Short Communication

A Remark On The Fixed-Point Theorem of Mustafa

Patel Mittal¹, Sharma Jaita², Deheri Gunamani³

 ^{1,2} Department of Applied Mathematics, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
 ³ Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120, India

Abstract - We show that the main result (Theorem 2.11) due to Mustafa at. el.(J. Fixed Point Theory and Applications, 2019:16, https://doi.org/10.1186/s13663-019-0666-3) can be prove without taking continuity of the class of functions defined by Jleli et al.

Keywords — Fixed point, JS-contractions, Continuity

I. INTRODUCTION AND PRELIMINARIES

Jleli et al.[3] introduced the class Θ_0 consisting of all functions $\theta: (0,\infty) \to (1,\infty)$ satisfying the following conditions:

- (θ 1) θ is nondecreasing.
- (02) For each sequence $t_n \subseteq (0,\infty)$, $\lim_{n \to \infty} \theta(t_n) = 1$ if and only if $\lim_{n \to \infty} t_n = 0$;
- (03) There exists $r \in (0,1)$ and $l \in (0,\infty)$ such that $\lim_{t \to 0^+} \frac{\theta(t) 1}{t^r} = l;$.
- (θ 4) θ is continuous

Mustafa et.al. [1] redefined the class Θ_0 as following and denoted it by Θ . The set of all $\theta:[0,\infty) \to [1,\infty)$ satisfying the following conditions:

- (θ 1) θ is continuous and increasing.
- (02) For each sequence $t_n \subseteq (0, \infty)$, $\lim_{n \to \infty} \theta(t_n) = 1$ if and only if $\lim_{n \to \infty} t_n = 0$.

Definition 1.1. Let (E, \leq, S) be an ordered S_p -metric space. A mapping $f: E \to E$ is called an S_p -rational JS contraction if

$$\theta \left(\Omega \left[2\tilde{S} \left(f\xi, f\eta, f\omega \right) \right] \right) \leq \theta \left(M \left(\xi, \eta, \omega \right) \right)^{k}$$
(1.1)

for all mutually comparable elements ξ , η , $\omega \in E$, where $\theta \in \Theta$, $k \in [0, 1)$ and

$$M(\xi,\eta,\omega) = \max\left\{\tilde{S}(\xi,\eta,\omega), \frac{\tilde{S}(\xi,\xi,f\xi)\tilde{S}(\eta,\eta,f\eta)}{1+\tilde{S}(\xi,\eta,\eta)+\tilde{S}(\xi,\omega,\omega)}, \frac{\tilde{S}(\eta,\eta,f\eta)\tilde{S}(\omega,\omega,f\omega)}{1+\tilde{S}(\eta,f\omega,f\omega)+\tilde{S}(\eta,\xi,\xi)}\right\}$$

Definition 1.2. [1] An ordered S_p -metric space $(E, \leq S)$ is said to have the s.l.c. property if, whenever $\{\xi_n\}$ is an increasing sequence in E such that $\xi_n \to u \in E$, one has $\xi_n \leq u$ for all $n \in N$.

Theorem 1.3. [1] Let (E, \leq, S) be an ordered S_p -metric space. Let $f: E \to E$ be an increasing mapping with respect to \leq

such that there exists an elements $\xi_0 \in E$ with $\xi_0 \leq f \xi_0$. Suppose that f is an S_p – rational JS-contractive mapping. If

- I. f is continuous, or
- II. (E, \leq, S) enjoys the s.l.c. property,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has one and only one fixed point.

In this paper, we show that the assumption of continuity of the class Θ is not necessary. So, hereby we prove above theorem (i.e. Theorem 2.11) of Mustafa without considering continuity.

II. MAIN RESULTS

We redefine the class Θ_0 and denote it by Θ . Θ consisting of all functions $\theta : [0,\infty) \to [1,\infty)$ satisfying the conditions (θ_1) and (θ_2) defined by Jleli etal.[3].

Theorem 2.1. Let (E, \leq , \tilde{S}) be an ordered S_p -metric space. Let $f: E \to E$ be an increasing mapping with respect to \leq such that there exists an elements $\xi_0 \in E$ with $\xi_0 \leq f \xi_0$. Suppose that f is an S_p -rational JS-contractive mapping. If

I. f is continuous, or

II. (E, \leq, S) enjoys the s.l.c. property,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has one and only one fixed point.

