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Abstract  — In this paper, we consider the classical risk model with mixed dividend strategy. Integro-differential equations for 
the Laplace transform of exit times from interval are derived. Unlike previous studies, this paper uses  exit time to calculate 

the  expected discounted dividend payments prior to ruin under compound Poisson model. When the claims are exponentially 

distributed, the analytical solution is presented.  

Keywords — Classical risk model, Mixed dividend strategy, Dividend payment, Exponential claims,  Exit times  

I. INTRODUCTION  
The study of dividend strategy in insurance risk models were first proposed by De Finetti(1957), who presented his paper at the 

15th International Congress of Actuaries in New York City. But, he found that the optimal strategy must be barrier strategy: 

that is, any surplus above a certain level would be paid as dividend. As this is not realistic, such a barrier strategy is applied, 

ultimate ruin of the company is certain. Jeanblanc-Picque and Shiryaev (1995) and Asmussen and Taksar (1997) modified the 

problem and postulated a dividend rate in the Brownian motion model. They showed that the optimal dividend strategy is now 

a generalized barrier strategy, that is, threshold strategy. Some down-to-earth calculations for the classical risk model are given 

in Gerber and Shiu (2004,2006b). 

From then on, the study of dividend problems has drawn more and more authors' attention. For example, Lin and Pavlova 

(2006) and  Lin and Sendova (2008) studies the dividend problem under compound Poisson risk model with threshold or 

multiple threshold strategy. Dividend problem was widely studied in different risk models, such as dual model (see, Avanzi 

et.al 2007), the spectrally positive Lévy processes(see, Yin et al. 2013, 2014) and Erlang-2 model (see, Avanzi et.al 2018). 

Recently, the dividend problem is usually studied by combining the other strategies, such as reinsurance, financing and 

investment(Yao et al. 2010, 2016). The usual method to solve this problem is using optimal control theory. But the dividend 

problem can also be studied by exit time (see, Fang and Wu 2009; Li et al. 2013). 

In this paper, we consider the mixed dividend strategy (see, Li et al. 2014a, 2014b) with   for the classical risk 

model. Dividends are paid at a constant rate   whenever the modified surplus is in interval . The excess is paid out 

immediately as the dividends whenever the surplus exceeds the level . Unlike the previous studies, we derive the dividend 

function by exit time method. We lead to the integro-differential equations for the Laplace transform of exit time. Then, we use 

this result to calculate the expression of the dividend payment in the case of exponential claim amount distributions. 

The rest of the paper is organized as follows. Section 2 gives the model.  In Section 3, we defined the exit times of the 

modified process from interval and obtained the integro-differential equation. Explicit results of the Laplace transform of exit 

time are given in the case of the exponential claim distribution. For the case of mixture of exponential claim  amount 

distribution, a system of linear equations are obtained. Section 4 presents the application of exit time in dividend problem, and 

the results in some special case is agree with the known results. 
This work was supported in part by the MOE Project of Humanities and Social Sciences[grant numbers 19YJCZH083]; the Natural Science Foundation of 

Jiangsu province [grant numbers BK20200833]. 

II. The Model and Mixed Dividend Strategy 

We consider the classical model of risk theory with initial surplus . If no dividends were paid the surplus  process at 

time  is given by 

 
( )

1

, 0,
N t

t t i

i

U u t S u t Y t 


        

where   is the premium rate, and { }tS  represents the aggregate claims up to time t , ( )N t  is a Poisson process with 

intensity  , and , 1,...,iY i   independent of { ( ); 0}N t t  , are positive i.i.d. random variables with distribution function 
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( )P y  and density function ( )p y . Unlike the  dividend strategies in Gerber and Shiu (2004) and Gerber and Shiu (2006a), we 

assume the company will pay dividends to its shareholders according to a mixed dividend strategy with parameters  (see, Li 

et al. 2014a, 2014b). This dividend consists of two parts. The first part of dividends are paid at a constant rate (0, )c   

whenever the (modified) surplus between the level 
1b  and 

2b . Additionally, whenever the (modified) surplus reaches the 

level 
2b , the overflow will be paid as the second part of dividends. Under this mixed dividend strategy, the company's 

(modified) surplus at time t  is given by 

                                                                                  ( ),t tU U D t                                                                               (2.1)                                             

where ( )D t  is the accumulate dividend up to time t . 

