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Abstract - In this paper, we first show that there is a mistake in the proof of an inequality related to the Mathieu series which
given by J. Ernest Wilkins Jr., but his proof method is still valuable and can be modified. Follow this method we have
improved the corresponding proof process in the last section.
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I. INTRODUCTION
Horst Alzer and Joel Brenner Proposed the following conjecture as an open question in [1], prove and disprove that
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Soon after, J. Ernest Wilkins, Jr. gave a solution of this conjecture in [2]. Then based on this result, Horst Alzer, Joel
Brenner and O.G. Ruehr gave a graceful inequality for the Mathieu series as follows.
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The inequality (1.2) plays an important role in the study of the Mathieu series. There is a huge literature about the Mathieu
series (interested readers could find useful information in paper [4-10], and the references therein.). However, there is a
mistake in the J. Ernest Wilkins, Jr.’s solution of inequality (1.1). we will first show in the next section that the inequality (1.1)
can only be proved for 0 <z <0.08648913729 and z > 1.19323408312446 according to the method given in [2]. But J. Ernest
Wilkins, Jr.’s proof method is still valuable and can be modified. Follow this method we will give a complete proof of the
inequality (1.1) in the third section.

I1. THE MISTAKE OF WILKINS’S PROOF AND THE RESULT OF HIS METHOD
We recall some necessary marks and expressions used in [2]. Let F(z) ={F, (Z)}2 —F,(z), in which
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Obviously, the inequality (1.1) is equivalent to F(z) >0 (z > 0).
For the trigamma function
)= ——— . = (u>0),
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it holds
i o
F(2)= 4—y{w (iy)—y'(=iy)}, (y=2"%). 22
By using the following formula (see[2, (4)])
w'(U) = % 2. Z e (2m+) [ {Bom B (W (x-+U) ™2l 23)
S 1

in which Bay, is the Bernoulli number of order 2m, Bom(v) is the Bernoulli polynomial of degree 2m, and v = x — [x]. Specially,
when m = 3, we obtain that
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y'(iy)—v'(- Iy)————— I{B =B, (V)H(x+iy)™® — (x—iy) “}dx. (24)
iy  3iy® 15|y
We write
o = B B (OO i) 7~ (i) O 29
Then the expression (5) in [2] may erte as follows
TS S S 2o
2z 12722 602° % '

Using the follow equation
(x+iy) = (x=iy)® = (X" +y*) {(x=iy) °* ~ (x+iy)°}
= —16xX(y) (x> + y) P (x° = 7xX'Y + 7X°y = y®),

we get
I, = 28_[:{86 —B,(WHX* +2)°(x* - 7x*2+7x°2* — 2°)xdx . @.7)
However, the above expression is written in the original proof as follows (see[2, (7)]).
I, = 14.[:{86 —B,(WHX* +2)°(2x° = 7x*z +7x?2% - 22%)xdx, (2.8)

this is obviously a mistake. Thus, each step next the equation (7) in [2] must be recalculated. Following the steps of [2], we
only will prove that (1.1) is true when z > 1.19323408312446 for the part of sufficiently large z. Now we show it as follows.
By [2], we have
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F(2)=—-=F(2)= — — -=1. 2.9
() 21() 47 127° 40z* 2° (29)
in which
—% I} :14J.:{B6 — B, (V)}(X* +2%)° (15x° —63x“z + 45x°2* —52%) xdx . (2.10)
Now make the substitution, x = (sz)*?, then (2.7) and (2.10) can be transformed into the following formula successively.
I, - 1_? [ (B, ~ By} +1)*(s° ~ 75 + 75 ~1)d. 211)
—% I = %J.:{BG —B;(V)}(s +1)‘9 (1553 —63s? +45s —-5)ds. (2.12)
Combining (2.6), (2.9), (2.11) and (2.12), we obtain that
11 1 1
F(z)=F*(z)-F,(2) = + + +12+7, 2.13
(@) =F2)=F(2) =250+ 36075 " 36007 * ° @1
in which
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where

J = J-:{B6 —B,(V)Hs+D)° f,(s)ds, and f,(s)=2s*—-27s°+63s’—33s+3,
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J, = j:{Be —B,(V)}(s+1)®f,(s)ds, and f,(s)=5>—7s® +7s—1.

