort, we need to have a method of generating a “random” element of the group. In our case this 

means a divisor 𝐷 ∈ 𝐽𝑎𝑐𝑜(𝐹𝑞𝑠). It suffies to show how to find a “random” point 𝑃 on 𝐶 with coordinates in 𝐹𝑞𝑠, after that, 

we can generate 𝐷 = ∑ 𝑚𝑖𝑃𝑖𝑖 − (∑ 𝑚𝑖𝑖 ).∞ (with 𝑚𝑖 ≥ 0 and ∑ 𝑚𝑖𝑖 ≤ 𝑛 div 2) by choosing points 𝑃 with 𝐹𝑞𝑠-coordinates 

for small (≤ 𝑛 div 2) values of 𝐾 and then setting 𝐷 equal to a sum of divisors of the form 
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∑ 𝑃𝜎

𝜎∈𝐺𝑎𝑙(𝐹
𝑞𝑠𝑘

/𝐹𝑞𝑠)

− 𝑘.∞ . 

Without loss of generality we assume 𝑠 = 1, i.e., we regrad 𝐶 as defined over 𝐹𝑞𝑠 and replace 𝑞𝑠 by 𝑞. Let 𝐶 have equation 

𝑣2 = 𝑓(𝑢), as before. Choose the coordinate 𝑢 = 𝑥 ∈ 𝐹𝑞 at random and attempt to solve 𝑣2 = 𝑓(𝑢) for 𝑣, note that, there 

exists solution to this equation in any case. Thus, there exist efficient probabilistic algorithms for selecting random 𝐷 ∈
𝐽𝑎𝑐𝑜(𝐹𝑞𝑠). 

We now computing multiples of divisors. A core factor in cryptosystems based on the discrete lograrithm problem (DLP) 

in an abelian group 𝐴 is an efficient process for computing 𝑚𝐷 for 𝐷 ∈ 𝐴 and for large integers 𝑚. Suppose the the group 

law in 𝐴 is given explicity by an algorithm taking log𝑟(⋕ 𝐴) operations (⋕ 𝐴 is cardinality of 𝐴). Then the repeated-

doubling method anables us to compute 𝑚𝐷 in 𝑂(log𝑚. log𝑟(⋕ 𝐴)) operations. 

 

V. CONSLUSSION 
In this paper we present some results for hyperelliptic curves type, these results which similar in ellitptic curves and 

hyperelliptic curves. Special, in the case 𝑛 = 3, its reduced to usual elliptic curves. From this, we expect that, we can also 

analyse our algorithm in the same model as for a function in the right-hand side defined in algebras with higher dimension. 
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