III. Laplace Transform of exit time 

A. Integro-differential equations 

We first consider the Laplace Transform of the exit times from an interval for the modified surplus process defined by (2.1). 

Given the costant 
1 2[ , ]a b b , we consider the exist time of interval [0, ]a . Define 

0 inf{ : 0},tt U     

inf{ : },a tt U a     

                                                                              
0, 0 .a a                                                                                       (3.1) 

Then we can give the following Laplace transforms: 

0

1 0( ) [ , ],u aL u E e
  

     

2 0( ) [ , ],a

u aL u E e
  

     

                                                                                    0,( ) [ ].a

uL u E e


         

where 0   is a constant. 

To give the Integro-differential equations satisfied by the above Laplace transforms. We introduce the infinitesimal 

generator G . When 
20 tU b  , process 

0{ }t tU 
 is a lévy process with negative jump, and the generator is given by 

 
1

0

1 2
0

'( ) [ ( ) ( )] ( ) , 0
( )

( ) '( ) [ ( ) ( )] ( ) ,

g u g u y g u p y dy u b
g u

g u g u y g u p y dy b u b

 

  





     


 
      





G  

for any continuously differentiable function ( )g u . 

Theorem 3.1.  For 1(0, )u b , 1( )L u  satisfies the following integro-differential equation: 

                   1 1 1
0

( ) ( ) ( ) ( ) ( ) [1 ( )] 0,
u

L u L u L u y p y dy P u                                                                               (3.2) 

and for 1[ , )u b a , 1( )L u  satisfies the the following integro-differential equation: 

                1 1 1
0

( ) ( ) ( ) ( ) ( ) ( ) [1 ( )] 0.
u

L u L u L u y p y dy P u                                                                          (3.3) 

Furthermore, 1(0) 1L   and 1( ) 0L a  . 

Proof. Let ( )g u  be a continuously differentiable function, and it satisfies the following function 

                                                                 ( ) ( ) 0, (0, )g u g u u a  G                                                                           (3.4) 

and boundary conditions (0) 1g   and ( ) 0g a  . Now, we apply Dynkin's formula to function ( )t

te g U
, then 

0
E ( ) ( ) E ( ) ( )d .

t
t s

u t u se g U g u e g U s             G  

Note that stopping time   which is defined by (3.1) is finite, and it follows from optional theorem that 
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0,
0,

0,

( )

( )
0

E ( ) ( ) E ( ) ( )d .
a

a

a

tt s

u t u se g U g u e g U s
  

 
  


     

     G  

Now let t  , it yields that 

                                             0,
0,

0, 0
E [ ( )] ( ) E ( ) ( )d .

a
a

a

s

u u se g U g u e g U s
 

 
    G                                               (3.5) 

By the definition of 0,a , it follows that 

                                  0, 0

0, 0 0E [ ( )] (0)E [ ; ] ( )E [ ; ].a a

au u a u ae g U g e g a e
  

    
                                               (3.6) 

Note the boundary condition (0) 1g   and ( ) 0g a  , we have 

0, 0

0, 0E [ ( )] E [ ; ].a

au u ae g U e
 

  
      

Substituting (3.4) and above equation into (3.5), we get 
1( ) ( )g u L u , which means 

1( )L u  is the solution of equation (3.4). 

Next, we will verify the function (3.5) is equal to the theorem. Note that the integral part 

 
+

1 1 1 1
0 0

[ ( ) ( )] ( ) [ ( ) ( ) 1 ( ) ( )]
u

L u y L u p y dy L u y p y dy P u L u 


         

where the equality used the definition of 
1( ) 1L u y   when y u . Substituting above equation to (3.4), the theorem is 

proved. 

