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Abstract - This paper investigates the security control problem of nonlinear leader-following multi-agent systems based on 
distributed adaptive state observers in the purpose of finding some sensors that are attacked by anattacker. At first, a 

flexible switching mechanism is proposed in designing the observers such that the security problem is effectively solved 

with the consideration of sensor attacks, process disturbances and output disturbances in the systems’ dynamics. Then, the 

tracking error control strategy is constructed based on the agents’ dynamics and state estimation. Moreover, both the 

state estimation and the attack tolerance control performance can be guaranteed regardless of multiple attacks and other 

external disturbances. What’s more, the unknown feedback matrix of the distributed control protocol and the unknown 

gain matrix of the proposed observer are determined by solving only two linear matrix inequalities (LMIs). Finally, a 

simulation example is given to illustrate the effectiveness of the theoretical analysis.  
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I. INTRODUCTION 
The multi-agent systems (MASs), which consist of autonomous dynamical systems and each dynamical system 

represents an agent communicating and interacting with other agents, are interpreted in application of modern control 

theory. Many researches concentrating on the application of MASs such as unmanned aerial vehicle formation cooperation, 

satellite formation flying, sensor network, have been published in [1–4]. However, if the sensors of agents are attacked by 

an attacker, the measured data may be inaccurate or incorrect. The attack signals can even disrupt the control performance 

of the system through the communication topology. Thus, the security control problem of MASs becomes the focus in the 

future. 

In recent years, a lot of researches subject to security issues of MASs under sensor attacks are published (e.g., [5–8]). In 

most existing works, many effective approaches have been proposed to decrease the effect of sensors attacks. In [9], two 

novel distributed control protocols are proposed based on the adaptive control strategy and the event-triggered transmission 

scheme. A kind of distributed H∞ controllers is introduced to attenuate the effects of disturbances or attacks in [10]. 

Authors in [11] construct an individual high-gain observer in order to observe the portion of the system state. Although all 

the methods mentioned above can effectively reach good control performance, it is hard to observe all the agent state in 

reality when sensor 

attacks occur. In addition, uncertain external disturbances are inevitable in the process of information interaction, which 

usually cause poor performance, instability of the systems. Therefore, appropriate distributed controller can better deal 

with the safety control problem of the systems. Refs [12] introduces a novel hybrid distributed control scheme to reduce 

the impact of denial-of-service attacks and state estimation for observing the followers’ position, which is one of our 

motivations for designing the controllers in this paper.  

To solve the security control problem of MASs , suitable adaptive state observers need to be established to effectively 

recover the agents state by utilizing the observability Gramian and the Luenberger observer. In [13], a novel intermediate 

observer design method is proposed to estimate the system states, actuator faults, and sensor faults. literature [14] studies 

the distributed resilient observer-based fault-tolerant control problem for heterogeneous linear multiagent systems under 

actuator faults and denial-of-service (DoS) attacks. It is worth mentioning that there are some limitations in the exiting 

output feedback security control protocol. On one hand, the attacks signals are distinguished by the performance index in 

verifying the proposed security control approach, but it is difficult to achieve good control performance when the 

cooperative attacks occur and the attack signals becomes larger [5, 15, 16]. On the other hand, observer based control 

method are used to estimate the attack signals and the measured data are probably inaccurate, then the security control 

performance can not be guaranteed [17]. Therefore, in order to effectively search all the attacked sensors, a novel flexible 

switching mechanism is proposed for a single linear system such that the secure control method is truly verified in [18]. 

Unlike the principles of traditional observer, this switching mechanism is established and every agent used the same one in 

designing observer. Therefore, the attack tolerant control performance can be better verified by a switching function matrix. 

In this paper, this flexible switching mechanism is further improved and the consensus of nonlinear MASs can be achieved 

by a better protocol. 

https://www.ijmttjournal.org/archive/ijmtt-v67i2p511
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Motivated by the above discussions, this article develops an adaptive state observer for nonlinear leader following 

MASs under sensor attacks and external disturbances, in which the systems works both in normal condition and attacked 

conditions. A switching function matrix is proposed in the state observer for searching all the attacked sensors and the 

agent state is reconstructed such that the tracking error is close to zero. Based on Lyapunov stability analysis, the stability 

of the system is realized if attacks occur [19]. The main contributions of this paper are concluded as threefold. Firstly, the 

security control problem of nonlinear leader-following MASs is investigated under cooperative attacks and external 

disturbances, which are practical in practice. Secondly, a flexible switching mechanism is proposed to search all the 

attacked sensors of agents, in which the state can be recovered by an observer with a changed function matrix. Due to this 

effective scheme, the security control performance can be better verified. Finally, the unknown parameters matrix of the 

proposed methods is determined by solving two linear matrix inequalities (LMIs). 

