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Abstract - This research article devised an optimal computational strategy for the variation of constants formula for 

systems of autonomous linear delay initial-function problems, with a view to devising global analytic functional forms for 

the solutions of single-delay autonomous linear delay scalar initial-function problems. In the sequel the article obtained 

the unique solutions to all associated constant initial function problems, using a sequence of internally established claims,  
integration by parts and mathematical inductive principle. These results are unprecedented. An illustrative example 

followed. 
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I. INTRODUCTION 

Transition and solution matrices are key imperatives for the computations of the unique solutions to linear delay systems 

with specified feasible initial functions [1].  However, there has not been any known result from other authors, on the 

functional forms of solution matrices for various classes of linear functional differential systems. The usual approach has 

been the forward continuation scheme, starting from the left-most interval of a fixed length and proceeding to at most three 

contiguous intervals, with no attempt to address the issue of structure, as dictated by practical exigencies, due to inherent 

computational intractability.  

 

II. THEORETICAL UNDERPINNING 

With a view to filling in the existing gaps for associated scalar problems, [2] considered the class of double – delay scalar 

differential equations: 

( ) ( ) ( ) ( 2 ), , (1.1)x t ax t bx t h cx t h t     R  

where , and a b c are arbitrary real constants.  

By exploiting ingenious combinations of summation notations, multinomial distribution, greatest integer functions, change 

of variables techniques, multiple integrals, as well as the method of steps, the article obtained the following functional 

form for the solution matrices: 
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 where [ , ( 1) ], {0,1, },  denotes the greatest integer function, and ( ) denotes a generic

solution matrix of the above class of equations for .
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R
 In 

the sequel, [3] derived the following theorem on the computational structure and disposition of solution matrices of the 

single-delay linear neutral scalar differential equations: 

                          1 0 1( ) ( ) ( ) ( ), (1.3)x t a x t h a x t a x t h      

on the interval ere[( ) , ( 1 ) ], {0,1, }, {0,1, 2},  wh
k i

J k i h k i h k i

     

 
( )k iY t ih 

 
is a solution matrix of  

                        1 0 1( ) ( ) ( ) ( ), (1.4)x t a x t h a x t a x t h      
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on the interval [( ) , ( 1 ) ], {0,1, }, {0,1, 2},  such that
k i

J k i h k i h k i
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( ) (1.5)

0, 0

t
Y t
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Theorem on the optimal computational structure of the solution matrices [3] 

Suppose that 

   1 0 10 1 1Let Suppose that a
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[4] went further to obtain the ensuing result on the single-delay autonomous control system  

           

0 1( ) ( ) ( ) ( ); 0 (1.7)

( ) ( ), [ ,0], 0 (1.8)

x t A x t A x t h Bu t t

x t t t h h

    

   
 

where 0 1,A A are n n  constant matrices with real entries; B  is an n m  constant matrix with real entries. The initial 

function    is in  [ , 0],
n

C h R , the space of continuous functions from [ ,0]h   into the real n-dimension Euclidean 

space, 
nR  with norm defined by 

[ ,0]

sup ( )
t h

t 
 

 , (the sup norm). The control  u is in the space   10, , nL t R , 

the space of essentially bounded measurable functions taking  0 1, t  into 
nR  with norm  



ess u t
t t

sup ( )
[ , ]0 1

. Any 

control   10, , nu L t R  will be referred to as an admissible control: 

 

III. METHODS 

A. Theorem 1: Solution Matrices for autonomous single-delay linear systems (1.1), [4]. 

Let ( )Y t  be a generic solution matrix for the uncontrolled part of (1.1) such that 

, 0
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Let [ ,( 1) ], 0,1,kJ kh k h k   .  Then  
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See [4] for proof. This is a solution characterizing matrix function for system (1.1), with 0.B   

Observe that the above expression for  ( )Y t  is a piece-wise function that is integral-intensive. 

The variation of constants formula for the unique solution of system (1.1) with initial function specification (1.2) is 

0

1

0

( , , ) ( ) (0) ( ) ( ) ( ) ( ) , 0 (1.10)

t

h

x t u Y t Y t s h A s ds Y t Bu d t     


         

[4]. 

 

There is no direct straight-forward application of the variation of constants formula to any problem in one fell swoop- this 

fact is hardly emphasized by field practitioners.  

This article provides a straight-forward application of the variation of constants formula and makes a positive contribution 

to the body of knowledge by executing the following new tasks: 

(i) Redefining ( )Y t  as ( )kY t   0,  for any  and .t k 
 Z .  