Theorem 3.2.  
2 ( )L u  satisfies integro-differential equation For 

1(0, )u b , 

                                         2 2 2
0

( ) ( ) ( ) ( ) ( ) 0,
u

L u L u L u y p y dy                                                                   (3.7) 

and for 
1[ , )u b a , 

2 ( )L u  satisfies integro-differential equation: 

                                  2 2 2
0

( ) ( ) ( ) ( ) ( ) ( ) 0,
u

L u L u L u y p y dy                                                                 (3.8) 

and the boundary conditions 
2 (0) 0L   and 

2 ( ) 1L a  . 

Proof. It follows from the same method of Theorem 3.1, we can get 2 ( )L u  satisfies (3.4).  For the the integral part in this 

equation, we have 

+

2 2 2
0 0

[ ( ) ( )] ( ) ( ) ( )
u

L u y L u p y dy L u y p y dy


      

which follows that 2 ( ) 0L u y   when y u . Substituting above equation to (3.4), the theorem is proved. 

Remark 3.1. According to the definition of 1( )L u  and 2 ( )L u , we can obtain the process defined by (2.1) started in (0, )a  

remains in (0, )a  for all 0,at  . Finally, we can calculate the Laplace transform of the exit times 0,a  by the following 

equation 

1 2[ ] ( ) ( )uE e L u L u    

From the above equation and the Theorems 3.1 and 3.2, we can get ( ) : [ ]uL u E e   satisfies the integro-differential 

equation (3.4) with the boundary conditions (0) 1L   and ( ) 1L a  . 

B. Analytical solution under the mixed exponential distribution claim 

In this subsection, we calculate 1( )L u  and 2 ( )L u  for the case where the individual claim amounts are mixed exponential 

distribution. The mixture of exponential densities is given by 

                                                       
1

( ) , 0,i

n
y

i i

i

p y p e y
 



                                                                                    (3.9) 

 

with 1 20 n        and 0ip  , for 1,2,..., ,i n  and 
1

1
n

i

i

p


 . 
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To calculate 
1( )L u , we apply the operator 

1

( / )
n

i

i

d du 


  to equation (3.2), we can get that the function 
1( )L u  satisfies a 

homogeneous differential equation 

of order 1n . Hence, we have 

                                                           
1 1

0

( ) , 0 ,k

n
u

k

k

L u A e u b




                                                                        (3.10) 

 

where 
0 1, , , n    are the solutions of the Lundberg's fundamental equation 

                                                                  
1

( ) ( ) 0,
n

i

i

i i

p


    
 

   


                                                         (3.11) 

We have 

2 2 1 1 00 .n n                  

Substitute (3.10) into (3.2) yields the following equation 

0 1 1

[ ( ) ( )] 0.k k k i i

n n n
u u u u ui

k k i i

k i ii k

A e e p e e p e
    

    
 

 

  

     


     

Equating the coefficient of k u
e
  with 0, we obtain the Lundberg's fundamental equation (3.11).  Equating the coefficient of 

iue
  with 0, we obtain the following equation 

                                                                       
0

1, 1,..., .
n

i

k

k i k

A i n


 

 


                                                                       (3.12) 

 Applying the operator 
1

( / )
n

i

i

d du 


  to equation (3.3), we see that 1 1( )( )L u b u a   satisfies also a linear differential 

equation of order 1n . Hence, we have 

                                                                        
1 1

0

( ) , .k

n
u u

k

k

L u B e b u a


                                                                 (3.13) 

We now substitute (3.10) and (3.13) in the integro-differential equation (3.3). We yields the equation 

1 1

1 1

( )

0 0 1 0

( )

1

1 0 1

( ) ( ) [ ]

[ ] 0.