The rest of this papers are summarized as follows. The problem statement is detailed with some given preliminaries in 

section II. Several sufficient conditions can be obtained for the consensus of nonlinear leader-following MASs in section 

III. From section IV, a numerical application illustrates the practicability of the proposed systems. Section V is the 

conclusion of this article. 

Notations: Denote 
n

, 
n n

as the set of n -dimensional vectors, space of n n  matrices, respectively;  
nP P  and 0P   means that the matrix P  are symmetric and positive definite.  , 1  and 

nI  are the 

transpose of the vector (or matrix), the inverse of a matrix and n-dimensional identity matrix; any vector 
nM  is a 

norm which can be defined as 
2

=M M M . * represents the symmetric elements of the symmetric matrix; 
b

aC  

denotes the binomial coefficient with , ,a b  . The support of a vector 
ns is defined as supp( )s . A vector 

nb  is s-sparse if supp( ) =b s  with   s n . The Kronecker product   has the following propertion 

( )( ) ( ),A B C D AC BD     ( ) ( )A B A B     . The other matrices or vectors without explicitly stated 

are assumed to have appropriate dimensions. 

II. PRELIMINARIES AND PROBLEM DESCRIPTION 

A. Graph theory 

The MASs is considered as a directed graph with N agents. The communication topology is denoted as ( , , )G V E A , 

where 
1 2{ , , , }NV V V V  is the set of all nodes, E V V  represents the set of all edges. The weighted adjacent 

matrix is [ ]ij N Na A  with 0ija   if there is a directed edge from agent 
iV to agent jV  and 

iV can get information 

from jV ; otherwise, =0ija . The Laplacian matrix can be defined as [ ]  ij N NlL , ( )ij ijl a i j    and 

1

, 1,2, ,
N

ii ij

j

l a i N


  . The pinning matrix can be denoted as { } N N

iq Q , if the ith node is connected to the 

leader, 1iq  , otherwise 0iq  . 

B. Problem description 

Consider the following MASs under sensor attacks, the system model of leader node is described as: 

 
0 0 2 0

0 0

( ) ( ) ( ( )),

( ) ( ).

x t Ax t B f x t

y t Cx t

 



  (1) 

Assume that from 1 to N of agents are followers. The dynamics of ith follower  are given as 

 
1 2( ) ( ) ( ) ( ( )) ( ),

( ) ( ) ( ( ) ( )),

i i i i w i

i i i i

x t Ax t B u t B f x t D w t

y t Cx t E d t v t

   


  
  (2) 

where ( ) n

ix t  , ( ) n

iu t  , y ( ) n

i t   represent the state vector, control input and measurement output, 

respectively. ( ) n

iw t  , ( ) n

id t  , ( ) n

iv t   are the process disturbances, measurement disturbances, the sensor 

attacks injected by attackers, respectively. the nonlinear function ( ) nf   satisfies the global Lipschitz condition 

( ) ( )f x f y l x y   with constant 0.l   
1 2, , , ,A B B C E  are known constant matrices with appropriate 
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dimensions. 

Remark 1. As a non-negligible factor, it is of great practical significance to consider disturbances in the dynamics of 

MASs. The process disturbances, output disturbances and sensor attacks are considered in (2) like other articles [13,18,20]. 

Compared with many works [9,21], systems (2) are more general in practical application. 

Assumption 1.  The sensor attacks ( ) n

iv t  is a s-sparse vector and 1 2( ) ( ( ), ( ), , ( )) ;Nv t v t v t v t     

supp( ( ))v t satisfies ( ) vv t  , where 0v  is known constant. Given constants 0w  and 0d  , the other 

disturbances 1 2( ) ( ( ), ( ), , ( ))Nw t w t w t w t    and 1 2( ) ( ( ), ( ), , ( ))Nd t d t d t d t     satisfy ( ) ww t   and 

( ) dd t  . 

