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Abstract - We show that the main result (Theorem 2.11) due to Mustafa at. el.(J. Fixed Point Theory and Applications, 

2019:16, https://doi.org/10.1186/s13663-019-0666-3) can be prove without taking continuity of the class of functions defined 

by Jleli et al. 
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I. INTRODUCTION AND PRELIMINARIES  

Jleli et al.[3] introduced the class 0  consisting of all functions : (0, ) (1, )     satisfying the following conditions: 

(θ1)   is nondecreasing. 

(θ2) For each sequence (0, )nt   , lim ( ) 1n
n

t


  if and only if lim 0;n
n

t


  

(θ3) There exists (0,1)r  and (0, )l   such that 
0

( ) 1
lim ;

r
t

t
l

t





 . 

(θ4)    is continuous 

Mustafa et.al. [1]  redefined the class 0  as following and denoted it by  . The set of all :[0, ) [1, )     satisfying the 

following conditions: 

(θ1)   is continuous and increasing. 

(θ2) For each sequence (0, )nt   , lim ( ) 1n
n

t


  if and only if lim 0.n
n

t


  

 

Definition 1.1. Let (E, ⪯ ,
~

S ) be an ordered pS -metric space. A mapping :f E E  is called an pS - rational JS 

contraction if  

                         
~

2 , , , ,
k

S f f f M       
  
     

     (1.1) 

for all mutually comparable elements   ξ, η, ω ∈ E, where θ ∈ Θ, k ∈ [0, 1) and 
~ ~ ~ ~

~

~ ~ ~ ~

( , , ) ( , , ) ( , , ) ( , , )
( , , ) max ( , , ), , ,

1 ( , , ) ( , , ) 1 ( , , ) ( , , )

S f S f S f S f
M S

S S S f f S

           
     

           

 
 

  
     

 

 

Definition 1.2. [1] An ordered pS - metric space (E, ⪯ ,
~

S ) is said to have the s.l.c. property if, whenever  n  is an 

increasing sequence in  E such that n   → u ∈ E,  one has n ⪯ u  for all  n ∈ N. 

 

Theorem 1.3. [1] Let (E, ⪯ ,
~

S ) be an ordered pS -metric space. Let :f E E be an increasing mapping with respect to ⪯ 
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such that there exists an elements  
0 E   with 

0 0f   .  Suppose that f is an pS − rational JS-contractive mapping.  If 

I. f  is continuous, or 

II.  (E, ⪯ ,
~

S ) enjoys the s.l.c. property, 

then f has a fixed point. Moreover, the set of  fixed points of f is well ordered if and only if f  has one and only one fixed 

point. 

 

In this paper, we show that the assumption of continuity of the class Θ is not necessary. So, hereby we prove above theorem 

(i.e. Theorem 2.11) of  Mustafa without considering continuity. 

 

II. MAIN RESULTS 

We  redefine the class 
0  and denote it by Θ. Θ consisting of all functions  θ : [0,∞) → [1,∞) satisfying the conditions (

1 ) 

and (
2 ) defined by Jleli etal.[3].  

 

Theorem 2.1. Let (E, ⪯ ,
~

S ) be an ordered pS -metric space.  Let :f E E be an increasing mapping with respect to ⪯ 

such that there exists an elements 0 E   with 0 0f   .  Suppose that f is an pS − rational JS-contractive mapping.  If 

I. f  is continuous, or 

II. (E, ⪯ ,
~

S ) enjoys the s.l.c. property, 

then f has a fixed point. Moreover, the set of  fixed points of f is well ordered if and only if f  has one and only one fixed 

point. 

Proof.  Let us define 0

n

n f   . 

Step 1. From the Theorem 2.11 of [1], we conclude that 

          
1 1lim ( , , ) 0n n n

n
S    


  

Step 2. Again from the Theorem 2.11 of [1], we have 

                           
1

1

1
( ) limsup ( , , )

2 i i im n n
i

S   




           (2.1) 

And 

                               1 1limsup , ,
i i im n n

i
M    


       (2.2) 

 

Since, θ is nondecreasing , One can write from the equation (1.1), 

        2 ( , , ) ( , , )
k

S f f f M     
 

   
 

Put, 1 1, ,
i i im n n          in above equation. We have, 

                             1 1 12 , , , ,
i i i i i i

k

m n n m n nS M       

 
   

 

Taking limit supremum both side, 

                                  1 1 1limsup 2 , , limsup , ,
i i i i i i

k

m n n m n n
i i

S M       
 

  
     

 

Again using the condition ( 1 ). i.e    is nondecreasing, we obtain 
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                     1 1 1limsup 2 ( , , ) limsup , ,
i i i i i i

k

m n n m n n
i i

S M         
 

   
       

 

 

Hence, from the equations (2.1),(2.2) and above equation, one arrive at  

                           

 

 

   

1

1

1

1 1

1
2. ( ) 2 limsup , ,

2

limsup 2 , ,

limsup , ,

( )

i i i

i i i

i i i

m n n
i

m n n
i

k

m n n
i

k

S

S

M

    

   

   











 


      
              

  
     



 

 

Hence, 

                                                       ( ) ( )k     

which possible only if 0 , a contradiction. 

The rest proof is as per the theorem 2.11 of [1]. 
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