k k k i i

k k i i

n n n n
u u u u b b u ui

k k k i k

k k i k i k

n n n
u u u b b u ui

i k i

i k ii k

B u e B e p A e e

p B e e p e b u a
u

  

 


    

 


 



  

   

  

  

    


     


   

  
 

Now, equating the coefficient of ku u
e  with 0, we obtain 

                                   
1

( ) ( ) 0, 0,1,..., .
n

i

k i

i i k

u p k n
u


    



     


                                                             (3.14) 

This means that 0 1, , , nu u u  are the solutions of equation (3.14). We have 

2 2 1 1 00 .n nu u u u              

Finally, we equate the coefficient of iue


 with 0. This leads to the equation 

                                       1 1

0 0

1 1
, 1,2,... .k k

n n
b u b

k k

k ki k i k

A e B e i n
u



   

 
 

                                                                (3.15) 

Another condition follows from the continuity of 1( )L u  at 1u b , it follows that 

                                                                   1 1

0 0

.k k

n n
b u b

k k

k k

A e B e


 

                                                                                     (3.16) 
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Finally, from the boundary condition 
1( ) 0L a  , we have 

                                                                                
0

0.k

n
u a

k

k

B e


                                                                                     (3.17) 

 

In conclusion, (3.12)and (3.15) ~  (3.17) constitute a system of 2 2n  linear equations 

 
0 1 1 0 1 1

0 1 1 0 1 1

0 1 1 0 1 1

0

1 1

1 0 1

0

1 0 1 1 0 1

0 0

0 0

0 0

0 0

n n

n n

n n

n

n

n n

n n n

u u

n n

u u

n n

b

n n n n

u

u

b b b

b b b b

u

b b b

a

b

a

e e e e

u u

e e e e

u u

e e e e

e e

 

 

  

 

   

 

   

     

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
   

 
 



 

 



0

0

1

1

0

0

n

n

A

A

B

B

   
   
   
   
   
   
   
   
   

   
   
   
   
   
   
   
   
   

  

 

from which the coefficients 
0 1 0 1, , , , , , ,n nA A A B B B   can be determined. 

Next, We calculate 2 1( ; , )L u b a  when the claim density given by (3.9). Applying the operator 
1

( / )
n

i

i

d du 


  to equation 

(3.7), we can get that the function 2 ( )L u  satisfies a homogeneous differential equation of order 1n . Hence, we have 

                                                              2 1

0

( ) , 0 ,k

n
u

k

k

L u C e u b




                                                                              (3.18) 

where 0 1, , , n    are the same as above. Substitute (3.18) into (3.7), we have 

0 1

[ ( ) ( )] 0.k k k i

n n
u u u ui

k k i

k i i k

C e e p e e
   

   
 



 

    


   

Equating the coefficient of iue
  with 0, we obtain the following equations 

                                                           
0

1
0, 1,..., .

n

k

k i k

C i n
 

 


                                                                                  (3.19) 

 Applying the operator 
1

( / )
n

i

i

d du 


  to equation (3.8), we see that 2 1( )( )L u b u a   satisfies also a linear differential 

equation of order 1n . Hence, we have 

                                                           2 1

0

( ) , .k

n
u u

k

k

L u D e b u a


                                                                                  (3.20) 

We now substitute (3.18) and (3.20) into the integro-differential equation (3.7). We yields the equation 

1 1( )

0 0 1 0

( ) ( ) [ ]k k k i i

n n n n
u u u u b b u ui

k k k i k

k k i k i k

D u e D e p C e e
  

    
 

  

   

    


   

1 1( )

1

1 0

[ ] 0.k k i

n n
u u u b b ui

i k

i k i k

p D e e b u a
u






 

 

    


   

Inspection the coefficient of the coefficient of ku u
e  reveals that 0 1, ,..., nu u u  satisfies (3.14). 
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We equate the coefficient of iue
  with 0. This leads to the condition 

                            1 1

0 0

1 1
, 1,2,... .k k

n n
b u b

k k

k ki k i k

C e D e i n
u



   