The most important objective is to design a reasonable control protocol based on the flexible switching mechanism. The 

system state is estimated by the state observer, and the system’s attack tolerance control performance can be guaranteed. 

III. MAIN RESULTS 

A. Construct the adaptive state observer 

In this section, the unmeasurable state can be estimated by an adaptive state observer. Based on the analysis of [5,18], a 

flexible switching mechanism was proposed to solve the problem of difficult identification of attack signals. The switching 

function matrix is used to detect the sensor that is attacked and switch autonomously due to the change of switching 

element.  

Definition 1 (See the work of [5] ). 

System (2) is s-sparse observable if for every set 1, 2, ,S n  with   S s , the pair ( ), SA C   is observable. S  

is the cardinality of S . 

( )iv t  is nonzero element if the ith sensor is attacked; otherwise ( )iv t  is zero. Constructing the flexible switching 

matrix  1  diag , ., , ,i nL l l l     0il   means the ith sensor is not attacked, otherwise   1il  . The attack 

mode 

0 1= s

n n nC C C     and will defined later. Then the distributed state observer is defined as 

 1 2
ˆˆˆ ˆ ˆ( ) ( ) ( ) ( ( )) ,i i i i ix t Ax t B u t B f x t KL       (3) 

where  

0 0

1 1

ˆ ˆ ˆ ˆ ˆ( ( ) ( )) ( ( ) ( )), ( ( ) ( )) ( ( ) ( )).
N N

i ij i j i i i ij i j i i

j j

a y t y t q y t y t a Cx t Cx t q Cx t Cx t 
 

          

̂ , K̂  are the observer coupling strength and the observer gain matrix. It is assumed that the reference signal from the 

leader is (called ”pinned”) available to the controlled followers[22]. Define 
0 0

ˆ( ) ( )x t x t  and ˆ= ( )
iL i iL    , The 

energy function 

1 1
2

2 2

1

( )= ( )
i

N

L

i

t N  




 , the observed performance index   is denoted as 

 
2

2

0, ( ) ,
( ) ( ( ))

( ( ) ) ( ) ,

t
t N t

t t


 
  

    


   

  ，
  (4) 

where   represents the time derivative;   and   are constants to be determined later. Denote the switching index 

 
0 1( )= mod( , ) ,s

n n nC C C         (5) 

where     is the ceiling function, mod(·) is the residual operator or known as the modulus. 

Remark 2. The switching scheme are proposed in [18]. Different from the previous works, the switching index ξ switches 

between 1 and 
0 0  s

n n nC C C    and finally    will switch to the right mode [5] . =1   and 1 nL I   is the 

initial condition, at which system (2) is not attacked. 

The cooperative attacks tolerant control input is proposed due to the analysis above. 
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 0

1

ˆ ˆ ˆ ˆ( ) ( ( ) ( )) ( ( ) ( )) ,
N

i ij i j i i

j

u t K a x t x t q x t x t


 
     

 
   (6) 

where  , K  are the coupling strength and the undetermined control feedback matrix. 

B. Stability analysis of global tracking error systems 

Define the tracking error 0( ) ( ) ( )i ie t x t x t    and the estimation error ˆ ˆ( ) ) ),( (i i ie t x t x t   we have 

 

1 1 2

2

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

ˆ ˆˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆˆ ˆ( ) ( ) ( ) ( ),

N N N w

N N N w

e t I A e t H B K e t H B K e t I B F t I D w t

e t I A e t H KL C e t I B F t I D w t

H KL E d t H KL E v t



 

 



 

          


       


   

  (7) 

where +H L Q  , 
1 2( ) ( ( ), ( ), , ( ))Ne t e t e t e t    , 

1 2
ˆ ˆ ˆ ˆ( ) ( ( ), ( ), , ( ))Ne t e t e t e t     and  

1 0 2 0 0

1 1 2 2

( ) (( ( ) ( )) , ( ( ) ( )) , , ( ( ) ( )) ) ,

ˆ ˆ ˆ ˆ( ) (( ( ) ( )) , ( ( ) ( )) , , ( ( ) ( )) ).