Proof. Let us define $\xi_n = f^n \xi_0$. Step 1. From the Theorem 2.11 of [1], we conclude that

 $\lim_{n\to\infty} \overset{\,\,{}_{\scriptscriptstyle o}}{S}(\xi_n,\xi_{n+1},\xi_{n+1})=0$

Step 2. Again from the Theorem 2.11 of [1], we have

$$\frac{1}{2}\Omega^{-1}(\epsilon) \leq \limsup_{i \to \infty} \sup S(\xi_{m_i+1}, \xi_{n_i}, \xi_{n_i})$$
(2.1)

And

$$\lim_{i \to \infty} \sup M\left(\xi_{m_i}, \xi_{n_i-1}, \xi_{n_i-1}\right) \le \in$$
(2.2)

Since, θ is nondecreasing, One can write from the equation (1.1),

$$\Omega\left[2\overset{\Box}{S}(f\xi,f\eta,f\omega)\right] \leq \left(M(\xi,\eta,\omega)\right)^{k}$$

Put, $\xi = \xi_{m_i}, \eta = \xi_{n_i-1}, \omega = \xi_{n_i-1}$ in above equation. We have,

$$\Omega \left[2 \overset{\Box}{S} \left(\xi_{m_{i}+1}, \xi_{n_{i}}, \xi_{n_{i}} \right) \right] \leq \left(M \left(\xi_{m_{i}}, \xi_{n_{i}-1}, \xi_{n_{i}-1} \right) \right)^{k}$$

Taking limit supremum both side,

$$\lim_{i\to\infty}\sup\left(\Omega\left[2S\left(\xi_{m_i+1},\xi_{n_i},\xi_{n_i}\right)\right]\right)\leq \lim_{i\to\infty}\sup\left(M\left(\xi_{m_i},\xi_{n_i-1},\xi_{n_i-1}\right)\right)^{l}$$

Again using the condition (θ_1) . i.e θ is nondecreasing, we obtain

$$\theta\left\{\lim_{i\to\infty}\sup\left(\Omega\left[2\overset{\Box}{S}(\xi_{m_i+1},\xi_{n_i},\xi_{n_i})\right]\right)\right\}\leq\theta\left\{\lim_{i\to\infty}\sup\left(M\left(\xi_{m_i},\xi_{n_i-1},\xi_{n_i-1}\right)\right)^k\right\}$$

Hence, from the equations (2.1),(2.2) and above equation, one arrive at

$$\theta \left(\Omega \left[2 \cdot \frac{1}{2} \Omega^{-1}(\epsilon) \right] \right) \leq \theta \left\{ \Omega \left[2 \limsup_{i \to \infty} \sup S \left(\xi_{m_i+1}, \xi_{n_i}, \xi_{n_i} \right) \right] \right\}$$
$$\leq \theta \left\{ \limsup_{i \to \infty} \sup \Omega \left[2 \cdot S \left(\xi_{m_i+1}, \xi_{n_i}, \xi_{n_i} \right) \right] \right\}$$
$$\leq \theta \left\{ \limsup_{i \to \infty} \sup \left(M \left(\xi_{m_i}, \xi_{n_i-1}, \xi_{n_i-1} \right) \right)^k \right\}$$
$$\leq \theta(\epsilon)^k$$

Hence,

$$\theta(\in) \leq \theta(\in)^k$$

which possible only if $\in = 0$, a contradiction. The rest proof is as per the theorem 2.11 of [1].

REFERENCES

- Z.Mustafa Z. Mustafa, R.J. Shahkoohi, V. Parvaneh, Z. Kadelburg and M.M.M. Jaradat, Ordered Sp-metric spaces and some fixed point theorems for contractive mappings with application to periodic boundary value problems, Fixed Point Theory and Applications, (2019) 2019:16 https://doi.org/10.1186/s13663-019-0666-3S
- Z. Mustafa, V. Parvaneh, M. Jaradat and Z. Kadelburg, Extended Rectangular b-Metric Spaces and Some Fixed Point Theorems for Contractive Mappings, Symmetry, 11, 594, 2019, doi:10.3390/sym11040594.
- [3] Jleli, M., Karapınar, E., Samet, B., Further generalizations of the Banach contraction principle. J. Inequal. Appl. 2014, 439.
- [4] Sushanta Kumar Mohanta, Common Fixed Points for Generalized Weakly Contractive Mappings in G-Metric Spaces, International Journal of Mathematical Trends and Technology (IJMTT), 2014, vol-5.
- [5] Some Common Fixed Point Theorems Using Implicit Relations in Menger Spaces, Vishal Gupta, Balbir Singh, Sanjay Kumar, International Journal of Mathematical Trends and Technology (IJMTT), 2014, vol-5.