 
 

                                                                   (3.21) 

Another condition follows from the continuity of 
2 ( )L u  at 

1u b , it follows that 

                                                                         1 1

0 0

.k k

n n
b u b

k k

k k

C e D e


 

                                                                             (3.22) 

 

Finally, from the boundary condition 
2 ( ) 1L a  , we have 

                                                                                         
0

1.k

n
u a

k

k

D e


                                                                           (3.23) 

In conclusion, (3.19) and (3.21) ~ (3.23) constitute a system of 2 2n  linear equations 

0 1 1 0 1 1

0 1 1 0 1 1

0 1 1 0 1 1

0

1 0 1

0

1 0 1 1 0 1

0 0

01
0 0

0 0

0 0

1

1 1

n n

n n

n n

n

n

n n n

u u

n n

u u

n

b

n n n n n

u

u a u

b b b

b b b b

b b b

a

b

C

Ce e e e

u u

e e e e

u u

e e e e

e e

 

 

  

   

   

     

     

 

 

 
   

 


 
 
 
 
 
 
 
 
 
 
 
 





 
 
 
 
 




 





0

0

0

0

0

1

n

n

D

D

   
   
   
   
   
   
   
   
   

   
   
   
   
   
   
   
   
   

  

 

from which the coefficients 0 1 0 1, , , , , , ,n nC C C D D D   can be determined. 

To explain the analytical solution, we give the following example. 

Example 1. We assume that the individual claim amounts are exponentially distributed  with mean 1/  , 

( ) , 0.yp y e y    

Which is the special case in (3.9) with 1n  . In this example, we give the analytical solution of 1( )L u  and 2 ( )L u .\\ 

    Applying the operator ( / )d du   to equation (3.2), we get that 1( )L u  satisfies the differential equation 

 

The solutions of above equation as follows 

                                                                       1 0 1 1( ) , 0 ,ru suL u A e A e u b                                                                    (3.24) 

where the coefficients 0A  and 1A  are to be determined, and s r  being the roots of the characteristic equation

1 1 1 1( ) ( ) ( ) ( ) 0. 0 .L u L u L u u b             

2 ( ) 0.           

Substituting (3.24) into (3.2) and equating the coefficient of ue   with 0  yields a relation between 0A  and 1A : 

                                                                            0 1 1.A A
r s

 

 
 

 
                                                                           (3.25) 

Applying the operator ( / )d du   to equation (3.3), we see that 1( )L u  satisfies the differential equation 
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1 1 1 1( ) ( ) ( ( ) ) ( ) ( ) 0. .L u L u L u b u a                  

Thus, 

                                                          1 0 1 1( ) , ,wu vuL u B e B e b u a                                                                         (3.26) 

where the coefficients 
0B  and 

1B  are to be determined, and w v  are the roots of the characteristic equation 

2( ) [ ( ) ] 0.                 

Substitute (3.24) and (3.26) into (3.2), we have 

                                                  
1 1 1 1

0 1 0 1 .
rb sb wb vbe e e e

A A B B
r s w v   
  

   
                                                                 (3.27) 

The boundary condition 1( ) 0L a   implies 

                                                                      0 1 0.wa vaB e B e                                                                                        (3.28) 

From the continuity of the function 
1( )L u  at 

1u b  

                                                                   1 1 1 1

0 1 0 1 .
rb sb wb vb

A e A e B e B e                                                                        (3.29) 

From (3.27) and (3.29), we have 

1 1 1

1 1 1

0 0 1

1 0 1

( )

( ) ,

wb vb rb

wb vb sb

r w s v s
A e B e B e

r s w v

r w r v r
A e B e B e

s r w v



 



 





  
 

  

  
 

  

 

and from (3.28), we get 

( )

0 1.
v w aB e B   

Substituting above equations into (3.27), the constants 0B  and 1B  can be solved as 

( )

0

( )( )
,

v w as r u v e
B

I

 