N

N N

F t f x f x f x f x f x f x

F t f x f x f x f x f x f x

   

  

   

   
 

Before showing the results, the following lemmas are introduced. 

Lemma 1 (See the work of Lin et al [21]). 

There exits a positive vector 
1 2[ , , , ]N       and the diagonal matrix  1 2diag , , , N     

such that 

0,H H      

where 1NH    and H  is defined in (7). 

Lemma 2 (See the work of Cao et al [23]). 

For any 0,    
nx  , 

ny  and matrix 
n nM  , the following inequality holds 

1 12     .x y x M x y My         

Lemma 3 (See the work of Hou et al [25]). 

For continuous functions ( ) 0V t  , any positive constants  ,  , the following inequalities holds 

( ) ( ) ,V t V t     

Then 

1( ) ( ) (1 ).t tV t e V t e        

Theorem 1. Suppose that Assumptions 1 holds, the tracking error systems (7) are uniformly ultimately bounded if for 

given positive scalars ,  ,  ,  ,    there exits positive symmetric matrices ,P  Q  such that 

 0,
lP

I

 
 

  
 (8) 

 

2

2

min max

ˆ

0 0,

wQB QD

I

I  

 
 
   

   
 

 (9) 

where 
2 1 1

2 2 max min 1 max 1 1= ( ) ,T

w wAP PA B B D D B B P                 

2 1 1

1 max max min
ˆ ˆ ˆ=Q 2 ( ) ( ) .nA A Q l I C L C HH C L EE L C Q                         

Proof. We construct the Lyapunov functions as 

 
1 ˆ ˆ( ) ( )( ) ( ) ( )( ) ( ),V t e t P e t e t Q e t       (10) 
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Where constant 0   to be determined later. Calculating the derivative of ( )V t  yields 

 

T 1 T 1

1

T 1

1

T 1 T 1

1 2

T T

1( ) ( )( ) ( )( ) ( )

( )( ( )) ( ) ( )(( ) ) ( )

ˆ2 ( )( ) ( ) 2 ( )( ) ( ) 2 ( )( ) ( )

ˆˆ ˆ ˆ( )( ( )) ( )

2

( )

)

(

ˆ ˆ2

(

(

w

V t t t t

e t P e t e t H H P B K e t

e t H P B K e t e t P B F t e t H P D w t

e t QA A Q e

e P e t e Q e

A A P

t e t





 

  

  





  





      

       

    

  



 

T

2

T T T

ˆ ˆˆ ˆ) ) ( ) 2 ( )( ) ( )

ˆ ˆˆ ˆˆ ˆ ˆ2 ( ) ( ) 2 ( )( ) ( ) 2 ( )( ) ( ).w

H H QKL C e t e t QB F t

e t QD w t e t H QKL E d t e t H QKL E v t



 



 

    

       

 

(11) 

Let 
1

1 ,K B P   
1ˆ ,K Q C   

1 min ( ) 0,H H        max 1max{ , , },N    

min 1min{ , , }.N    

Based on Assumption 1 and Lemmas 1, 2, the following inequalities hold 

 
T 1 T 1 2

2 2( )( ) ( ) ( )( ) (2 ( )) .nt t te P B F e B tP l I e       (12) 

  
T 1 T 2 1 1 1 2

max min( )(2 ( ) ( )( ) () ) .w w w we P D w t e t P D D P et t           (13) 

  T 1 T 1 1 1

1 1 max 1 1(( )( ) ( ) ( )( )) .( )t t te t H H P B K e e P B B P e t                (14) 

 
T T 2

2 2 2
ˆˆ ˆ ˆ2 ( ) .( )( ) ( ) ( )( ) ( )nt t te QB F e QB B Q l I e t       (15) 

 
T T 2 1 2

max min
ˆ ˆ ˆ2 ( .( )( ) ( ) ( )( ) () )w w w wt te QD w e QD et D Q t         (16) 

 
T T 1

1 max
ˆˆ ˆˆ ˆ ˆ ˆ( ) .(( )( ) ) ( )( ) ( )e H H QKL C e e C L C et t t t                 (17) 

 
T T 1 2

max min
ˆˆ ˆˆ ˆ ˆ2 ( )( ( ) ) .( )( ) ( ) ( ) de H QKL E d e t HH C L EE L C et t t                    (18) 