(ii) Redefining ( )kY t  as an explicit piece-wise function of  0, , for  , kt 
  Z  with proof. 

(iii) Developing the decomposition of the identified solution matrices in the variation of constants formula, into 

the appropriate intervals of application, thereby computing the variation of constants formula without any 

ambiguity.  

(iv) Devising global integral functional forms for the solutions of single-delay autonomous linear delay scalar 

initial-function problems. 

(v) Deriving the unique solutions to all associated constant initial function problems 

(vi) Furnishing the optimal computations of the variation of constants formula for given problem instances. 

 

The above tasks are accomplished through the following sequence of theorems and corollaries. 

B. Theorem 2.1: On Redefinition of ( )Y t
 
in terms of  ( )kY t   0,  for any  and .t k 

 Z . 

 

     

Let   be the domain of  any -by-  matrix function  component  (.), of the  solution matrix 

of the free part of (1.1). Then and  can be expressed in the form: 

k k
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The proof is immediate, since  ( )kY t  is equivalent to ( ),  for  kY t t J . 

The above expressions define ( )kY t  as an explicit piece-wise function of   0, ,  for  .t k 
 Z .   

Straight-forward representation of ( )Y t  incorporating (1.3) and devoid of explicit piece-wise formulation is given as 

follows: 

 

C. Corollary 2.1 
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2

2

1

2 sgn max 1 sgn ,0 0,sgn max ,0 0,sgn max 1,0 0

( ) ( ) 0,  for ,

0, ,0
1 sgn max 1 sgn ,0 , sgn max ,0 0,sgn max 1,0 0

1, 0

0, ,0
( ) ( ), for , 0 . Therefore, (

, 0

k

k

n

k k t k k

Y t Y t t h

t h
k k t k k

t

t h
Y t Y t t h Y

I t


       

     

  
       



  
    


 ) ( ),  for  , 0t Y t t  

 

     

     

  

0
0

20 0 0
1

0

1

( ) ( )
;

sgn max ,0 sgn max 1,0 In like manner,

2 sgn max sgn max ,0

, , ,  completing the 

0 0, 0 ( ) with (0) . 

1 ( ) 1 ,0 0, 1,

sgn max 1,0 ( ) 2

,

1, ( )

n

A t

t

h

k k

A t A t s A s h

k k

k k k

k Y t Y I

k Y t

k t t J k

e

e e A e ds

Y t Y

 



 

      

 
      

  

  



  



proof of (ii).
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D. Theorem 2.2: Appropriate Intervals For
 

( )Y t In The Variation Of Constants Formula 

The computable variation of constants formula is given as follows: 

  1 1 1
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The proof will be achieved through rigorous reasoning regarding the application of the method of steps as follows: 
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for some nonnegative integer  Thus, the relations 

are well defined; thus the proof is accomplished. This efficient expression constitutes the master stroke for

th

 . ( ) ( ), ( ) ( )0 , ;  
kk k kY t Y t x t t Jt t J k x t    

e successful prosecution of the variation of constants formula. 

  

The last integral is a formidable expression involving  1k   component integrals. There is hardly any easy way out of this 

inherent intractability.  

IV. RESULTS 

The main results of this article are as follows: 

A. Theorem 2.3: Optimal Representations of Unique Solutions to Scalar Initial-Function Problems 

For a given continuous function   with domain ,0 ,h  the unique solution to the initial-function problem: 
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By an appeal to the computable form of the variation of constants formula,  
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The proof is concluded.  Note that . 0,  if .
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B. Theorem 2.4:  Explicit Integral-Free Form Unique Solution To Constant Scalar Initial-Function Problems 

(CSIFP) 

Consider the constant initial function problem (CIFP): 
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Proof 

By a direct appeal to theorem 2.2, the unique integral-form solution to the constant initial-function problem (CIFP) is given 
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Claim 1: 

 

Proof of claim 1: 
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Claim 2: 
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The proof is accomplished. 

 

C. An Illustrative Problem 1 
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V. CONCLUSION 

This article has enhanced the understanding of the intricate subject of solution matrices which constitute the only 

appropriate vehicle for the computations of variation of constants formula for linear delay systems, through the optimal 

reformulation of the standard solution matrices and the delineation of the integral boundaries for the determination of the 

unique solutions to the corresponding initial function problems. The article went further to determine the exact integral-

free functional forms for all constant scalar initial-function problems, as well as furnished an illuminating example. The 

utility of the results is in the effective elimination of the tedium and computational drudgery inherent in the determination 

of the appropriate intervals for the computations of the solution matrices with multinomial linear arguments, as reflected in 

the standard variation of constants formula. 
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