  
  

1

( )( )
,

r s u v
B

I

 



  
  

where 

1 1 1 1 1 1 ( )
( )[( ) ( ) ] ( )[( ) ( ) ] .

rb sb vb rb sb wb v w a
I w v s e v r e e v w s e w r e e      
           

Then, the constants 0A  and 1A  can be given by 

1 1

1

1 1

1

( )

0

( )

1

( )( ) ( )( )
,

( )( ) ( )( )
.

wb v w a vb
rb

wb v w a vb
sb

r v w s e w v s e
A e

I

s v w r e w v r e
A e

I

  



  



 


 


      


     


 

From above discussion, the expression of 1( )L u  is given by 

                        

1 1 1

1 1 1

( ) ( )

1

( ) ( )

1

( ) [ ( )( ) ( )( ) ]

[( )( ) ( )( ) ] ,0 ,

wb v w a vb r u b

wb v w a vb s u b

r
L u v w s e w v s e e

I

s
v w r e w v r e e u b

I


 




 



  

  


      


       

                                 (3.30) 

 

                           
( )

1 1( ) ( )( ) ( )( ) , .wu v w a vus r r s
L u w v e w v e b u a

I I
   

 

  
                                               (3.31) 
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Now, we give explicit expressions for 
2 ( )L u  when the claim sizes are exponentially distributed. 

Similarly, we applying the operator ( / )d du   to equation (3.7) and (3.8), we can get that 
2 ( )L u  satisfies the same 

differential equation as above. 

Then, we have 

                                                       2 0 1 1( ) , 0 ,ru suL u C e C e u b                                                                                 (3.32) 

                                                         2 0 1 1( ) , ,wu vuL u D e D e b u a                                                                              (3.33) 

where the coefficients 
0C , 

1C , 
0D  and 

1D  are to be determined, and r , s , w  and v  are the same as above. 

Substituting (3.32) into (3.7) equating the coefficient of ue   with 0  yields the condition 

0 1( ) 0,
C C

r s


 
 

 
 

Then, we can rewrite 

                                              2 1( ) [( ) ( ) ], 0ru suL u r e s e u b                                                                              (3.34) 

where   dose not depend on u . Substituting (\ref{th20}) and (\ref{th21}) into (\ref{theo4}) equating the coefficient of ue   

with 0  yields the condition 

                                                                  
1 1

1 1

0 1( ) .
wb vb

rb sb e e
e e D D

w v


 
  

 
                                                                 (3.35) 

Note that 2 ( ) 1L a  , which implies 

                                                                                        0 1 1.ua vaD e D e                                                                           (3.36) 

The continuity of the function 
2 1( ; , )L u b a  at 

1u b  yields the condition 

                                                                   1 1 1 1

0 1[( ) ( ) ] .
rb sb wb vb

r e s e D e D e                                                             (3.37) 

From above discussion, we have  

1 1 1

0 [( ) ( ) ]
wb rb sbw

D e v r e v s e
v w




   


 

1 1 1

1 [( ) ( ) ] .
vb rb sbv

D e w r e w s e
w v




   


 

Substituting above equations into (3.37), the coefficient   can be given by 

1 1 1( ) ( )
( )

,
w b a vb r s bw v e e

I


   


  

where I  is same as before. 

Then, the constants 0D  and 1D  as follows 

1 1 1

0

( )[( ) ( ) ]
,

rb sb vb waw v s e v r e e
D

I

   
   

  

1 1 1( )

1

( )[( ) ( ) ]
.

rb sb w b av w s e w r e e
D

I

   
   

  

 

Thus, 

                          
1 1 1( ) ( )

2 1

( )
( ) [( ) ( ) ], 0 .

w b a vb r s b
ru suw v e e

L u r e s e u b
I

 
   


                                                            (3.38) 

Finally, 
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1 1 1 1 1 1( )

2 1

1
( ) {( )[( ) ( ) ] ( )[( ) ( ) ] }, .