 
T T 1 2

max min
ˆˆ ˆˆ ˆ ˆ2 ( ) .( )( ) ( ) ( )( ) ( ) ve H QKL E v e HH C L EE L C et t t t                     (19) 

According to the inequalities (11)-(19), we have 

 
1 1

1 2 1 1
ˆ ˆ ˆ( ) ( )( ) ( ) ( )( ) ( ) 2 ( )( ) ( ) ,V t e t e t e t e t e t H P B B P e t                (20) 

where 
2 2 2=2 w d v     ，

1 1 1 1 2 2 1 1 1 1 1 1

1 2 2 max min 1 max 1 1= ,n w wP A A P P B B P l I P D D P P B B P                        

2 2 1 1 1

2 2 2 max min 1 max max min
ˆ ˆ= 2 ( ) .n w wQA A Q QB B Q l I QD D Q C L C HH C L EE L C                         

  

Inequalities 
1

1 ( )P       and 2 ( )Q      are supported by conditions (8) and (9) for the given 

positive constants ,  ,  ,  .  Inequality (20) can be written as 

 
1 ˆ ˆ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ),V t e t P e t e t Q e t t t                (21) 

where ˆ( ) ( ( ), ( ))t e t e t     , 

1 1 1

1 1= .
P H P B B P

Q

 



      
  

  
 Obviously, 

1 0P    and 

0  are established if and only if   satisfies 

1 1 1 1 1 1

1 1 1 1( ) ( ) ( )P H P B B P Q H P B B P                   . 

Let = min{ , },    = ,   then it is concluded from (21) that 

 ( ) ( ) .V t V t     (22)  

According to Lemma 3, one gets 
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1( ) ( ) (1 ).t tV t e V t e        (23) 

Thus, it is derived from inequality (23) that the states dynamics of tracking error systems (7) are uniformly bounded 

when t  , and the consensus tracking error converges to a small neighborhood of the origin, which means the 

consensus of the proposed MASs can be realized. 

According to artice [5], it is easy to obtain that the convergence ( )t  satisfies ( ) 1
t

t dt




  for a certain time 

.t    Obviously, it holds 

 
2 2 2 ( ) * 1 ( )ˆ ˆ( ) ( ( ) ( ) ) ( ) ( ) (1 )t t t te t e t e t V t e V t e    

           ， (24) 

where 
1

min min=min{ ( ), ( )}.P Q     Then from (24), we obtain 

 

1 1 1 1 1
( )

2 2 2 2 2 2ˆ( ) ( ) .
t t

e t e V t


   
    

   (25) 

Let ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ).L t H L C e t H L E d t H L E v t           The energy function 

1 1
2

2 2

1
( )= ( )

iL

N

i
t N 



  satisfies 

 

1 1 1 1 1 1 1 1
( )

2 2 2 2 2 2 2 2 2( ) [ ( ) ] .
t t

d vt N H L C e V t N H L E N H L E


        
       

        (26) 

What’s more, from (4), there exits time t   such that 

 

2
1 1 1

( )
-1 1 12 2 2 2( ) ( ) ( )

t t

t t
t dt N H L C e V t dt N H H C L L C V t



       


 

     
       

    
 

  ， (27) 

where 

1 1 1 1 1 1

2 2 2 2 2 2= .d vN H L C N H L E N H L E       
    

      It is obtained from (22) that  

 
( ) 1( ) (0) .t tV t e V  

      (28) 

Combine (27) and (28) that 

 
-1 1 1 ( ) 1( ) ( (0) ).t t

t
t dt N H H C L L C e V

      





           (29) 

Let 
1

1 1= ( )N H H C L L C     


       for the determined parameter 0.   Thus, there always 

exits t  satisfying 
*te     and ( ) 1.

t
t dt





  From Barbalat’s lemma, it holds 
2lim ( ( )) 0

t
N t 


  and 

lim ( ) .
t

t 


   

When the system is attacked, it can be proved that the performance index   drives the switching index   to change 

between 1 and 
0 1 s

n n nC C C    continuously until the index is reached to the correct mode, the performance index 

  will continue to increase in this process, and will eventually remain stable. At that time, sensor attacks ( ) 0iv t  . 