Furthermore, f1(5)=2(5—511)(S—512)(S—S13) (S—S14), and $11~0.114870309645755, $12~0.579199667765806, S13~
2.10730378832133, s14 ~ 10.69862623426710, fa(S) = (S — S21)(S — S22)(S — S23), and sp1 = 3 — 242, s;p = 1, Sp3 = 3 + 242,
Because f1(s) < 0 when 11 < S < S;2 and when s33 < S < Sy4, and f2(S) > 0 when sp1 <5 < Sp and when s > Sy,

Using the following inequality

0< Be—Bs(V)S%’fOV O<v<l,

we get
3 S12 S14 -9
Jl>_(j ™ )(s+1)° £,(s)ds ~ ~0.00271014346498955, (2.15)
64 \Jsu Si3
3 <6_~°;( [7+] )(s 1) f,(s)ds ~ 0.000994001116462756 . (2.16)

It then follows from (2.13)~(2.16) that
F(z) > % 724 -0.016193226477149z° —0.002041558160635z ° —0.000463867187673z2 " .

We conclude that F(z) > 0 when z > 1.19323408312446. From this it is clear that the inequality (1.1) has not been fully proved
by [2].
I1l. PROOF OF INEQUALITY (1.1)
Case 1. F(z) > 0, when z > 0.389273748122060.
Let m=2 in (2.3), we have

I S T R .
l,y(u)_a+u—2+ﬁ+5j0 {B, — B, (V)}(x+Uu)°dx . (3.1)
We deduce from (3.1) that
y'(iy) —y'(-y) = —y—w+5j {B, - B,()H(x+iy)™ - (x—iy)“}dx, (32)
furthermore,
1 1
l( ) 2 1222 4 ( )
in which
I, = SJ‘OOO{B4 — B, (V)}H(x+2)°(3x* —10x%z +3z°)xdx. (3.4)
Therefore
1 1 1 1 1
F*(z)=—— + +12+ === |1,, 35
+ (@) 47* 127° 1447 [z 622j ! (35)
1 1 1 1
F(2)=—->-F((2)=—-———=-=1.. 3.6
2( ) 2 1( ) 422 1223 2 4 ( )
Then
1 1 1 1
F(z2)=F*(2)-F,(2) = + === |, + =1+ 12, 37
= F0)~Fila) = oz o 1+ 3 i1 @)
where
% = —101:{84 —B,(V)}(X* +2) 7" (7Tx* —14x°z +32°)xdX . (3.8)

Now make the substitution, X = (sz)l’2 , then we have
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5 ) 5
_Fjo {B, — B, (V)}(5+1)°(3s2 —10s +3)ds =5 h

and
1

2
It then follows from (3.7), (3.9), and (3.10) that

5
PO =153 3 (B2 |- s A

We note that
1

BT <B,-B,(v)=-Vv*(v-1)°<0, for 0<v<l1,
then we get
B2/, =3 j:{B4 —B,(V)}Hs+1) 7 (s>~ 7s? +7s—1)ds
3/ -7 2
-B(L_m . )(s £1)7 (2 —75% + Ts—D)ds
~—0.000436344948745758,

then

—+— 2/3,) >0.00585358207258004,

12472 (/31 B,)
and

5 S = 6 (nc2
_Epl:__j {B, —B,(V)}(s +1)°(3s* —10s +3)ds

12 o L/3(s+1) (3s2 —10s + 3)ds

~—0.00227864583333333.
It then follows from (3.11), (3.14) and (3,15) that

F(z) > 0.00585358207258004z * —0.002278645833333332°.

By (3.16) ,we conclude that F(z) > 0 when z > 0.389273748122060.
Case 2. F(z) > 0, when 0 <z <0.420977962526003.

For x>0, a <0, using Taylor’s expansion formula, we have

" (o o
1+X)* =1+ X< + X" 1+ 6x)* ", 0<O<1.
L) ;(J M L4060

We get the following inequality

By (3.18), if z>z1 > 0, we have

~(n°+z ~n n
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2m
=Y (-2)"k-g(2k +1), (3.19)
k=1

and

F,(z) = z <3y L (1+Z—2]_3

“(n® +z) ~n° n
1 2m-2 k
&3
_zmzl( 1)“"(“1) 5(2k+3), (3.20)

thus F(z) > 0, only if z satisfies the following inequallty

[1]
[2]
[3]
[4]
[5]
(6]

(7]
(8]
[9]

Z( )"k - g(2k+1)>{2f( 1)“k(k+l) c(2k + 3)} . (3.21)

Now let m = 4, then we use the following recursive solution method for (3.21).

First, let zz = 0 in (3.21), the solution set of (3.21) is 0 <z < a; = 0.101954321777668.
Second, let z; = a; in (3.21), the solution set of (3.21) is 0 <z < a, =0.198730783364018.
Third, let z1 = a2 in (3.21), the solution set of (3.21) is 0 <z < a3 = 0.290024566178641.
Fourth, let z; = az in (3.21), the solution set of (3.21) is 0 <z < as = 0.370665047677767.
Last, let z; = a4 in (3.21), the solution set of (3.21) is 0 <z <as = 0.420977962526003.

This finishes the proof.
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