rb sb vb wa wu rb sb w b a vu
L u w v s e v r e e v w s e w r e e b u a

I
        

                        (3.39)                                                                                                                                          

From (3.30), (3.31), (3.38), and (3.39), we can get the Laplace transform of the exit time 

1 1 1 1 1 1( ) ( ) ( )
[ ] {[ ( )( ) ( )( ) ] ( ) }

wb v w a vb rb w b a vb r s b ru

u

r
E e v w s e w v s e e w v e e

I

 
  



       
          

1 1 1( )
{[( )( ) ( )( ) ]

wb v w a vb sbs
v w r e w v r e e

I


 



  
       

1 1 1( ) ( )

1( ) } , 0 ,
w b a vb r s b suw v e e if u b    

     

1 1 1 ( )[ ] {( )( ) [( ) ( ) ] }
rb sb b vva u a w

u

w
E e s r v e v s e v r e e e

I

 
 



  
        

1 1 1( )

1{( )( ) [( ) ( ) ] } , .
rb sb w b a vuv

w s r w s e w r e e e if b u a
I


 



  
          

Remark 3.2. Let us compare our results with known result. 

Let 
2b  , where the mixed dividends becomes a threshold strategy. When 

2a b , Laplace transform 
1( ) ( )L u L u  is 

same as (10.1) of Gerber and Shiu (2006a). 

From the above results, we get 

1

1 1
2

0

( )
lim ,

( ) ( )

sb

sb rbb

r w s e
A

w s e w r e





 


  
 

1

1 1
2

1

( )
lim .

( ) ( )

rb

sb rbb

s r w e
A

w s e w r e





 


  
 

Thus, 

                          
1 1

1 1
1 1

1 ( )( ) ( )( )
( ) , 0 ,

( ) ( )

sb ru rb su

sb rb

r w s e s r w e
L u u b

w s e w r e

 



 
    

  
  

                                                    (3.40) 

which is same as (10.17) in Gerber and Shiu (2006a). 

Similarly, 

1

1 1
0lim ,

( ) ( )

wb

rb sba

r s w
B e

w s e w r e







 

 


  
 

1lim 0.
a

B


  

Thus, 

1

1 1

( )

1 1( ) , .
( ) ( )

w u b

rb sb

r s w
L u e u b

w s e w r e







 

 
 

  
 

This result is same as (10.19) in Gerber and Shiu (2006a). 

Remark 3.3. For some special case, above functions can be used to make a decision for insurer. For example, let 0   and 

1a b , function 
11 0( ) ( )bL u P T T   is the probability of no dividend, and 

12 0( ) ( )bL u P T T   is the probability of dividend 

will occur before ruin. Shareholders can compare two probability to make a decision for investment. 

 

IV. Applications to dividend value function 

A. Barrier strategy 

In the mixed dividend problem, let 1 2b b a  , which leads to the barrier dividend strategy (see Gerber and Shiu, 2004). 

Whenever the surplus is above the level 2b , the excess will be paid as dividends, when the surplus is below b  nothing is paid 

out. We define the aggregate dividends paid in the time interval [0,t] by ( )bD t . In this special case, we have ( )t t bU U D t  . 
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Let 
bT  be the ruin time of this process, then we can define the present value of all dividends until ruin 

bT  by 

0
( )

bT
t

b bD e dD t  , here,   can be interpreted as the interest force. The expectation of present value of all dividends is 

given by 

2( , ) [ ].b u bV u b D E  

The above dividend function when the process is modeled by the Brownian motion process is given by Gerber and Shiu 

(2004). We proved that this function can be derived by the exit time in Li et al. (2013). The following lemma follows from 

this study. 

 

Lemma 4.1. For 
20 u b  , one has 2

2

2 2

( )
( , ) .

( )
b

L u
V u b

L b

  

The proof of this lemma is similar to Theorem 9 in Li et al. (2013).  