The proof is complete. 

Remark 3. In the paper, security control problem of MASs under multiple attacks is solved by a flexible switching 

mechanism. Compared with most exiting literature [11,13,24], the switching scheme proposed in this paper is more 

practical and flexible. Thus when systems are attacked, the switching performance index can be guaranteed such that the 

security control problem can be solved in a better strategy. 

IV. NUMERICAL SIMULATION 

In this section, a numerical example is provided to verify the theoretical results. The MASs with followers’ dynamics 

(2) and leader dynamics (1) are denoted as a graph with one leader and three followers, which can be shown in Fig 1. 
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Fig 1: The graph of leader-following MASs. 
 

Table 1: Sensor attacks. 

 Follower 1 Follower 2 Follower 3 

Sensor 1 0.2sin(t) 0.2sin(t) 0 

Sensor 2 0 0 0 

Example. The MASs topology of corresponding augmented Laplacian matrix is defined as 

3 1 1

= 1 3 1 .

1 1 3

H

  
 
  
   

 

Based on Lemma 1, it is easy to obtain that 3= ,I  max min =1   and 1 min= ( ) 2.H H       The mainly 

problem is to choose the proper parameters such that the security tracking control method proposed in this paper can be 

verified. The nonlinear function is described as ( ( )) tanh( ( )),i if x t x t  and Lipschitz constant can be chosen as 

1.l    

For the given parameters ˆ= =0.2,   =8.5,  =0.6,  10.5,   =0.4 . Both the process disturbances and 

measurement disturbances are defined as ( ) ( ) 0.2sin( ),i iw t d t t   0.2w d    satisfy Assumption 1. Choose 

the known matrices as 

8 40
,

30 9
A

  
  

 
 1

2.7 5
,

4 3
B

 
  
 

 2

2 0
,

1 1
B

 
  
 

  

0.1 0
,

0 0.5
wD

 
  
 

 
0.1 0.2

,
0.1 0.3

C
 

  
 

 
0.1 0

.
0.1 0

E
 

  
 

 

Based on Theorem 1. it yields 

1.0697 0.0273
,

0.0273 0.8304
P

 
  

 
 

1.1935 0.0365
,

0.0365 0.8472
Q

 
  
 

  

2.6495 4.9043
,

4.5858 3.4618
K

 
  

 
 

0.0767 0.0730
ˆ .

0.2328 0.3510
K

 
  
 
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Fig 2. The state trajectories of leader-following MASs. 

 

Fig 3. The state estimation of follow 1. 

 

Fig 4. The state estimation of follow 2. 

 

Fig 5. The state estimation of follow 3. 

 

(a)                                              (b) 

Fig 6. The flexible switching mechanism. 
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In 4s, sensor attacks occur on sensor 1 of motor 1 and motor 2, which can be seen in Table 1. 0.4v  satisfies 

Assumption 1. Choose the initial condition of leader as (10,10)  and the others are zero conditions, the state 

trajectories are shown in Fig 2 and their estimation are shown in Fig 3-Fig 5. Define the initial condition of the switching 

index 1  , and the observed performance index 1  . Fig 6(a) plots the energy function ( )t  and constant  , 

Fig 6(b) shows the switching index   and the observed performance index  . Since the energy function ( )t  keeps 

changing in the time interval 4-6s, the flexible switching mechanism is stimulated for searching the attack mode. At about 

t=6s, the switching index   reaches to the right mode and the observed performance index  is stable. Then the 

flexible switching mechanism can be effectively verified. Therefore, we conclude that all the agents achieve agreement. 

That is, the security control of nonlinear leader-following MASs can be effectively verified.  

VI. CONCLUSIONS 
This paper studies the security control problem of MASs under sensor attacks and other external disturbances. a flexible 

switching mechanism is proposed to search the attack mode modeled by a suitable adaptive state observer. Also, the 

tracking error control strategy is constructed based on the followers dynamics and the corresponding state estimation. Both 

the state estimation and the attack tolerance control performance is guaranteed regardless of multiple attacks and 

disturbances. By lyapunov stability theory, sufficient conditions for the consensus of the considered MASs are obtained. 

Finally, An experimental results verify the effectiveness of the proposed scheme. 
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