Example 2. This example assumes that the process is compound Poisson risk model and the individual claim amounts are 

exponentially distributed. From above lemma and the previous discussion, we can get the expectation of present value of 

dividend function 
2( , )bV u b . The analytical solution of exit time is given by Example 1, and we have 

2 2
2 2

( ) ( )
( , ) ,0

( ) ( )

ru su

b rb sb

r e s e
V u b u b

r r e s s e

 

 

  
  

  
 

where all the parameters are given in Section 2. 

B. Threshold strategy 

In this case, let 2b  , which leads to the threshold dividend strategy. When the surplus is above 
1b , dividends are paid at 

a constant rate  , and no dividends are paid whenever the surplus is below 1b . In this special case, we define the aggregate 

dividends paid in the time interval [0,t] by ( )dD t , and the surplus is ( )t t dU U D t  . Similarly, let dT  defines the ruin time 

of this process. The expectation of present value of dividends is given by 

1 1
0

( , ) [ ] ( ) ,
dT

s

d d tV u b D e I U b ds    
  E E  

where $I(\cdot)$ is the indicator function. To calculate this function by exit time, we need to give the following exit time 

inf{ : },a tt U a     

3 ( ) [ ].a

uL u E e
 

  

Note that we assume 2b  , and the  integro-differential equation satisfied by 3( )L u  can be given by the following 

Lemma, which the proof is similar with Theorem 3.1. 

Lemma 4.2. 3 1( ),L u u b  satisfies the the following integro-differential equation: 

3 3 3
0

( ) ( ) ( ) ( ) ( ) ( ) [1 ( )] 0,
u

L u L u L u y p y dy P u              

with 3 1( ) 1L b   and 3 ( ) 0L   . 

Note that the threshold dividend function 1( , )dV u b  under Poisson process is studied by Gerber and Shiu (2006a), and Li et 

al.(2013) proved that this function can be calculated by exit time when the risk model are one-diffusion processes. This result 

can be extended to the Poisson risk model. 

Lemma 4.3. In this threshold dividend problem, when 1[0, ]u b , it has 

3 1 2

1

3 1 2 1

( ) ( )
( ; ) ,

( ) ( )
d

L b L u
V u b

L b L b












 

 and when 1u b , it has 



Peng Li / IJMTT, 67(2), 57-67, 2020 
 

67 

2 1 3

1

3 1 2 1

( ) ( )
( ; ) ,

( ) ( )
d

L b L u
V u b

L b L b

 

 





 


 

 where the 
2 ( )L u  is calculated under 

1a b  and 
2b  . 

Example 3. This example gives the threshold dividend function when the process is compound Poisson risk model 

and the individual claim amounts are exponentially distributed. We first calculate the expression of 
3( )L u , and it follows 

from the similar program as Example 1, we have 

1( )

3 1( ) , .
w u b

L u e u b


   

When 
1a b , (3.38) gives the following expression: 

1

1 1

( )

2 1

[( ) ( ) ]
( ) , 0 .

( ) ( )

r s b ru su

sb rb

e r e s e
L u u b

r e s e

 

 

 

 

  
  

  
 

Consider the boundary condition 
1(0) 1L   of the Remark 3.2 in equation (3.40), which gives the following equation: 

1 1 1 1( )( ) ( )( ) (( ) ( ) ).
sb rb sb rb

r w s e s r w e w s e w r e            

According to the results of Lemma 4.3, we substitute 
2 ( )L u  and 

3( )L u  into 
1( , )dV u b  and use above equation arrange it, and 

it has 

1 1
1 1

( ) ( )
( ; ) , 0 ,

( ) ( )

ru su

d rb sb

w r e s e
V u b u b

r w e s w e

  



   
  

  
 

and 

( ) ( )

1 1 1 1( ; ) (1 ) ( ; ) , ,w u b w u b

d dV u b e V b b e x b




      

which is same with the results (6.14) and (6.15) in Gerber and Shiu (2006a). 
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